Citation: Feng Qi. Completely monotonic degree of a function involving trigamma and tetragamma functions[J]. AIMS Mathematics, 2020, 5(4): 3391-3407. doi: 10.3934/math.2020219
[1] | Yaning Li, Mengjun Wang . Well-posedness and blow-up results for a time-space fractional diffusion-wave equation. Electronic Research Archive, 2024, 32(5): 3522-3542. doi: 10.3934/era.2024162 |
[2] | Yong Zhou, Jia Wei He, Ahmed Alsaedi, Bashir Ahmad . The well-posedness for semilinear time fractional wave equations on $ \mathbb R^N $. Electronic Research Archive, 2022, 30(8): 2981-3003. doi: 10.3934/era.2022151 |
[3] | Anh Tuan Nguyen, Chao Yang . On a time-space fractional diffusion equation with a semilinear source of exponential type. Electronic Research Archive, 2022, 30(4): 1354-1373. doi: 10.3934/era.2022071 |
[4] | Yuchen Zhu . Blow-up of solutions for a time fractional biharmonic equation with exponentional nonlinear memory. Electronic Research Archive, 2024, 32(11): 5988-6007. doi: 10.3934/era.2024278 |
[5] | Vo Van Au, Jagdev Singh, Anh Tuan Nguyen . Well-posedness results and blow-up for a semi-linear time fractional diffusion equation with variable coefficients. Electronic Research Archive, 2021, 29(6): 3581-3607. doi: 10.3934/era.2021052 |
[6] | Zhili Zhang, Aying Wan, Hongyan Lin . Spatiotemporal patterns and multiple bifurcations of a reaction- diffusion model for hair follicle spacing. Electronic Research Archive, 2023, 31(4): 1922-1947. doi: 10.3934/era.2023099 |
[7] | Liping Yang, Hu Li . A hybrid algorithm based on parareal and Schwarz waveform relaxation. Electronic Research Archive, 2022, 30(11): 4086-4107. doi: 10.3934/era.2022207 |
[8] | Yijun Chen, Yaning Xie . A kernel-free boundary integral method for reaction-diffusion equations. Electronic Research Archive, 2025, 33(2): 556-581. doi: 10.3934/era.2025026 |
[9] | Shuguan Ji, Yanshuo Li . Quasi-periodic solutions for the incompressible Navier-Stokes equations with nonlocal diffusion. Electronic Research Archive, 2023, 31(12): 7182-7194. doi: 10.3934/era.2023363 |
[10] | Yitian Wang, Xiaoping Liu, Yuxuan Chen . Semilinear pseudo-parabolic equations on manifolds with conical singularities. Electronic Research Archive, 2021, 29(6): 3687-3720. doi: 10.3934/era.2021057 |
Fractional derivatives are integro-differential operators which generalize integer-order differential and integral calculus. They can describe the property of memory and heredity of various materials and processes compared with integer-order derivatives. In recent years, many scholars are committed to the research of time-fractional or space-fractional partial differential equations, see [1,2,3,4,5,6,7]. On the other hand, fractional diffusion models are employed for some engineering problems [8,9] with power-law memory in time and physical models considering memory effects [10,11,12]. There are numerous works devoted to fractional diffusion equations. We only list several of the numerous papers on the analysis for fractional diffusion equations. In [13], the author discussed well-posedness of semilinear time-fractional diffusion equations using embedding relation among spaces. Eidelman and Kochubei [14] constructed fundamental solutions of time fractional evolution equations. In [15], the author established Lr−Lq estimates and weighted estimates of fundamental solutions, and obtained existence and uniqueness of mild solutions of the Keller-Segel type time-space fractional diffusion equation. In [16], Wang and Zhou introduced and discussed four types special data dependences for a class of fractional evolution equations.
In this paper, we focus on the following nonlinear time-space fractional reaction-diffusion equations with fractional Laplacian
{cDαtu(x,t)+(−Δ)βu(x,t)=f(x,t,u(x,t)),x∈Ω,t>0,u(x,t)=0,x∈∂Ω,t>0,u(x,0)=u0(x),x∈Ω, | (1.1) |
where Ω⊂RN(N⩾1) is a bounded open domain with smooth boundary ∂Ω; α,β∈(0,1) and cDαt⋅ is the Caputo time-fractional derivative of order α defined as
cDαtu(t)=1Γ(1−α)∫t0(t−s)−αu′(s)ds,t>0, |
Γ(⋅) is the Gamma function; The spectral fractional Laplacian could be defined as
(−Δ)βu:=∞∑j=1λβjujϕj,uj:=∫Ωuϕjdx,j∈N; | (1.2) |
f:Ω×[0,∞)×R→R is the nonlinear function and the continuous initial data u0:Ω→R. We obtain the local uniqueness of mild solutions, the blowup alternative result for saturated mild solutions and Mittag-Leffler-Ulam-Hyers stability.
The main results of this paper are as following:
Theorem 1.1. Assume that nonlinear function f:Ω×[0,∞)×R→R is continuous and satisfies locally Lipschitz condition about the third variable, then there exists a constant h>0 such that Eq (1.1) has a unique mild solution on Ω×[0,h].
Theorem 1.2. Assume that all assumptions of Theorem 1.1 are satisfied, then the unique mild solution can be extended to a large time interval [0,h∗] for some h∗>h such that Eq (1.1) has a unique mild solution on Ω×[0,h∗].
Theorem 1.3. Assume that all assumptions of Theorem 1.1 are satisfied, then there exists a maximal existence interval [0,Tmax) such that Eq (1.1) has a unique saturated mild solution u∈C(Ω×[0,Tmax),R). Furthermore, if Tmax<∞, then limsupt→T−max‖u(t)‖Hβ(Ω)=∞, where Hβ(Ω) is Sobolev space introduced in the following section.
Theorem 1.4. Assume that all assumptions of Theorem 1.1 are satisfied, then there exists a constant h>0 such that Eq (1.1) is Mittag-Leffler-Ulam-Hyers stable on Ω×[0,h].
Throughout of this paper, we adopt spectral fractional Laplacian (−Δ)β defined by (1.2). For each β∈(0,1), we define the fractional Sobolev space as
Hβ(Ω):={u=∞∑j=1ujϕj∈L2(Ω):‖u‖2Hβ(Ω):=∞∑j=1λβju2j<∞},uj=∫Ωuϕjdx, |
where λj are the eigenvalues of −Δ with zero Dirichlet boundary conditions on Ω, ϕj are eigenfunctions with respect to λj, (λj,ϕj) is the eigen pair of −Δ, for the details one can see [17]. Denote C([0,∞),Hβ(Ω)) the Banach space of all continuous Hβ(Ω)-value functions on [0,∞) with norm ‖u‖C:=supt∈[0,∞)‖u(t)‖Hβ(Ω) and Aβu=(−Δ)βu. We know from [18] that −Aβ generates a Feller semigroup Tβ(t)(t⩾0).
We now define two operators Tα,β(t)(t⩾0) and Sα,β(t)(t⩾0) as follows
Tα,β(t)u=∫∞0hα(s)Tβ(tαs)uds,Sα,β(t)u=α∫∞0shα(s)Tβ(tαs)uds,u∈Hβ(Ω), |
where hα(s)=1πα∑∞n=1(−s)n−1Γ(nα+1)n!sin(nπα) is a function of Wright type [19] defined on (0,∞) which satisfies hα(s)⩾0,s∈(0,∞), ∫∞0hα(s)ds=1.
Lemma 2.1. The operators Tα,β(t)(t⩾0) and Sα,β(t)(t⩾0) have the following properties [18]:
(i) The operators Tα,β(t)(t⩾0) and Sα,β(t)(t⩾0) are strongly continuous on Hβ(Ω);
(ii) ‖Tα,β(t)u‖Hβ(Ω)⩽‖u‖Hβ(Ω), ‖Sα,β(t)u‖Hβ(Ω)⩽1Γ(α)‖u‖Hβ(Ω);
(iii) Tα,β(t) and Sα,β(t) are compact operators for every t>0.
Lemma 2.2. The Gamma function Γ(z)=∫∞0e−ssz−1ds, z>0 and Beta function B(p,q)=∫10sp−1(1−s)q−1ds, p,q>0 have the following equality [20]:
B(p,q)=Γ(p)Γ(q)Γ(p+q);∫ba(s−a)p−1(b−s)q−1ds=(b−a)p+q−1B(p,q),b>a. |
Lemma 2.3. (Stirling′sFormula) [21] For x→∞ we have
Γ(x+1)=(xe)x√2πx(1+o(1)). |
Lemma 2.4. Suppose that a(t) is a nonnegative [16], nondecreasing function locally integrable on [0,∞) and h(t) is a nonnegative, nondecreasing continuous function defined on [0,∞), h(t)⩽˜M(constant), and suppose u(t) is nonnegative and locally integrable on [0,∞) with
u(t)⩽a(t)+h(t)∫t0(t−s)α−1u(s)ds,t∈[0,∞). |
Then u(t)⩽a(t)Eα[h(t)Γ(α)tα], where Eα is the Mittag-Leffer function defined by Eα[z]=∑∞k=0zkΓ(kα+1), z∈C.
Let u(t)=u(⋅,t), f(t,u(t))=f(⋅,t,u(⋅,t)), u0=u0(⋅). Then the Eq (1.1) can be rewritten abstract form of fractional evolution equation in C([0,∞),Hβ(Ω)) as
{cDαtu(t)+Aβu(t)=f(t,u(t)),t>0,u(0)=u0. | (2.1) |
If the nonlinear function f:Ω×[0,∞)×R→R satisfies locally Lipschitz condition about the third variable with Lipschitz constant L, one can derive
‖f(t,u(t))−f(t,v(t))‖Hβ(Ω)⩽(∞∑j=1λβj(∫Ω|f(t,u(t))−f(t,v(t))|ϕjdx)2)12⩽(∞∑j=1λβj(∫ΩL|u(t)−v(t)|ϕjdx)2)12=L‖u(t)−v(t)‖Hβ(Ω). | (2.2) |
Definition 3.1. A function u∈C([0,∞),Hβ(Ω)) is called a mild solution of (2.1) if it satisfies
u(t)=Tα,β(t)u0+∫t0(t−s)α−1Sα,β(t−s)f(s,u(s))ds. |
Proof of Theorem 1.1. It follows discussions in Section 2 that Eq (1.1) can be transformed into the abstract evolution Eq (2.1) in C([0,∞),Hβ(Ω)). We now prove the local existence and uniqueness of the mild solution to the evolution Eq (2.1). Assume that nonlinear function f is continuous in Θ={(t,u):0⩽t⩽a,‖u(t)−u0‖Hβ(Ω)⩽b} for a>0 and b>0, then there exists a unique mild solution to the evolution Eq (2.1) on [0,h], where
b=2‖u0‖Hβ(Ω)+1,h=min{a,(Γ(α+1)M)1α},M=sup(t,u)∈Θ‖f(t,u(t))‖Hβ(Ω). |
Define P:C([0,h],Hβ(Ω))→C([0,h],Hβ(Ω)) as
Pu(t)=Tα,β(t)u0+∫t0(t−s)α−1Sα,β(t−s)f(s,u(s))ds. | (3.1) |
From Definition 3.1, the mild solution to (2.1) on [0,h] is equivalent to the fixed point of operator P defined by (3.1). Set Λ={u∈C([0,h],Hβ(Ω)):‖u(t)−u0‖Hβ(Ω)⩽b,t∈[0,h]} is a nonempty, convex and closed subset in C([0,h],Hβ(Ω)). Now we show the operator P has a fixed point in Λ by applying power compression mapping principle.
Step I. P:Λ→Λ. For any u∈Λ, t∈[0,h], by (3.1) and Lemma 2.1 we have
‖Pu(t)−u0‖Hβ(Ω)=‖Tα,β(t)u0−u0+∫t0(t−s)α−1Sα,β(t−s)f(s,u(s))ds‖Hβ(Ω)⩽‖Tα,β(t)u0‖Hβ(Ω)+‖u0‖Hβ(Ω)+‖∫t0(t−s)α−1Sα,β(t−s)f(s,u(s))ds‖Hβ(Ω)⩽2‖u0‖Hβ(Ω)+MtαΓ(α+1)⩽b. |
Then, we get that P:Λ→Λ.
Step II. P:Λ→Λ is a power compression mapping. For any u,v∈Λ, by (2.2), (3.1) and Lemma 2.1, we get
‖Pu(t)−Pv(t)‖Hβ(Ω)=‖∫t0(t−s)α−1Sα,β(t−s)[f(s,u(s))−f(s,v(s))]ds‖Hβ(Ω)⩽1Γ(α)∫t0(t−s)α−1‖f(s,u(s))−f(s,v(s)‖Hβ(Ω)ds⩽LtαΓ(α+1)‖u−v‖C. | (3.2) |
By (2.2), (3.1), (3.2), Lemma 2.1 and Lemma 2.2, we get
‖P2u(t)−P2v(t)‖Hβ(Ω)=‖∫t0(t−s)α−1Sα,β(t−s)[f(s,Pu(s))−f(s,Pv(s))]ds‖Hβ(Ω)⩽1Γ(α)∫t0(t−s)α−1‖f(s,Pu(s))−f(s,Pv(s)‖Hβ(Ω)ds⩽LΓ(α)∫t0(t−s)α−1LsαΓ(α+1)‖u−v‖Cds=L2Γ(α)Γ(α+1)∫t0(t−s)α−1sαds‖u−v‖C=L2t2αΓ(α)Γ(α+1)B(α+1,α)‖u−v‖C=L2t2αΓ(2α+1)‖u−v‖C. |
Suppose n=k−1 we have
‖Pk−1u(t)−Pk−1v(t)‖Hβ(Ω)⩽(Ltα)k−1Γ((k−1)α+1)‖u−v‖C. | (3.3) |
Let n=k, by (2.2), (3.1), (3.3), Lemma 2.1 and Lemma 2.2, we get
‖Pku(t)−Pkv(t)‖Hβ(Ω)=‖∫t0(t−s)α−1Sα,β(t−s)[f(s,Pku(s))−f(s,Pkv(s))]ds‖Hβ(Ω)⩽1Γ(α)∫t0(t−s)α−1‖f(s,Pk−1u(s))−f(s,Pk−1v(s)‖Hβ(Ω)ds⩽LΓ(α)∫t0(t−s)α−1(Lsα)k−1Γ((k−1)α+1)‖u−v‖Cds=LkΓ(α)Γ((k−1)α+1)∫t0(t−s)α−1s(k−1)αds‖u−v‖C=LktkαΓ(α)Γ(α+1)B((k−1)α+1,α)‖u−v‖C=LktkαΓ(kα+1)‖u−v‖C. |
Therefore, we have
‖Pnu−Pnv‖C⩽(Lhα)nΓ(nα+1)‖u−v‖C | (3.4) |
for any n∈N+ and t∈[0,h] by mathematical induction. By Lemma 2.3 we get
Γ(nα+1)=(nαe)nα√2πnα(1+o(1)),n→∞, |
which implies
(Lhα)nΓ(nα+1)⩽(Lhα)n(nαe)nα√2πnα→0asn→∞. |
Hence, there exists m∈N such that
(Lhα)mΓ(mα+1)<1. | (3.5) |
Combining (3.4) and (3.5) we have
‖Pmu−Pmv‖C<‖u−v‖C, |
which means that the operator Pm is compressive and P is a power compression operator. Therefore P has unique fixed point u∈Λ by power compression mapping principle, the fixed point is the unique mild solution of (2.1) on [0,h]. Hence, Eq (1.1) has unique mild solution u∈C(Ω×[0,h],R). This completes the proof of Theorem 1.1.
Definition 3.2. A function u∗ is a continuation mild solution of the unique mild solution u∈C([0,h],Hβ(Ω)) to (2.1) on (0,h∗] for some h∗>h if it satisfies
{u∗(t)=u(t),t∈[0,h],u∗∈C([h,h∗],Hβ(Ω))is a mild solution of (2.1) for all t∈[h,h∗]. |
Proof of Theorem 1.2. Let u∈C([0,h],Hβ(Ω)) be the unique mild solution of (2.1), h is the constant defined in Theorem 1.1. Fix b∗=2‖u0‖Hβ(Ω)+2, M∗=sup{‖f(t,u∗(t))‖Hβ(Ω):‖u(t)‖Hβ(Ω)⩽b∗,h⩽t⩽h+a∗} for a∗>0, we shall prove that u∗:[0,h∗]→Hβ(Ω) is a mild solution of (2.1) for h∗>h. Set Λ∗={u∗∈C([0,h∗],Hβ(Ω)):‖u(t)−u(h)‖C([h,h∗],Hβ(Ω))⩽b∗,t∈[h,h∗];u∗(t)=u(t),t∈[0,h]}, where
h∗=min{a∗,(Γ(α+1)M∗)1α,(Γ(α+1)L)1α}. |
Define P:C([0,h∗],Hβ(Ω))→C([0,h∗],Hβ(Ω)) as (3.1). Now we show the operator P has a fixed point in Λ∗ via Banach fixed point theorem.
Step I. P:Λ∗→Λ∗. Let u∗∈Λ∗, if t∈[0,h], from the proof of Theorem 1.1 we know equation (2.1) has unique mild solution and u∗(t)=u(t). Thus Pu∗(t)=Pu(t)=u(t) for all t∈[0,h]. Now we just consider t∈[h,h∗], thus we have
‖Pu∗(t)−u∗(h)‖Hβ(Ω)⩽‖Tα,β(t)u0−Tα,β(h)u0‖Hβ(Ω)+‖∫t0(t−s)α−1Sα,β(t−s)f(s,u∗(s))ds−∫h0(h−s)α−1Sα,β(h−s)f(s,u∗(s))ds‖Hβ(Ω)⩽2‖u0‖Hβ(Ω)+M∗tαΓ(α+1)+M∗hαΓ(α+1)⩽2‖u0‖Hβ(Ω)+2M∗tαΓ(α+1)⩽b∗. |
Step II. P is a compression on Λ∗. Let u∗,v∗∈Λ∗, and we have that for t∈[0,h∗],
‖Pu∗(t)−Pv∗(t)‖Hβ(Ω)=‖∫t0(t−s)α−1Sα,β(t−s)[f(s,u∗(s))−f(s,v∗(s))]ds‖Hβ(Ω)⩽1Γ(α)∫t0(t−s)α−1‖f(s,u∗(s))−f(s,v∗(s)‖Hβ(Ω)ds⩽LtαΓ(α+1)‖u∗−v∗‖C([0,h∗],Hβ(Ω))<L(h∗)αΓ(α+1)‖u∗−v∗‖C([0,h∗],Hβ(Ω)). |
Then,
‖Pu∗−Pv∗‖C([0,h∗],Hβ(Ω))<‖u∗−v∗‖C([0,h∗],Hβ(Ω)). |
This implies the operator P is compressive. By the Banach fixed point theorem it follows there exists a unique fixed point u∗ of P in Λ∗, which is a continuation of u. The fixed point is the unique mild solution of Eq (2.1) on [0,h∗]. Therefore, Eq (1.1) has unique mild solution u on Ω×[0,h∗]. This completes the proof of Theorem 1.2.
Proof of Theorem 1.3. Repeating the methods and steps in the proof of Theorem 1.2, one can obtain that Eq (1.1) exists unique saturated mild solution on maximal interval Ω×[0,Tmax). Let Tmax:=sup{h>0:the unique mild solution exits on(0,h]} and u0∈Hβ(Ω). Assume that Tmax<∞ and for some b0>0, M0=sup{‖f(t,u(t))‖Hβ(Ω):‖u(t)‖Hβ(Ω)⩽b0,0⩽t⩽Tmax}. Suppose there exists a sequence {tn}n∈N⊂[0,Tmax) such that tn→Tmax and {u(tn)}n∈N⊂Hβ(Ω). Let us demonstrate that {u(tn)}n∈N is a Cauchy sequence in Hβ(Ω). Indeed, for any ϵ>0, fix N∈N such that for all n,m>N, 0<tn<tm<Tmax, we get
‖u(tm)−u(tn)‖Hβ(Ω)⩽‖Tα,β(tm)u0−Tα,β(tn)u0‖Hβ(Ω)+‖∫tmtn(tm−s)α−1Sα,β(tm−s)f(s,u(s))ds‖Hβ(Ω)+‖∫tn0((tm−s)α−1−(tn−s)α−1)Sα,β(tm−s)f(s,u(s))ds‖Hβ(Ω)+‖∫tn0(tn−s)α−1(Sα,β(tm−s)−Sα,β(tn−s))f(s,u(s))ds‖Hβ(Ω)=:‖I1‖Hβ(Ω)+‖I2‖Hβ(Ω)+‖I3‖Hβ(Ω)+‖I4‖Hβ(Ω). |
We choose N:=N(ϵ)∈N∗ with m⩾n⩾N such that tm−tn small enough following the sequence {tn}n∈N∗ is convergent. By Lemma 2.1,
‖I1‖Hβ(Ω)<ϵ4;‖I2‖Hβ(Ω)⩽M0Γ(α+1)(tm−tn)α<ϵ4;‖I3‖Hβ(Ω)⩽M0Γ(α+1)(tαn−tαm+(tm−tn)α)⩽2M0Γ(α+1)(tm−tn)α<ϵ4. |
Clearly see ‖I4‖Hβ(Ω)=0 for tn=0, 0<tm<Tmax. For tn>0 and 0<ϵ<tn, by Lemma 2.1 we have
‖I4‖Hβ(Ω)⩽∫tn−ϵ0(tn−s)α−1‖Sα,β(tm−s)−Sα,β(tn−s)‖Hβ(Ω)⋅‖f(s,u(s))‖Hβ(Ω)ds+∫tntn−ϵ(tn−s)α−1‖Sα,β(tm−s)−Sα,β(tn−s)‖Hβ(Ω)⋅‖f(s,u(s))‖Hβ(Ω)ds⩽sups∈[0,tn−ϵ]‖Sα,β(tm−s)−Sα,β(tn−s)‖Hβ(Ω)M0(tαn−ϵα)+2M0ϵαΓ(α+1)<ϵ4. |
Therefore, for ϵ>0 there exists N∈N such that ‖u(tm)−u(tn)‖Hβ(Ω)<ϵ when m,n⩾N. We arrive at that {u(tn)}t∈N⊂Hβ(Ω) is a Cauchy sequences and for any {tn}n∈N∗ the limt→T−max‖u(t)‖Hβ(Ω)<∞ exists. From result of Theorem 1.2 we know that the unique mild solution can be extended to larger interval. This means that u can be continued beyond Tmax, and this contradict u∈C([0,Tmax),Hβ(Ω)) is a saturated mild solution. Therefore, we arrive at if Tmax<∞ then limsupt→T−max‖u(t)‖Hβ(Ω)=∞. This complete the proof of Theorem 1.3.
In this section, we consider the Mittag-Leffler-Ulam-Hyers stability of Eq (1.1). It follows discussions in Section 2 that Eq (1.1) can be transformed into the abstract evolution Eq (2.1) in C([0,∞),Hβ(Ω)), we now verify the stability of Eq (2.1) on [0,h], h is the constant defined in Theorem 1.1. Let ε>0, we consider the following inequation
‖cDαtv(t)+Aβv(t)−f(t,v(t))‖Hβ(Ω)⩽ε,t∈[0,h]. | (4.1) |
Definition 4.1. Eq (2.1) is Mittag-Leffler-Ulam-Hyers stable with respect to Eα, if there exists a real number δ>0 such that for each ε>0 and for each solution v∈C1([0,h],Hβ(Ω)) of inequation (4.1), there exists a mild solution u∈C([0,h],Hβ(Ω)) of Eq (2.1) with ‖v(t)−u(t)‖Hβ(Ω)⩽δεEα[t], t∈[0,h].
Remark 4.1. A function v∈C1([0,h],Hβ(Ω)) is a solution of inequation (4.1) if and only if there exists a function w∈C([0,h],Hβ(Ω)) (which depend on v) such that
(i) ‖w(t)‖Hβ(Ω)⩽ε, for all t∈[0,h];
(ii) cDαtu(t)+Aβu(t)=f(t,u(t))+w(t), t∈[0,h].
Remark 4.2. If v∈C1([0,h],Hβ(Ω)) is a solution of inequation (4.1), then v is a solution of the following integral inequation
‖v(t)−Tα,β(t)v(0)−∫t0(t−s)α−1Sα,β(t−s)f(s,v(s))ds‖Hβ(Ω)⩽ε∫t0(t−s)α−1‖Sα,β(t−s)‖Hβ(Ω)ds. |
Proof of Theorem 1.4. Let v∈C1([0,h],Hβ(Ω)) be a solution of the inequation (4.1) and denote by u∈C([0,h],Hβ(Ω)) the unique mild solution of the problem
{cDαtu(t)+Aβu(t)=f(t,u(t)),t∈[0,h],u(0)=v(0). |
We have
u(t)=Tα,β(t)v(0)+∫t0(t−s)α−1Sα,β(t−s)f(s,u(s))ds,t∈[0,h], |
and by Remark 4.2 we get
‖v(t)−Tα,β(t)v(0)−∫t0(t−s)α−1Sα,β(t−s)f(s,v(s))ds‖Hβ(Ω)⩽ε∫t0(t−s)α−1‖Sα,β(t−s)‖Hβ(Ω)ds⩽hαεΓ(α+1). | (4.2) |
It follows from (2.2) and (4.2) that
‖v(t)−u(t)‖Hβ(Ω)=‖v(t)−Tα,β(t)v(0)−∫t0(t−s)α−1Sα,β(t−s)f(s,u(s))ds‖Hβ(Ω)⩽‖v(t)−Tα,β(t)v(0)−∫t0(t−s)α−1Sα,β(t−s)f(s,v(s))ds‖Hβ(Ω)+‖∫t0(t−s)α−1Sα,β(t−s)[f(s,v(s))−f(s,u(s))]ds‖Hβ(Ω)⩽hαεΓ(α+1)+LΓ(α)∫t0(t−s)α−1‖v(s)−u(s)‖Hβ(Ω)ds. |
Applying Lemma 2.4 to inequality (4.3), we get
‖v(t)−u(t)‖Hβ(Ω)⩽hαεΓ(α+1)Eα[Ltα]. |
Hence, Eq (2.1) is Mittag-Leffler-Ulam-Hyers stable. This completes the proof of Theorem 1.4.
This work was supported by the National Natural Science Foundation of China (No. 12061063), the Outstanding Youth Science Fund of Gansu Province (No. 21JR7RA159) and Project of NWNU-LKQN2019-3. The authors would like to thank the referees for their valuable comments and suggestions which improve the quality of the manuscript.
The authors declare there is no conflicts of interest.
[1] | D. S. Mitrinović, J. E. Pečarić, A. M. Fink, Classical and New Inequalities in Analysis, Kluwer Academic Publishers, Dordrecht-Boston-London, 1993. |
[2] | R. L. Schilling, R. Song, Z. Vondraček, Bernstein Functions-Theory and Applications, 2Eds., de Gruyter Studies in Mathematics 37, Walter de Gruyter, Berlin, Germany, 2012. |
[3] | D. V. Widder, The Laplace Transform, Princeton University Press, Princeton, 1946. |
[4] | B. N. Guo, F. Qi, A completely monotonic function involving the tri-gamma function and with degree one, Appl. Math. Comput., 218 (2012), 9890-9897. |
[5] |
B. N. Guo, F. Qi, On the degree of the weighted geometric mean as a complete Bernstein function, Afr. Mat., 26 (2015), 1253-1262. doi: 10.1007/s13370-014-0279-2
![]() |
[6] | F. Qi, Properties of modified Bessel functions and completely monotonic degrees of differences between exponential and trigamma functions, Math. Inequal. Appl., 18 (2015), 493-518. |
[7] |
F. Qi, A. Q. Liu, Completely monotonic degrees for a difference between the logarithmic and psi functions, J. Comput. Appl. Math., 361 (2019), 366-371. doi: 10.1016/j.cam.2019.05.001
![]() |
[8] | F. Qi, S. H. Wang, Complete monotonicity, completely monotonic degree, integral representations, and an inequality related to the exponential, trigamma, and modified Bessel functions, Glob. J. Math. Anal., 2 (2014), 91-97. |
[9] |
F. Qi, X. J. Zhang, W. H. Li, The harmonic and geometric means are Bernstein functions, Bol. Soc. Mat. Mex., 23 (2017), 713-736. doi: 10.1007/s40590-016-0085-y
![]() |
[10] | F. Qi, Completely monotonic degree of remainder of asymptotic expansion of trigamma function, arXiv preprint, 2020, Available from: https://arxiv.org/abs/2003.05300v1. |
[11] | F. Qi, R. P. Agarwal, On complete monotonicity for several classes of functions related to ratios of gamma functions, J. Inequal. Appl., 36 (2019), 42. |
[12] |
F. Qi, W. H. Li, Integral representations and properties of some functions involving the logarithmic function, Filomat, 30 (2016), 1659-1674. doi: 10.2298/FIL1607659Q
![]() |
[13] | F. Qi, M. Mahmoud, Completely monotonic degrees of remainders of asymptotic expansions of the digamma function, HAL preprint, 2019, Available from: https://hal.archives-ouvertes.fr/hal-02415224v1. |
[14] |
S. Koumandos, Monotonicity of some functions involving the gamma and psi functions, Math. Comput., 77 (2008), 2261-2275. doi: 10.1090/S0025-5718-08-02140-6
![]() |
[15] | S. Koumandos, M. Lamprecht, Complete monotonicity and related properties of some special functions, Math. Comput., 82 (2013), 282, 1097-1120. |
[16] |
S. Koumandos, M. Lamprecht, Some completely monotonic functions of positive order, Math. Comput., 79 (2010), 1697-1707. doi: 10.1090/S0025-5718-09-02313-8
![]() |
[17] |
S. Koumandos, H. L. Pedersen, Absolutely monotonic functions related to Euler's gamma function and Barnes' double and triple gamma function, Monatsh. Math., 163 (2011), 51-69. doi: 10.1007/s00605-010-0197-9
![]() |
[18] |
S. Koumandos, H. L. Pedersen, Completely monotonic functions of positive order and asymptotic expansions of the logarithm of Barnes double gamma function and Euler's gamma function, J. Math. Anal. Appl., 355 (2009), 33-40. doi: 10.1016/j.jmaa.2009.01.042
![]() |
[19] | F. Qi, B. N. Guo, Lévy-Khintchine representation of Toader-Qi mean, Math. Inequal. Appl., 21 (2018), 421-431. |
[20] |
F. Qi, B. N. Guo, The reciprocal of the weighted geometric mean of many positive numbers is a Stieltjes function, Quaest. Math., 41 (2018), 653-664. doi: 10.2989/16073606.2017.1396508
![]() |
[21] |
F. Qi, D. Lim, Integral representations of bivariate complex geometric mean and their applications, J. Comput. Appl. Math., 330 (2018), 41-58. doi: 10.1016/j.cam.2017.08.005
![]() |
[22] |
F. Qi, X. J. Zhang, W. H. Li, Lévy-Khintchine representations of the weighted geometric mean and the logarithmic mean, Mediterr. J. Math., 11 (2014), 315-327. doi: 10.1007/s00009-013-0311-z
![]() |
[23] | B. N. Guo, F. Qi, On complete monotonicity of linear combination of finite psi functions, Commun. Korean Math. Soc., 34 (2019), 1223-1228. |
[24] | F. Qi, P. Cerone, Some properties of the Fuss-Catalan numbers, Mathematics, 6 (2018), 12. |
[25] | F. Qi, X. T. Shi, P. Cerone, A unified generalization of the Catalan, Fuss, and Fuss-Catalan numbers, Math. Comput. Appl., 24 (2019), 16. |
[26] |
Z. H. Yang, J. F. Tian, A class of completely mixed monotonic functions involving the gamma function with applications, Proc. Amer. Math. Soc., 146 (2018), 4707-4721. doi: 10.1090/proc/14199
![]() |
[27] |
Z. H. Yang, J. F. Tian, M. H. Ha, A new asymptotic expansion of a ratio of two gamma functions and complete monotonicity for its remainder, Proc. Amer. Math. Soc., 148 (2020), 2163-2178. doi: 10.1090/proc/14917
![]() |
[28] | Z. H. Yang, J. F. Tian, Sharp bounds for the ratio of two zeta functions, J. Comput. Appl. Math., 364 (2020), 112359, 14. |
[29] | M. Abramowitz, I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards, Applied Mathematics Series 55, 10th printing, Washington, 1972. |
[30] |
H. Alzer, Sharp inequalities for the digamma and polygamma functions, Forum Math., 16 (2004), 181-221. doi: 10.1515/form.2004.009
![]() |
[31] | N. Batir, An interesting double inequality for Euler's gamma function, J. Inequal. Pure Appl. Math., 5 (2004), 97, Available from: http://www.emis.de/journals/JIPAM/article452.html. |
[32] | N. Batir, Some new inequalities for gamma and polygamma functions, J. Inequal. Pure Appl. Math., 6 (2005), 103, Available from: http://www.emis.de/journals/JIPAM/article577.html. |
[33] |
H. Alzer, A. Z. Grinshpan, Inequalities for the gamma and q-gamma functions, J. Approx. Theory, 144 (2007), 67-83. doi: 10.1016/j.jat.2006.04.008
![]() |
[34] | B. N. Guo, F. Qi, Sharp inequalities for the psi function and harmonic numbers, Analysis (Berlin) 34 (2014), 201-208. |
[35] |
F. Qi, Complete monotonicity of functions involving the q-trigamma and q-tetragamma functions, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM., 109 (2015), 419-429. doi: 10.1007/s13398-014-0193-3
![]() |
[36] |
F. Qi, B. N. Guo, Necessary and sufficient conditions for functions involving the tri- and tetragamma functions to be completely monotonic, Adv. Appl. Math., 44 (2010), 71-83. doi: 10.1016/j.aam.2009.03.003
![]() |
[37] |
N. Batir, On some properties of digamma and polygamma functions, J. Math. Anal. Appl., 328 (2007), 452-465. doi: 10.1016/j.jmaa.2006.05.065
![]() |
[38] | F. Qi, Bounds for the ratio of two gamma functions, J. Inequal. Appl., 2010 (2010), Article ID 493058, 84. |
[39] |
F. Qi, Bounds for the ratio of two gamma functions: from Gautschi's and Kershaw's inequalities to complete monotonicity, Turkish J. Anal. Number Theory, 2 (2014), 152-164. doi: 10.12691/tjant-2-5-1
![]() |
[40] |
F. Qi, Q. M. Luo, Bounds for the ratio of two gamma functions-From Wendel's and related inequalities to logarithmically completely monotonic functions, Banach J. Math. Anal., 6 (2012), 132-158. doi: 10.15352/bjma/1342210165
![]() |
[41] | F. Qi, Q. M. Luo, Bounds for the ratio of two gamma functions: from Wendel's asymptotic relation to Elezović-Giordano-Pečarić's theorem, J. Inequal. Appl., 2013 (2013): 20. |
[42] |
B. N. Guo, F. Qi, H. M. Srivastava, Some uniqueness results for the non-trivially complete monotonicity of a class of functions involving the polygamma and related functions, Integral Transforms Spec. Funct., 21 (2010), 849-858. doi: 10.1080/10652461003748112
![]() |
[43] |
B. N. Guo, J. L. Zhao, F. Qi, A completely monotonic function involving the tri- and tetra-gamma functions, Math. Slovaca, 63 (2013), 469-478. doi: 10.2478/s12175-013-0109-2
![]() |
[44] |
J. L. Zhao, B. N. Guo, F. Qi, Complete monotonicity of two functions involving the tri- and tetragamma functions, Period. Math. Hungar., 65 (2012), 147-155. doi: 10.1007/s10998-012-9562-x
![]() |
[45] | F. Qi, Complete monotonicity of a function involving the tri- and tetra-gamma functions, Proc. Jangjeon Math. Soc., 18 (2015), 253-264. |
[46] |
D. K. Kazarinoff, On Wallis' formula, Edinburgh Math. Notes, 1956 (1956), 19-21. doi: 10.1017/S095018430000029X
![]() |
[47] |
B. N. Guo, F. Qi, A class of completely monotonic functions involving divided differences of the psi and tri-gamma functions and some applications, J. Korean Math. Soc., 48 (2011), 655-667. doi: 10.4134/JKMS.2011.48.3.655
![]() |
[48] |
F. Qi, P. Cerone, S. S. Dragomir, Complete monotonicity of a function involving the divided difference of psi functions, Bull. Aust. Math. Soc., 88 (2013), 309-319. doi: 10.1017/S0004972712001025
![]() |
[49] | F. Qi, B. N. Guo, Complete monotonicity of divided differences of the di- and tri-gamma functions with applications, Georgian Math. J., 23 (2016), 279-291. |
[50] |
F. Qi, B. N. Guo, Completely monotonic functions involving divided differences of the di- and tri-gamma functions and some applications, Commun. Pure Appl. Anal., 8 (2009), 1975-1989. doi: 10.3934/cpaa.2009.8.1975
![]() |
[51] |
F. Qi, Q. M. Luo, B. N. Guo, Complete monotonicity of a function involving the divided difference of digamma functions, Sci. China Math., 56 (2013), 2315-2325. doi: 10.1007/s11425-012-4562-0
![]() |
[52] | F. Qi, W. H. Li, A logarithmically completely monotonic function involving the ratio of gamma functions, J. Appl. Anal. Comput., 5 (2015), 626-634. |
[53] |
F. Qi, L. Debnath, Evaluation of a class of definite integrals, Internat. J. Math. Ed. Sci. Tech., 32 (2001), 629-633. doi: 10.1080/00207390116734
![]() |
[54] | P. R. Beesack, Inequalities involving iterated kernels and convolutions, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. No., 274 (1969), 11-16. |
[55] |
C. O. Imoru, A remark on inequalities involving convolutions, J. Math. Anal. Appl., 164 (1992), 325-336. doi: 10.1016/0022-247X(92)90117-V
![]() |
[56] | D. S. Mitrinović, Analytic inequalities, In cooperation with P. M. Vasić, Die Grundlehren der mathematischen Wissenschaften, Band 165, Springer-Verlag, New York-Berlin, 1970. |
[57] |
F. Qi, Integral representations and complete monotonicity related to the remainder of Burnside's formula for the gamma function, J. Comput. Appl. Math., 268 (2014), 155-167. doi: 10.1016/j.cam.2014.03.004
![]() |
[58] | F. Qi, Absolute monotonicity of a function involving the exponential function, Glob. J. Math. Anal., 2 (2014), 184-203. |
[59] |
S. Y. Trimble, J. Wells, F. T. Wright, Superadditive functions and a statistical application, SIAM J. Math. Anal., 20 (1989), 1255-1259. doi: 10.1137/0520082
![]() |
[60] |
B. N. Guo, F. Qi, A simple proof of logarithmic convexity of extended mean values, Numer. Algorithms, 52 (2009), 89-92. doi: 10.1007/s11075-008-9259-7
![]() |
[61] |
B. N. Guo, F. Qi, Generalization of Bernoulli polynomials, Int. J. Math. Ed. Sci. Tech., 33 (2002), 428-431. doi: 10.1080/002073902760047913
![]() |
[62] |
B. N. Guo, F. Qi, Properties and applications of a function involving exponential functions, Commun. Pure Appl. Anal., 8 (2009), 1231-1249. doi: 10.3934/cpaa.2009.8.1231
![]() |
[63] |
B. N. Guo, F. Qi, The function (bx - ax)/x: Logarithmic convexity and applications to extended mean values, Filomat, 25 (2011), 63-73. doi: 10.2298/FIL1104063G
![]() |
[64] | S. Guo, F. Qi, A class of completely monotonic functions related to the remainder of Binet's formula with applications, Tamsui Oxf. J. Math. Sci., 25 (2009), 9-14. |
[65] |
M. Masjed-Jamei, F. Qi, H. M. Srivastava, Generalizations of some classical inequalities via a special functional property, Integral Transforms Spec. Funct., 21 (2010), 327-336. doi: 10.1080/10652460903259915
![]() |
[66] |
F. Qi, A note on Schur-convexity of extended mean values, Rocky Mountain J. Math., 35 (2005), 1787-1793. doi: 10.1216/rmjm/1181069663
![]() |
[67] |
F. Qi, Integral representations and properties of Stirling numbers of the first kind, J. Number Theory, 133 (2013), 2307-2319. doi: 10.1016/j.jnt.2012.12.015
![]() |
[68] |
F. Qi, Logarithmic convexity of extended mean values, Proc. Amer. Math. Soc., 130 (2002), 1787-1796. doi: 10.1090/S0002-9939-01-06275-X
![]() |
[69] |
F. Qi, C. Berg, Complete monotonicity of a difference between the exponential and trigamma functions and properties related to a modified Bessel function, Mediterr. J. Math., 10 (2013), 1685-1696. doi: 10.1007/s00009-013-0272-2
![]() |
[70] | F. Qi, P. Cerone, S. S. Dragomir, et al. Alternative proofs for monotonic and logarithmically convex properties of one-parameter mean values, Appl. Math. Comput. 208 (2009), 129-133. |
[71] |
F. Qi, J. X. Cheng, Some new Steffensen pairs, Anal. Math., 29 (2003), 219-226. doi: 10.1023/A:1025467221664
![]() |
[72] |
F. Qi, B. N. Guo, On Steffensen pairs, J. Math. Anal. Appl., 271 (2002), 534-541. doi: 10.1016/S0022-247X(02)00120-8
![]() |
[73] |
F. Qi, B. N. Guo, Some properties of extended remainder of Binet's first formula for logarithm of gamma function, Math. Slovaca, 60 (2010), 461-470. doi: 10.2478/s12175-010-0025-7
![]() |
[74] |
F. Qi, S. L. Xu, The function (bx - ax)/x: inequalities and properties, Proc. Amer. Math. Soc., 126 (1998), 3355-3359. doi: 10.1090/S0002-9939-98-04442-6
![]() |
[75] | S. Q. Zhang, B. N. Guo, F. Qi, A concise proof for properties of three functions involving the exponential function, Appl. Math. E-Notes, 9 (2009), 177-183. |
[76] | F. Qi, Q. M. Luo, B. N. Guo, The function (bx - ax)/x: Ratio's properties, In: Analytic Number Theory, Approximation Theory, and Special Functions, G. V. Milovanović, M. Th. Rassias (Eds), Springer, 2014, 485-494. |
[77] |
H. Alzer, Complete monotonicity of a function related to the binomial probability, J. Math. Anal. Appl., 459 (2018), 10-15. doi: 10.1016/j.jmaa.2017.10.077
![]() |
[78] | R. L. Graham, D. E. Knuth, O. Patashnik, Concrete Mathematics-A Foundation for Computer Science, 2Eds., Addison-Wesley Publishing Company, Reading, MA, 1994. |
[79] |
B. N. Guo, F. Qi, Explicit formulae for computing Euler polynomials in terms of Stirling numbers of the second kind, J. Comput. Appl. Math., 272 (2014), 251-257. doi: 10.1016/j.cam.2014.05.018
![]() |
[80] |
B. N. Guo, F. Qi, Some identities and an explicit formula for Bernoulli and Stirling numbers, J. Comput. Appl. Math., 255 (2014), 568-579. doi: 10.1016/j.cam.2013.06.020
![]() |
[81] |
F. Ouimet, Complete monotonicity of multinomial probabilities and its application to Bernstein estimators on the simplex, J. Math. Anal. Appl., 466 (2018), 1609-1617. doi: 10.1016/j.jmaa.2018.06.049
![]() |
[82] | F. Qi, A logarithmically completely monotonic function involving the q-gamma function, HAL preprint, 2018, Available from: https://hal.archives-ouvertes.fr/hal-01803352v1. |
[83] | F. Qi, Complete monotonicity for a new ratio of finite many gamma functions, HAL preprint, 2020, Available from: https://hal.archives-ouvertes.fr/hal-02511909v1. |
[84] | F. Qi, B. N. Guo, From inequalities involving exponential functions and sums to logarithmically complete monotonicity of ratios of gamma functions, arXiv preprint, 2020, Available from: https://arxiv.org/abs/2001.02175v1. |
[85] | F. Qi, W. H. Li, S. B. Yu, et al. A ratio of many gamma functions and its properties with applications, arXiv preprint, 2019, Available from: https://arXiv.org/abs/1911.05883v1. |
[86] | F. Qi, D. Lim, Monotonicity properties for a ratio of finite many gamma functions, HAL preprint, 2020, Available from: https://hal.archives-ouvertes.fr/hal-02511883v1. |
[87] | F. Qi, D. W. Niu, D. Lim, et al. Some logarithmically completely monotonic functions and inequalities for multinomial coefficients and multivariate beta functions, HAL preprint, 2018, Available from: https://hal.archives-ouvertes.fr/hal-01769288v1. |
[88] | C. F. Wei, B. N. Guo, Complete monotonicity of functions connected with the exponential function and derivatives, Abstr. Appl. Anal., 2014 (2014), Article ID 851213, 5. |
[89] |
A. M. Xu, Z. D. Cen, Some identities involving exponential functions and Stirling numbers and applications, J. Comput. Appl. Math., 260 (2014), 201-207. doi: 10.1016/j.cam.2013.09.077
![]() |
[90] | B. N. Guo, F. Qi, An alternative proof of Elezović-Giordano-Pečarić's theorem, Math. Inequal. Appl., 14 (2011), 73-78. |
[91] | F. Qi, B. N. Guo, C. P. Chen, The best bounds in Gautschi-Kershaw inequalities, Math. Inequal. Appl., 9 (2006), 427-436. |
[92] |
J. L. Zhao, Q. M. Luo, B. N. Guo, et al. Logarithmic convexity of Gini means, J. Math. Inequal., 6 (2012), 509-516. doi: 10.7153/jmi-06-48
![]() |
[93] | F. Qi, Completely monotonic degree of a function involving the tri- and tetra-gamma functions, arXiv preprint, 2013, Available from: http://arxiv.org/abs/1301.0154v1. |