Loading [MathJax]/jax/element/mml/optable/GeometricShapes.js
Research article

Existence results for hybrid fractional differential equations with three-point boundary conditions

  • Received: 26 September 2019 Accepted: 27 December 2019 Published: 10 January 2020
  • MSC : 34A08, 34A12, 34B15

  • We investigate the existence and uniqueness of solutions of problems of three point boundary values of hybrid fractional differential equations with a fractional derivative of Caputo of order α ∈ [1, 2], the results are obtained drawing on the standard fixed point theorems. The results are illustrated by a some examples.

    Citation: Abdelkader Amara. Existence results for hybrid fractional differential equations with three-point boundary conditions[J]. AIMS Mathematics, 2020, 5(2): 1074-1088. doi: 10.3934/math.2020075

    Related Papers:

    [1] Annabelle Collin, Hadrien Bruhier, Jelena Kolosnjaj, Muriel Golzio, Marie-Pierre Rols, Clair Poignard . Spatial mechanistic modeling for prediction of 3D multicellular spheroids behavior upon exposure to high intensity pulsed electric fields. AIMS Bioengineering, 2022, 9(2): 102-122. doi: 10.3934/bioeng.2022009
    [2] Noorehan Yaacob, Sharidan Shafie, Takashi Suzuki, Mohd Ariff Admon . Signal transduction from ligand-receptor binding associated with the formation of invadopodia in an invasive cancer cell. AIMS Bioengineering, 2022, 9(3): 252-265. doi: 10.3934/bioeng.2022017
    [3] Daniel N. Riahi, Saulo Orizaga . Modeling and computation for unsteady blood flow and solute concentration in a constricted porous artery. AIMS Bioengineering, 2023, 10(1): 67-88. doi: 10.3934/bioeng.2023007
    [4] Sunil Gautam, Sangeeta Kanakraj, Azriel Henry . Computational approach using machine learning modelling for optimization of transesterification process for linseed biodiesel production. AIMS Bioengineering, 2022, 9(4): 319-336. doi: 10.3934/bioeng.2022023
    [5] Sébastien Bernacchi, Simon Rittmann, Arne H. Seifert, Alexander Krajete, Christoph Herwig . Experimental methods for screening parameters influencing the growth to product yield (Y(x/CH4)) of a biological methane production (BMP) process performed with Methanothermobacter marburgensis. AIMS Bioengineering, 2014, 1(2): 72-87. doi: 10.3934/bioeng.2014.2.72
    [6] Sébastien Bernacchi, Michaela Weissgram, Walter Wukovits, Christoph Herwig . Process efficiency simulation for key process parameters in biological methanogenesis. AIMS Bioengineering, 2014, 1(1): 53-71. doi: 10.3934/bioeng.2014.1.53
    [7] Urooj Ainuddin, Maria Waqas . Finite state machine and Markovian equivalents of the lac Operon in E. coli bacterium. AIMS Bioengineering, 2022, 9(4): 400-419. doi: 10.3934/bioeng.2022029
    [8] Maria Waqas, Urooj Ainuddin, Umar Iftikhar . An analog electronic circuit model for cAMP-dependent pathway—towards creation of Silicon life. AIMS Bioengineering, 2022, 9(2): 145-162. doi: 10.3934/bioeng.2022011
    [9] Sarbaz H. A. Khoshnaw, Kawther Y. Abdulrahman, Arkan N. Mustafa . Identifying key critical model parameters in spreading of COVID-19 pandemic. AIMS Bioengineering, 2022, 9(2): 163-177. doi: 10.3934/bioeng.2022012
    [10] Ayub Ahmed, Bashdar Salam, Mahmud Mohammad, Ali Akgül, Sarbaz H. A. Khoshnaw . Analysis coronavirus disease (COVID-19) model using numerical approaches and logistic model. AIMS Bioengineering, 2020, 7(3): 130-146. doi: 10.3934/bioeng.2020013
  • We investigate the existence and uniqueness of solutions of problems of three point boundary values of hybrid fractional differential equations with a fractional derivative of Caputo of order α ∈ [1, 2], the results are obtained drawing on the standard fixed point theorems. The results are illustrated by a some examples.


    The foundation of fixed point theory is the idea of metric spaces and the Banach contraction principle. An enormous number of academics are motivated to the axiomatic interpretation of metric space because of its spaciousness. The metric space has experienced numerous generalizations until

    now. This demonstrates the attraction, enchantment, and development of the idea of metric spaces.

    After being given the notion of fuzzy sets (FSs) by Zadeh [1], researchers provided various generalizations for classical structures [2,3,4,5]. In this continuation, Kramosil and Michalek [6] originated the approach of fuzzy metric spaces, while George and Veeramani [7] introduced the concept of fuzzy metric spaces. Garbiec [8] gave the fuzzy interpretation of Banach contraction principle in fuzzy metric spaces.

    The idea of fuzzy extended b-metric spaces was first established by Mehmood [9]. Metric-like spaces (MLSs), which is generalization of the idea of metric spaces, were introduced by Harandi [10]. The notions controlled metric type spaces and controlled metric-like spaces were first introduced by Mlaiki [11,12]. Recently, Sezen [13] generalized the concept of controlled type metric spaces and introduced the concept of Controlled fuzzy metric spaces (CFMS). Shukla and Abbas [14] reformulated the definition of MLSs and introduced the concept of fuzzy metric like spaces (FMLSs). Later, Javed et al. [15] obtained fixed point results in the context of fuzzy b-metric-like spaces. The approach of intuitionistic fuzzy metric spaces was tossed by Park [16] that deals with membership and non-membership functions.

    Smarandache [17] established the concept of neutrosophic logic and the concept of neutrosophic set in 1998. The concept of neutrosophic sets have three functions, which are membership function, non-membership function and naturalness respectively. Thus, neutrosophic sets are the more general form of fuzzy sets [1] and intuitionistic fuzzy sets [18]. Hence, researchers in [19,20,21,22] have made studies on the concept of neutrosophic sets. Recently, Aslan et al. [23] obtained decision making applications for neutrosophic modeling of Talcott Parsons's Action and Kargın et al. [24] introduced decision making applications for law based on generalized set valued neutrosophic quadruple numbers. Şahin et al. [25] studied adequacy of online education using Hausdorff Measures based on neutrosophic quadruple sets. Also, Researchers in [26,27] studied types of metric space based on neutrosophic theory. Recently, Şahin and Kargın [28] obtained neutrosophic triplet metric spaces and neutrosophic triplet normed spaces. Kirişci and Simsek [29] established the concept of neutrosophic metric spaces (NMSs) that deals with membership, non-membership and naturalness functions. Şahin and Kargın [30] studied neutrosophic triplet v-generalized metric spaces and Şahin et al. [31] introduced the concept of neutrosophic triplet bipolar metric spaces. Simsek and Kirişci [32] derived various fixed point theorems for neutrosophic metric space. Şahin and Kargın [33] introduced the concept of neutrosophic triplet b–metric space. Şahin and Kargın [32] established neutrosophic triplet b-metric space and Sowndrarajan et al. [34] studied contradiction mapping results for neutrosophic metric space. Saleem et al. [35,36,37] proved various fixed point results for contraction mappings. Khater [38] did nice work on diverse solitary and Jacobian solutions in a continually laminated fluid with respect to shear flows through the Ostrovsky equation and Khater [39] worked on numerical simulations of Zakharov's (ZK) non-dimensional equation arising in Langmuir and ion-acoustic waves.

    In this manuscript, we introduce the notion of controlled neutrosophic metric-like spaces as a generalization of a NMSs introduced in [29]. We replaced the following conditions of NMS

    P(ϖ,ν,τ)=1 for all τ>0, if  and  only if ϖ=ν,
    Q(ϖ,ν,τ)=1 for all τ>0, if and only if ϖ=ν,
    S(ϖ,ν,τ)=1 for all τ>0, if  and  only if ϖ=ν,

    with

    P(ϖ,ν,τ)=1 implies ϖ=ν,
    Q(ϖ,ν,τ)=1 implies ϖ=ν,
    S(ϖ,ν,τ)=1 implies ϖ=ν.

    Also, we used a controlled function ϕ:Ξ×Ξ[1,) in the triangle inequalities of NMS. These both things generalized the defined notions existing in the literature. We also, derived several fixed-point results for contraction mappings in the context of new introduced space with non-trivial examples and graphical structure. At the end, we established an application to integral equation to show the validity of our main result.

    In Section 2, we give basic definitions and basic properties for fuzzy metric spaces and neutrosophic metric spaces from [4,10,12,13,14,15,16,29]. In Section 3, we define controlled neutrosophic metric-like spaces and definitions of open ball, G-convergent sequence, G-Cauchy sequence, G-complete space and some examples for controlled neutrosophic metric-like spaces. Also, we give some fixed point (FP) results and illustrative examples. In Section 4, we give conclusions.

    The following definitions are useful in the sequel.

    Definition 2.1. [15] A binary operation : [0, 1]× [0, 1] [0, 1] is called a continuous triangle norm (briefly CTN), if it meets the below assertions:

    1) 𝛶ϱ=ϱ𝛶,()𝛶,ϱ[0,1];

    2) is continuous;

    3) 𝛶1=𝛶,()𝛶[0,1];

    4) (𝛶ϱ)ϰ=𝛶(ϱϰ),()𝛶,ϱ,ϰ[0,1];

    5) If 𝛶ϰ and ϱd, with 𝛶,ϱ,ϰ,d[0,1], then 𝛶ϱϰd.

    Example 2.1. [4,15] Some fundamental examples of t-norms are: 𝛶ϱ=𝛶ϱ,𝛶ϱ=min{𝛶,ϱ} and 𝛶ϱ=max{𝛶+ϱ1,0}.

    Definition 2.2. [15] A binary operation : [0, 1] \times [0, 1] \to [0, 1] is called a continuous triangle conorm (briefly CTCN) if it meets the below assertions:

    1) 𝛶○\varrho = \varrho ○𝛶, \ \mathrm{f}\mathrm{o}\mathrm{r}\ \mathrm{a}\mathrm{l}\mathrm{l}\ 𝛶, \varrho \in \left[0, 1\right];

    2) is continuous;

    3) 𝛶○0 = 0, \ \mathrm{f}\mathrm{o}\mathrm{r}\ \mathrm{a}\mathrm{l}\mathrm{l}\ 𝛶\in \left[0, 1\right];

    4) \left(𝛶○\varrho \right)○\varkappa = 𝛶○\left(\varrho ○\varkappa \right), \ \mathrm{f}\mathrm{o}\mathrm{r}\ \mathrm{a}\mathrm{l}\mathrm{l}\ 𝛶, \varrho, \varkappa \in \left[0, 1\right];

    5) If 𝛶\le \varkappa and \varrho \le d, with 𝛶, \varrho, \varkappa, d\in \left[0, 1\right], then 𝛶○\varrho \le \varkappa ○d.

    Example 2.2. [15] 𝛶○\varrho = \mathrm{max}\left\{𝛶, \varrho \right\}\ \mathrm{a}\mathrm{n}\mathrm{d}\ 𝛶○\varrho = \mathrm{min}\left\{𝛶+\varrho, 1\right\} are examples of CTCNs.

    Definition 2.3. [10] Suppose {\mathit{\boldsymbol{ \boldsymbol{\varXi} }}}\ne \varnothing be a set. A mapping {\mathit{\Theta}} :{\mathit{\boldsymbol{ \boldsymbol{\varXi} }}}\times {\mathit{\boldsymbol{ \boldsymbol{\varXi} }}}\to \left[1, \infty \right) is known as a metric-like, if it satisfying the following conditions:

    1) {\mathit{\Theta}} \left(\varpi, \nu \right) = 0\mathrm{i}\mathrm{m}\mathrm{p}\mathrm{l}\mathrm{i}\mathrm{e}\mathrm{s}\varpi = \nu;

    2) {\mathit{\Theta}} \left(\varpi, \nu \right) = {\mathit{\Theta}} \left(\nu, \varpi \right);

    3) {\mathit{\Theta}} \left(\varpi, \nu \right)\le {\mathit{\Theta}} \left(\varpi, \mathit{\boldsymbol{\lambda }}\right)+{\mathit{\Theta}} \left(\mathit{\boldsymbol{\lambda }}, \nu \right);

    for all \varpi, \nu, \mathit{\boldsymbol{\lambda }}\in {\mathit{\boldsymbol{ \boldsymbol{\varXi} }}}.

    Also, \left({\mathit{\boldsymbol{ \boldsymbol{\varXi} }}}, {\mathit{\Theta}} \right) is called a metric-like space.

    Definition 2.4. [12] Let {\mathit{\boldsymbol{ \boldsymbol{\varXi} }}}\ne \varnothing, \psi :{\mathit{\boldsymbol{ \boldsymbol{\varXi} }}}\times {\mathit{\boldsymbol{ \boldsymbol{\varXi} }}}\to \left[1, \infty \right) be a function and {\mathit{\Theta}} :{\mathit{\boldsymbol{ \boldsymbol{\varXi} }}}\times {\mathit{\boldsymbol{ \boldsymbol{\varXi} }}}\to {\mathbb{R}}^{+} . If the following properties are satisfied:

    1) {\mathit{\Theta}} \left(\varpi, \nu \right) = 0\mathrm{i}\mathrm{m}\mathrm{p}\mathrm{l}\mathrm{i}\mathrm{e}\mathrm{s}\varpi = \nu;

    2) {\mathit{\Theta}} \left(\varpi, \nu \right) = {\mathit{\Theta}} \left(\nu, \varpi \right);

    3) {\mathit{\Theta}} \left(\varpi, \nu \right)\le \psi (\left(\varpi, \mathit{\boldsymbol{\lambda }}\right){\mathit{\Theta}} \left(\varpi, \mathit{\boldsymbol{\lambda }}\right)+\psi \left(\mathit{\boldsymbol{\lambda }}, \varpi \right){\mathit{\Theta}} \left(\mathit{\boldsymbol{\lambda }}, \nu \right);

    for all \varpi, \nu, \mathit{\boldsymbol{\lambda }}\in {\mathit{\boldsymbol{ \boldsymbol{\varXi} }}}, then {\mathit{\Theta}} is said to be a controlled metric-like and \left({\mathit{\boldsymbol{ \boldsymbol{\varXi} }}}, \mathrm{{\mathit{\Theta}} }\right) is known as a controlled metric-like space.

    Definition 2.5. [13] Suppose {\mathit{\boldsymbol{ \boldsymbol{\varXi} }}}\ne \varnothing , h:{\mathit{\boldsymbol{ \boldsymbol{\varXi} }}}\times {\mathit{\boldsymbol{ \boldsymbol{\varXi} }}}\to \left[1, \infty \right) be a mapping, ∗ is a CTN and {{\mathit{\Delta}} }_{h} is a FS on {\mathit{\boldsymbol{ \boldsymbol{\varXi} }}}\times {\mathit{\boldsymbol{ \boldsymbol{\varXi} }}}\times (0, \infty) . Four-tuple \left({\mathit{\boldsymbol{ \boldsymbol{\varXi} }}}, {{\mathit{\Delta}} }_{h}, *, h\right) is called CFMS if it meets the below assertions for all \varpi, \nu, \mathit{\boldsymbol{\lambda }}\in {\mathit{\boldsymbol{ \boldsymbol{\varXi} }}}\ \mathrm{a}\mathrm{n}\mathrm{d}\ {\mathit{\boldsymbol{\tau }}}, \mathit{\boldsymbol{ \boldsymbol{\varsigma } }} > 0 :

    h1)\ {{\mathit{\Delta}} }_{h}\left(\varpi, \nu, 0\right) = 0;

    h2) \ {{\mathit{\Delta}} }_{h}\left(\varpi, \nu, {\mathit{\boldsymbol{\tau }}}\right) = 1⟺\varpi = \nu;

    h3) \ {{\mathit{\Delta}} }_{h}\left(\varpi, \nu, {\mathit{\boldsymbol{\tau }}}\right) = {{\mathit{\Delta}} }_{h}\left(\nu, \varpi, {\mathit{\boldsymbol{\tau }}}\right);

    h4)\ {{\mathit{\Delta}} }_{h}\left(\varpi, \mathit{\boldsymbol{\lambda }}, ({\mathit{\boldsymbol{\tau }}}+\mathit{\boldsymbol{ \boldsymbol{\varsigma } }})\right)\ge {{\mathit{\Delta}} }_{h}\left(\varpi, \nu, \frac{{\mathit{\boldsymbol{\tau }}}}{h\left(\varpi, \nu \right)}\right)*{{\mathit{\Delta}} }_{h}\left(\nu, \mathit{\boldsymbol{\lambda }}, \frac{\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}}{h\left(\nu, \mathit{\boldsymbol{\lambda }}\right)}\right);

    h5) {{\mathit{\Delta}} }_{h}\left(\varpi, \nu, \cdot \right):\left(0, \infty \right)\to \left[\mathrm{0, 1}\right] is continuous.

    Definition 2.6. [16] Let {\mathit{\boldsymbol{ \boldsymbol{\varXi} }}}\ne \varnothing , \text{*} be a CTN, P be a FSs on {\mathit{\boldsymbol{ \boldsymbol{\varXi} }}}\times {\mathit{\boldsymbol{ \boldsymbol{\varXi} }}}\times \left(0, \infty \right) . If triplet ({\mathit{\boldsymbol{ \boldsymbol{\varXi} }}}, {\mathit{\Theta}}, \text{*)} verifies the following for all \varpi, \nu, \mathit{\boldsymbol{\lambda }}\in {\mathit{\boldsymbol{ \boldsymbol{\varXi} }}}\ \mathrm{a}\mathrm{n}\mathrm{d}\ \mathit{\boldsymbol{ \boldsymbol{\varsigma } }}, {\mathit{\boldsymbol{\tau }}} > 0:

    1) {\mathit{\Theta}} \left(\varpi, \nu, {\mathit{\boldsymbol{\tau }}}\right) > 0;

    2) {\mathit{\Theta}} \left(\varpi, \nu, {\mathit{\boldsymbol{\tau }}}\right) = 1⟺\varpi = \nu;

    3) {\mathit{\Theta}} \left(\varpi, \nu, {\mathit{\boldsymbol{\tau }}}\right) = {\mathit{\Theta}} \left(\nu, \varpi, {\mathit{\boldsymbol{\tau }}}\right);

    4) {\mathit{\Theta}} \left(\varpi, \mathit{\boldsymbol{\lambda }}, b\left({\mathit{\boldsymbol{\tau }}}+\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}\right)\right)\ge {\mathit{\Theta}} \left(\varpi, \nu, {\mathit{\boldsymbol{\tau }}}\right)\text{*}{\mathit{\Theta}} \left(\nu, \mathit{\boldsymbol{\lambda }}, {\mathit{\boldsymbol{\tau }}}\right);

    5) {\mathit{\Theta}} \left(\varpi, \nu, \cdot \right) : \left(0, \infty \right) \to [0, 1] is a continuous mapping.

    then ({\mathit{\boldsymbol{ \boldsymbol{\varXi} }}}, {\mathit{\Theta}}, \text{*)} is called an FMLS.

    Definition 2.7. [14] Let {\mathit{\boldsymbol{ \boldsymbol{\varXi} }}} be a universal set. For \forall \varpi \in E, {0}^{-}\le {T}_{\mathcal{A}}\left(\varpi \right)+{I}_{\mathcal{A}}\left(\varpi \right)+{F}_{\mathcal{A}}\left(\varpi \right)\le {3}^{+} , by the help of the functions {T}_{\mathcal{A}}:E\to ] 0, {1}^{+} [, {I}_{\mathcal{A}}:E\to ] 0, {1}^{+} [and {F}_{\mathcal{A}}:E\to ] 0, {1}^{+} [a neutrosophic set \mathcal{A} on {\mathit{\boldsymbol{ \boldsymbol{\varXi} }}} is defined by

    \mathcal{A} = \left\{\left\langle{\varpi , {T}_{\mathcal{A}}\left(\varpi \right), {I}_{\mathcal{A}}\left(\varpi \right), {F}_{\mathcal{A}}\left(\varpi \right)}\right\rangle:\varpi \in {\mathit{\boldsymbol{ \boldsymbol{\varXi} }}}\right\}

    Here, {T}_{\mathcal{A}}\left(\varpi \right), {I}_{\mathcal{A}}\left(\varpi \right) and {F}_{\mathcal{A}}\left(\varpi \right) are the degrees of trueness, indeterminacy and falsity of \varpi \in {\mathit{\boldsymbol{ \boldsymbol{\varXi} }}} respectively.

    Definition 2.8. [29] Let \Xi \ne \varnothing , * is a CTN, be a CTCN and

    \mathcal{A} = \left\{⟨\varpi , {\mathit{\Theta}} \left(\varpi \right), Q\left(\varpi \right), S\left(\varpi \right)⟩:\varpi \in {\mathit{\boldsymbol{ \boldsymbol{\varXi} }}}\right\}

    be a neutrosophic set such that \mathcal{A} : {\mathit{\boldsymbol{ \boldsymbol{\varXi} }}}\times {\mathit{\boldsymbol{ \boldsymbol{\varXi} }}}\times \left(0, \infty \right)\to [0, 1]. If for all \varpi, \nu, \mathit{\boldsymbol{\lambda }}\in {\mathit{\boldsymbol{ \boldsymbol{\varXi} }}}, the below circumstances are satisfying:

    1) 0 \le { P}\left(\varpi, \nu, {\mathit{\boldsymbol{\tau }}}\right) \le 1, 0 \le Q\left(\varpi, \nu, \tau \right) \le 1 and 0 \le S\left(\varpi, \nu, {\mathit{\boldsymbol{\tau }}}\right) \le 1,

    2) { P}\left(\varpi, \nu, {\mathit{\boldsymbol{\tau }}}\right)+Q\left(\varpi, \nu, {\mathit{\boldsymbol{\tau }}}\right)+S\left(\varpi, \nu, {\mathit{\boldsymbol{\tau }}}\right)\le 3;

    3) { P}\left(\varpi, \nu, {\mathit{\boldsymbol{\tau }}}\right) > 0;

    4) { P}\left(\varpi, \nu, {\mathit{\boldsymbol{\tau }}}\right) = 1\ \mathrm{f}\mathrm{o}\mathrm{r}\ \mathrm{a}\mathrm{l}\mathrm{l}\ {\mathit{\boldsymbol{\tau }}} > 0, \ \mathrm{i}\mathrm{f}\ \mathrm{a}\mathrm{n}\mathrm{d}\ \mathrm{o}\mathrm{n}\mathrm{l}\mathrm{y}\ \mathrm{i}\mathrm{f}\ \varpi = \nu;

    5) { P}\left(\varpi, \nu, {\mathit{\boldsymbol{\tau }}}\right) = { P}\left(\nu, \varpi, {\mathit{\boldsymbol{\tau }}}\right);

    6) { P}\left(\varpi, \mathit{\boldsymbol{\lambda }}, {\mathit{\boldsymbol{\tau }}}+\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}\right)\ge { P}\left(\varpi, \nu, {\mathit{\boldsymbol{\tau }}}\right)*{ P}\left(\nu, \lambda, \varsigma \right);

    7) { P}\left(\varpi, \nu, \cdot \right):\left(0, \infty \right)\to \left[\mathrm{0, 1}\right] is continuous and \underset{{\mathit{\boldsymbol{\tau }}}\to \infty }{\mathrm{lim}}{ P}\left(\varpi, \nu, {\mathit{\boldsymbol{\tau }}}\right) = 1 ;

    8) Q\left(\varpi, \nu, {\mathit{\boldsymbol{\tau }}}\right) < 1;

    9) Q\left(\varpi, \nu, {\mathit{\boldsymbol{\tau }}}\right) = 0\ \mathrm{f}\mathrm{o}\mathrm{r}\ \mathrm{a}\mathrm{l}\mathrm{l}\ {\mathit{\boldsymbol{\tau }}} > 0, \ \mathrm{i}\mathrm{f}\ \mathrm{a}\mathrm{n}\mathrm{d}\ \mathrm{o}\mathrm{n}\mathrm{l}\mathrm{y}\ \mathrm{i}\mathrm{f}\ \varpi = \nu;

    10) Q\left(\varpi, \nu, {\mathit{\boldsymbol{\tau }}}\right) = Q\left(\nu, \varpi, {\mathit{\boldsymbol{\tau }}}\right);

    11) Q\left(\varpi, \mathit{\boldsymbol{\lambda }}, {\mathit{\boldsymbol{\tau }}}+\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}\right)\le Q\left(\varpi, \nu, {\mathit{\boldsymbol{\tau }}}\right)○Q\left(\nu, \mathit{\boldsymbol{\lambda }}, \mathit{\boldsymbol{ \boldsymbol{\varsigma } }}\right);

    12) Q\left(\varpi, \nu, \cdot \right):\left(0, \infty \right)\to \left[\mathrm{0, 1}\right] is continuous and \underset{{\mathit{\boldsymbol{\tau }}}\to \infty }{\mathrm{lim}}Q\left(\varpi, \nu, {\mathit{\boldsymbol{\tau }}}\right) = 0 ;

    13) S\left(\varpi, \nu, {\mathit{\boldsymbol{\tau }}}\right) < 1;

    14) S\left(\varpi, \nu, {\mathit{\boldsymbol{\tau }}}\right) = 0\ \mathrm{f}\mathrm{o}\mathrm{r}\ \mathrm{a}\mathrm{l}\mathrm{l}\ {\mathit{\boldsymbol{\tau }}} > 0, \ \mathrm{i}\mathrm{f}\ \mathrm{a}\mathrm{n}\mathrm{d}\ \mathrm{o}\mathrm{n}\mathrm{l}\mathrm{y}\ \mathrm{i}\mathrm{f}\ \varpi = \nu;

    15) S\left(\varpi, \nu, {\mathit{\boldsymbol{\tau }}}\right) = S\left(\nu, \varpi, {\mathit{\boldsymbol{\tau }}}\right);

    16) S\left(\varpi, \mathit{\boldsymbol{\lambda }}, {\mathit{\boldsymbol{\tau }}}+\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}\right)\le S\left(\varpi, \nu, {\mathit{\boldsymbol{\tau }}}\right)○S\left(\nu, \mathit{\boldsymbol{\lambda }}, \mathit{\boldsymbol{ \boldsymbol{\varsigma } }}\right);

    17) S\left(\varpi, \nu, \cdot \right):\left(0, \infty \right)\to \left[\mathrm{0, 1}\right] is continuous and \underset{{\mathit{\boldsymbol{\tau }}}\to \infty }{\mathrm{lim}}S\left(\varpi, \nu, {\mathit{\boldsymbol{\tau }}}\right) = 0;

    18) If {\mathit{\boldsymbol{\tau }}}\le 0, then { P}\left(\varpi, \nu, {\mathit{\boldsymbol{\tau }}}\right) = 0, Q\left(\varpi, \nu, {\mathit{\boldsymbol{\tau }}}\right) = 1\ \mathrm{a}\mathrm{n}\mathrm{d}\ S\left(\varpi, \nu, {\mathit{\boldsymbol{\tau }}}\right) = 1.

    then four-tuple \left({\mathit{\boldsymbol{ \boldsymbol{\varXi} }}}, \mathcal{A}, \mathcal{*}, ○\right) is called an NMS.

    Where; { P}\left(\varpi, \nu, {\mathit{\boldsymbol{\tau }}}\right) is degree of nearness, Q\left(\varpi, \nu, {\mathit{\boldsymbol{\tau }}}\right) is degree of neutralness and S\left(\varpi, \nu, {\mathit{\boldsymbol{\tau }}}\right) is degree of non-nearness.

    In this section, we introduce the notion of a CNMLS and prove some related FP results.

    Definition 3.1. Suppose {\mathit{\boldsymbol{ \boldsymbol{\varXi} }}}\ne \varnothing , assume a six tuple ({\mathit{\boldsymbol{ \boldsymbol{\varXi} }}}, {{ P}}_{\phi }{, Q}_{\phi }{, R}_{\phi }\text{, *, ○)} where \text{*} is a CTN, \text{○} is a CTCN, \phi :{\mathit{\boldsymbol{ \boldsymbol{\varXi} }}}\times {\mathit{\boldsymbol{ \boldsymbol{\varXi} }}}\to \left[1, \infty \right) be a function and {{ P}}_{\phi }{, Q}_{\phi }{, R}_{\phi } are neutrosophic sets (NSs) on {\mathit{\boldsymbol{ \boldsymbol{\varXi} }}}\times {\mathit{\boldsymbol{ \boldsymbol{\varXi} }}}\times \left(0, \infty \right) . If ({\mathit{\boldsymbol{ \boldsymbol{\varXi} }}}, {{ P}}_{\phi }{, Q}_{\phi }, {, R}_{\phi }\text{, *, ○)} meet the below circumstances for all \varpi, \nu, \mathit{\boldsymbol{\lambda }}\in {\mathit{\boldsymbol{ \boldsymbol{\varXi} }}}\ \mathrm{a}\mathrm{n}\mathrm{d}\ \mathit{\boldsymbol{ \boldsymbol{\varsigma } }}, {\mathit{\boldsymbol{\tau }}} > 0:

    1) {{ P}}_{\phi }\left(\varpi, \nu, {\mathit{\boldsymbol{\tau }}}\right)+{Q}_{\phi }\left(\varpi, \nu, {\mathit{\boldsymbol{\tau }}}\right)+{R}_{\phi }\left(\varpi, \nu, {\mathit{\boldsymbol{\tau }}}\right)\le 3,

    2) {{ P}}_{\phi }\left(\varpi, \nu, {\mathit{\boldsymbol{\tau }}}\right) > 0,

    3) {{ P}}_{\phi }\left(\varpi, \nu, {\mathit{\boldsymbol{\tau }}}\right) = 1\mathrm{i}\mathrm{m}\mathrm{p}\mathrm{l}\mathrm{i}\mathrm{e}\mathrm{s}\varpi = \nu,

    4) {{ P}}_{\phi }\left(\varpi, \nu, {\mathit{\boldsymbol{\tau }}}\right) = {{ P}}_{\phi }\left(\nu, \varpi, {\mathit{\boldsymbol{\tau }}}\right),

    5) {{ P}}_{\phi }\left(\varpi, \mathit{\boldsymbol{\lambda }}, \left({\mathit{\boldsymbol{\tau }}}+\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}\right)\right)\ge {{ P}}_{\phi }\left(\varpi, \nu, \frac{{\mathit{\boldsymbol{\tau }}}}{\phi \left(\varpi, \nu \right)}\right)\text{*}{{ P}}_{\phi }\left(\nu, \mathit{\boldsymbol{\lambda }}, \frac{\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}}{\phi \left(\nu, \mathit{\boldsymbol{\lambda }}\right)}\right),

    6) {{ P}}_{\phi }\left(\varpi, \nu, \cdot \right) is ND function of {\mathbb{R}}^{+} and \underset{{\mathit{\boldsymbol{\tau }}}\to \infty }{\mathrm{lim}}{{ P}}_{\phi }\left(\varpi, \nu, {\mathit{\boldsymbol{\tau }}}\right) = 1,

    7) {Q}_{\phi }\left(\varpi, \nu, {\mathit{\boldsymbol{\tau }}}\right) < 1,

    8) {Q}_{\phi }\left(\varpi, \nu, {\mathit{\boldsymbol{\tau }}}\right) = 0 \mathrm{i}\mathrm{m}\mathrm{p}\mathrm{l}\mathrm{i}\mathrm{e}\mathrm{s}\varpi = \nu,

    9) {Q}_{\phi }\left(\varpi, \nu, {\mathit{\boldsymbol{\tau }}}\right) = {Q}_{\phi }\left(\nu, \varpi, {\mathit{\boldsymbol{\tau }}}\right),

    10) {Q}_{\phi }\left(\varpi, \mathit{\boldsymbol{\lambda }}, \left({\mathit{\boldsymbol{\tau }}}+\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}\right)\right)\le {Q}_{\phi }\left(\varpi, \nu, \frac{{\mathit{\boldsymbol{\tau }}}}{\phi \left(\varpi, \nu \right)}\right)○{Q}_{\phi }\left(\nu, \mathit{\boldsymbol{\lambda }}, \frac{\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}}{\phi \left(\nu, \mathit{\boldsymbol{\lambda }}\right)}\right),

    11) {Q}_{\phi }\left(\varpi, \nu, \cdot \right) is NI function of {\mathbb{R}}^{+} and \underset{{\mathit{\boldsymbol{\tau }}}\to \infty }{\mathrm{lim}}{Q}_{\phi }\left(\varpi, \nu, {\mathit{\boldsymbol{\tau }}}\right) = 0,

    12) {R}_{\phi }\left(\varpi, \nu, {\mathit{\boldsymbol{\tau }}}\right) < 1,

    13) {R}_{\phi }\left(\varpi, \nu, {\mathit{\boldsymbol{\tau }}}\right) = 0 \mathrm{i}\mathrm{m}\mathrm{p}\mathrm{l}\mathrm{i}\mathrm{e}\mathrm{s}\varpi = \nu,

    14) {R}_{\phi }\left(\varpi, \nu, {\mathit{\boldsymbol{\tau }}}\right) = {R}_{\phi }\left(\nu, \varpi, {\mathit{\boldsymbol{\tau }}}\right),

    15) {R}_{\phi }\left(\varpi, \mathit{\boldsymbol{\lambda }}, \left({\mathit{\boldsymbol{\tau }}}+\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}\right)\right)\le {R}_{\phi }\left(\varpi, \nu, \frac{{\mathit{\boldsymbol{\tau }}}}{\phi \left(\varpi, \nu \right)}\right)○{R}_{\phi }\left(\nu, \mathit{\boldsymbol{\lambda }}, \frac{\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}}{\phi \left(\nu, \mathit{\boldsymbol{\lambda }}\right)}\right),

    16) {R}_{\phi }\left(\varpi, \nu, \cdot \right) is NI function of {\mathbb{R}}^{+} and \underset{{\mathit{\boldsymbol{\tau }}}\to \infty }{\mathrm{lim}}{R}_{\phi }\left(\varpi, \nu, {\mathit{\boldsymbol{\tau }}}\right) = 0,

    17) If {\mathit{\boldsymbol{\tau }}}\le 0 , then {{ P}}_{\phi }\left(\varpi, \nu, {\mathit{\boldsymbol{\tau }}}\right) = 0, {Q}_{\phi }\left(\varpi, \nu, {\mathit{\boldsymbol{\tau }}}\right) = 1 and {R}_{\phi }\left(\varpi, \nu, {\mathit{\boldsymbol{\tau }}}\right) = 1.

    Then five-tuple \left({\mathit{\boldsymbol{ \boldsymbol{\varXi} }}}, {\mathcal{A}}_{\phi }, \phi, *, ○\right) is called a CNMLS.

    Where; {{ P}}_{\phi }\left(\varpi, \nu, {\mathit{\boldsymbol{\tau }}}\right) is degree of nearness, {Q}_{\phi }\left(\varpi, \nu, {\mathit{\boldsymbol{\tau }}}\right) is degree of neutralness and {R}_{\phi }\left(\varpi, \nu, {\mathit{\boldsymbol{\tau }}}\right) is degree of non-nearness.

    Example 3.1. Let {\mathit{\boldsymbol{ \boldsymbol{\varXi} }}} = \left(0, \infty \right), \ \mathrm{d}\mathrm{e}\mathrm{f}\mathrm{i}\mathrm{n}\mathrm{e}\ {{ P}}_{\phi }, {Q}_{\phi }, {R}_{\phi }:{\mathit{\boldsymbol{ \boldsymbol{\varXi} }}}\times {\mathit{\boldsymbol{ \boldsymbol{\varXi} }}}\times \left(0, \infty \right)\to \left[\mathrm{0, 1}\right] by

    {{ P}}_{\phi }\left(\varpi , \nu , {\mathit{\boldsymbol{\tau }}}\right) = \frac{{\mathit{\boldsymbol{\tau }}}}{{\mathit{\boldsymbol{\tau }}}+{\mathrm{max}\left\{\varpi , \nu \right\}}^{2}}, {Q}_{\phi }\left(\varpi , \nu , {\mathit{\boldsymbol{\tau }}}\right) = \frac{{\mathrm{max}\left\{\varpi , \nu \right\}}^{2}}{{\mathit{\boldsymbol{\tau }}}+{\mathrm{max}\left\{\varpi , \nu \right\}}^{2}}, {R}_{\phi }\left(\varpi , \nu , {\mathit{\boldsymbol{\tau }}}\right) = \frac{{\mathrm{max}\left\{\varpi , \nu \right\}}^{2}}{{\mathit{\boldsymbol{\tau }}}}

    for all \varpi, \nu \in {\mathit{\boldsymbol{ \boldsymbol{\varXi} }}}\ \mathrm{a}\mathrm{n}\mathrm{d}\ {\mathit{\boldsymbol{\tau }}} > 0, define CTN "\text{*"} by 𝛶*\varrho = 𝛶\cdot \varrho and CTCN "\text{○"} by 𝛶○\varrho = \mathrm{max}\left\{𝛶, \varrho \right\} and define "\phi " by

    \phi \left(\varpi , \nu \right) = \left\{\begin{array}{l}1\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ {\rm{if}}\ \varpi = \nu , \\ \frac{1+\mathrm{max}\left\{\varpi , \nu \right\}}{\mathrm{min}\left\{\varpi , \nu \right\}}\ {\rm{if}}\ \varpi \ne \nu .\end{array}\right.

    Then five-tuple \left({\mathit{\boldsymbol{ \boldsymbol{\varXi} }}}, {\mathcal{A}}_{\phi }, \phi, *, ○\right) is a CNMS.

    Proof. \left(\mathrm{i}\right)-\left(\mathrm{i}\mathrm{v}\right), \left(\mathrm{v}\mathrm{i}\right)-\left(\mathrm{i}\mathrm{x}\right), \left(\mathrm{i}\mathrm{x}\right)-\left(\mathrm{x}\mathrm{i}\mathrm{v}\right), \left(\mathrm{x}\mathrm{v}\mathrm{i}\right)\ \mathrm{a}\mathrm{n}\mathrm{d}\ \left(\mathrm{x}\mathrm{v}\mathrm{i}\mathrm{i}\right) are trivial, here we examine \left(\mathrm{v}\right), \left(\mathrm{x}\right)\ \mathrm{a}\mathrm{n}\mathrm{d}\ \left(\mathrm{x}\mathrm{v}\right),

    {\mathrm{max}\left\{\varpi , \mathit{\boldsymbol{\lambda }}\right\}}^{2}\le \phi \left(\varpi , \nu \right){\mathrm{max}\left\{\varpi , \nu \right\}}^{2}+\phi \left(\nu , \mathit{\boldsymbol{\lambda }}\right){\mathrm{max}\left\{\nu , \mathit{\boldsymbol{\lambda }}\right\}}^{2}

    Therefore,

    {\mathit{\boldsymbol{\tau }}}\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}{\mathrm{max}\left\{\varpi , \mathit{\boldsymbol{\lambda }}\right\}}^{2}\le \phi \left(\varpi , \nu \right)\left({\mathit{\boldsymbol{\tau }}}\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}+{\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}}^{2}\right){\mathrm{max}\left\{\varpi , \nu \right\}}^{2}+\phi \left(\nu , \mathit{\boldsymbol{\lambda }}\right)\left({\mathit{\boldsymbol{\tau }}}\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}+{{\mathit{\boldsymbol{\tau }}}}^{2}\right){\mathrm{max}\left\{\nu , \mathit{\boldsymbol{\lambda }}\right\}}^{2} ,
    \Rightarrow {\mathit{\boldsymbol{\tau }}}\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}{\mathrm{max}\left\{\varpi , \mathit{\boldsymbol{\lambda }}\right\}}^{2}\le \phi \left(\varpi , \nu \right)\left({\mathit{\boldsymbol{\tau }}}+\varsigma \right)\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}{\mathrm{max}\left\{\varpi , \nu \right\}}^{2}+\phi \left(\nu , \mathit{\boldsymbol{\lambda }}\right)\left({\mathit{\boldsymbol{\tau }}}+\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}\right){\mathit{\boldsymbol{\tau }}}{\mathrm{max}\left\{\nu , \mathit{\boldsymbol{\lambda }}\right\}}^{2} ,
    \Rightarrow {\mathit{\boldsymbol{\tau }}}\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}\left({\mathit{\boldsymbol{\tau }}}+\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}\right)+{\mathit{\boldsymbol{\tau }}}\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}{\mathrm{max}\left\{\varpi , \mathit{\boldsymbol{\lambda }}\right\}}^{2} ,
    \le {\mathit{\boldsymbol{\tau }}}\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}\left({\mathit{\boldsymbol{\tau }}}+\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}\right)+\phi \left(\varpi , \nu \right)\left({\mathit{\boldsymbol{\tau }}}+\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}\right)\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}{\mathrm{max}\left\{\varpi , \nu \right\}}^{2}+\phi \left(\nu , \mathit{\boldsymbol{\lambda }}\right)\left({\mathit{\boldsymbol{\tau }}}+\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}\right){\mathit{\boldsymbol{\tau }}}{\mathrm{max}\left\{\nu , \mathit{\boldsymbol{\lambda }}\right\}}^{2}

    That is,

    {\mathit{\boldsymbol{\tau }}}\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}\left[\left({\mathit{\boldsymbol{\tau }}}+\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}\right)+{\mathrm{max}\left\{\varpi , \mathit{\boldsymbol{\lambda }}\right\}}^{2}\right]\le \left({\mathit{\boldsymbol{\tau }}}+\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}\right)\left[{\mathit{\boldsymbol{\tau }}}\varsigma +\phi \left(\varpi , \nu \right)\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}{\mathrm{max}\left\{\varpi , \nu \right\}}^{2}+\phi \left(\nu , \mathit{\boldsymbol{\lambda }}\right){\mathit{\boldsymbol{\tau }}}{\mathrm{max}\left\{\nu , \mathit{\boldsymbol{\lambda }}\right\}}^{2}\right] ,
    \Rightarrow {\mathit{\boldsymbol{\tau }}}\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}\left[\left({\mathit{\boldsymbol{\tau }}}+\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}\right)+{\mathrm{max}\left\{\varpi , \lambda \right\}}^{2}\right] ,
    \le \left({\mathit{\boldsymbol{\tau }}}+\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}\right)\left[{\mathit{\boldsymbol{\tau }}}\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}+\phi \left(\varpi , \nu \right)\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}{\mathrm{max}\left\{\varpi , \nu \right\}}^{2}+\phi \left(\nu , \mathit{\boldsymbol{\lambda }}\right){\mathit{\boldsymbol{\tau }}}{\mathrm{max}\left\{\nu , \mathit{\boldsymbol{\lambda }}\right\}}^{2}+\\ \phi \left(\varpi , \nu \right)\phi \left(\nu , \mathit{\boldsymbol{\lambda }}\right){\mathrm{max}\left\{\varpi , \nu \right\}}^{2}{\mathrm{max}\left\{\nu , \mathit{\boldsymbol{\lambda }}\right\}}^{2}\right] ,
    \Rightarrow {\mathit{\boldsymbol{\tau }}}\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}\left[\left({\mathit{\boldsymbol{\tau }}}+\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}\right)+{\mathrm{max}\left\{\varpi , \mathit{\boldsymbol{\lambda }}\right\}}^{2}\right]\le \left({\mathit{\boldsymbol{\tau }}}+\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}\right)\left[{\mathit{\boldsymbol{\tau }}}+\phi \left(\varpi , \nu \right){\mathrm{max}\left\{\varpi , \nu \right\}}^{2}\left]\right[\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}+{\phi \left(\nu , \mathit{\boldsymbol{\lambda }}\right)\mathrm{max}\{\nu , \mathit{\boldsymbol{\lambda }}\}}^{2}\right]

    Then,

    \frac{\left({\mathit{\boldsymbol{\tau }}}+\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}\right)}{\left({\mathit{\boldsymbol{\tau }}}+\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}\right)+{\mathrm{max}\left\{\varpi , \mathit{\boldsymbol{\lambda }}\right\}}^{2}}\ge \frac{{\mathit{\boldsymbol{\tau }}}\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}}{\left[{\mathit{\boldsymbol{\tau }}}+\phi \left(\varpi , \nu \right){\mathrm{max}\left\{\varpi , \nu \right\}}^{2}\left]\right[\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}+{\phi \left(\nu , \lambda \right)\mathrm{max}\left\{\nu , \mathit{\boldsymbol{\lambda }}\right\}}^{2}\right]},
    \Rightarrow \frac{\left({\mathit{\boldsymbol{\tau }}}+\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}\right)}{\left({\mathit{\boldsymbol{\tau }}}+\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}\right)+{\mathrm{max}\left\{\varpi , \mathit{\boldsymbol{\lambda }}\right\}}^{2}}\ge \frac{{\mathit{\boldsymbol{\tau }}}}{{\mathit{\boldsymbol{\tau }}}+\phi \left(\varpi , \nu \right){\mathrm{max}\left\{\varpi , \nu \right\}}^{2}}.\frac{\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}}{\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}+{\phi \left(\nu , \mathit{\boldsymbol{\lambda }}\right)\mathrm{max}\left\{\nu , \mathit{\boldsymbol{\lambda }}\right\}}^{2}},
    \Rightarrow \frac{\left({\mathit{\boldsymbol{\tau }}}+\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}\right)}{\left({\mathit{\boldsymbol{\tau }}}+\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}\right)+{\mathrm{max}\left\{\varpi , \mathit{\boldsymbol{\lambda }}\right\}}^{2}}\ge \frac{\frac{{\mathit{\boldsymbol{\tau }}}}{\phi \left(\varpi , \nu \right)}}{\frac{{\mathit{\boldsymbol{\tau }}}}{\phi \left(\varpi , \nu \right)}\ \ +{\mathrm{max}\left\{\varpi , \nu \right\}}^{2}}.\frac{\frac{\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}}{\phi \left(\nu , \mathit{\boldsymbol{\lambda }}\right)}}{\frac{\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}}{\phi \left(\nu , \mathit{\boldsymbol{\lambda }}\right)}\ \ +{\mathrm{max}\left\{\nu , \mathit{\boldsymbol{\lambda }}\right\}}^{2}}

    Hence,

    {{ P}}_{\phi }\left(\varpi , \mathit{\boldsymbol{\lambda }}, \left({\mathit{\boldsymbol{\tau }}}+\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}\right)\right)\ge {{ P}}_{\phi }\left(\varpi , \nu , \frac{{\mathit{\boldsymbol{\tau }}}}{\phi \left(\varpi , \nu \right)}\right)\text{*}{{ P}}_{\phi }\left(\nu , \mathit{\boldsymbol{\lambda }}, \frac{\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}}{\phi \left(\nu , \mathit{\boldsymbol{\lambda }}\right)}\right)

    ({\rm{v}}) is satisfied.

    {\mathrm{max}\left\{\varpi , \mathit{\boldsymbol{\lambda }}\right\}}^{2} = {\mathrm{max}\left\{\varpi , \mathit{\boldsymbol{\lambda }}\right\}}^{2}\mathrm{max}\left\{\mathrm{1, 1}\right\}

    Therefore,

    {\mathrm{max}\left\{\varpi , \mathit{\boldsymbol{\lambda }}\right\}}^{2} = {\mathrm{max}\left\{\varpi , \mathit{\boldsymbol{\lambda }}\right\}}^{2}\mathrm{max}\left\{\frac{{\mathrm{max}\left\{\varpi , \nu \right\}}^{2}}{{\mathrm{max}\left\{\varpi , \nu \right\}}^{2}}, \frac{{\mathrm{max}\left\{\nu , \mathit{\boldsymbol{\lambda }}\right\}}^{2}}{{\mathrm{max}\left\{\nu , \mathit{\boldsymbol{\lambda }}\right\}}^{2}}\right\}
    {\mathrm{max}\left\{\varpi , \mathit{\boldsymbol{\lambda }}\right\}}^{2}\le \left[\left({\mathit{\boldsymbol{\tau }}}+\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}\right)+{\mathrm{max}\left\{\varpi , \mathit{\boldsymbol{\lambda }}\right\}}^{2}\right]\mathrm{max}\left\{\frac{{\mathrm{max}\left\{\varpi , \nu \right\}}^{2}}{{\mathrm{max}\left\{\varpi , \nu \right\}}^{2}}, \frac{{\mathrm{max}\left\{\nu , \mathit{\boldsymbol{\lambda }}\right\}}^{2}}{{\mathrm{max}\left\{\nu , \mathit{\boldsymbol{\lambda }}\right\}}^{2}}\right\}
    {\mathrm{max}\left\{\varpi , \mathit{\boldsymbol{\lambda }}\right\}}^{2}\le \left[\left({\mathit{\boldsymbol{\tau }}}+\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}\right)+{\mathrm{max}\left\{\varpi , \mathit{\boldsymbol{\lambda }}\right\}}^{2}\right]\mathrm{max}\left\{\frac{\phi \left(\varpi , \nu \right){\mathrm{max}\left\{\varpi , \nu \right\}}^{2}}{{\phi \left(\varpi , \nu \right)\mathrm{max}\{\varpi , \nu \}}^{2}}, \frac{\phi \left(\nu , \mathit{\boldsymbol{\lambda }}\right){\mathrm{max}\left\{\nu , \mathit{\boldsymbol{\lambda }}\right\}}^{2}}{{\phi \left(\nu , \mathit{\boldsymbol{\lambda }}\right)\mathrm{max}\{\nu , \mathit{\boldsymbol{\lambda }}\}}^{2}}\right\}

    Then,

    \frac{{\mathrm{max}\left\{\varpi , \mathit{\boldsymbol{\lambda }}\right\}}^{2}}{\left({\mathit{\boldsymbol{\tau }}}+\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}\right)+{\mathrm{max}\left\{\varpi , \mathit{\boldsymbol{\lambda }}\right\}}^{2}}\le \mathrm{max}\left\{\frac{\phi \left(\varpi , \nu \right){\mathrm{max}\left\{\varpi , \nu \right\}}^{2}}{{\mathit{\boldsymbol{\tau }}}+\phi \left(\varpi , \nu \right){\mathrm{max}\left\{\varpi , \nu \right\}}^{2}}, \frac{\phi \left(\nu , \mathit{\boldsymbol{\lambda }}\right){\mathrm{max}\left\{\nu , \mathit{\boldsymbol{\lambda }}\right\}}^{2}}{\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}+\phi \left(\nu , \mathit{\boldsymbol{\lambda }}\right){\mathrm{max}\left\{\nu , \mathit{\boldsymbol{\lambda }}\right\}}^{2}}\right\}

    That is,

    \frac{{\mathrm{max}\left\{\varpi , \mathit{\boldsymbol{\lambda }}\right\}}^{2}}{\left({\mathit{\boldsymbol{\tau }}}+\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}\right)+{\mathrm{max}\left\{\varpi , \mathit{\boldsymbol{\lambda }}\right\}}^{2}}\le \mathrm{max}\left\{\frac{{\mathrm{max}\left\{\varpi , \nu \right\}}^{2}}{\frac{{\mathit{\boldsymbol{\tau }}}}{\phi \left(\varpi , \nu \right)}\ \ +{\mathrm{max}\left\{\varpi , \nu \right\}}^{2}}, \frac{{\mathrm{max}\left\{\nu , \mathit{\boldsymbol{\lambda }}\right\}}^{2}}{\frac{\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}}{\phi \left(\nu , \mathit{\boldsymbol{\lambda }}\right)}\ \ +{\mathrm{max}\left\{\nu , \mathit{\boldsymbol{\lambda }}\right\}}^{2}}\right\}

    Hence,

    {Q}_{\phi }\left(\varpi , \mathit{\boldsymbol{\lambda }}, \left({\mathit{\boldsymbol{\tau }}}+\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}\right)\right)\le {Q}_{\phi }\left(\varpi , \nu , \frac{{\mathit{\boldsymbol{\tau }}}}{\phi \left(\varpi , \nu \right)}\right)\text{*}{Q}_{\phi }\left(\nu , \mathit{\boldsymbol{\lambda }}, \frac{\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}}{\phi \left(\nu , \mathit{\boldsymbol{\lambda }}\right)}\right)

    ({\rm{x}}) is satisfied.

    It is easy to see that

    \frac{{\mathrm{max}\left\{\varpi , \mathit{\boldsymbol{\lambda }}\right\}}^{2}}{{\mathit{\boldsymbol{\tau }}}+\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}}\le \mathrm{max}\left\{\frac{{\phi \left(\varpi , \nu \right)\mathrm{max}\{\varpi , \nu \}}^{2}}{{\mathit{\boldsymbol{\tau }}}}, \frac{\phi \left(\nu , \mathit{\boldsymbol{\lambda }}\right){\mathrm{max}\left\{\nu , \mathit{\boldsymbol{\lambda }}\right\}}^{2}}{\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}}\right\}

    That is,

    \frac{{\mathrm{max}\left\{\varpi , \mathit{\boldsymbol{\lambda }}\right\}}^{2}}{\left({\mathit{\boldsymbol{\tau }}}+\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}\right)}\le \mathrm{max}\left\{\frac{{\mathrm{max}\left\{\varpi , \nu \right\}}^{2}}{\frac{{\mathit{\boldsymbol{\tau }}}}{\phi \left(\varpi , \nu \right)}}, \frac{{\mathrm{max}\left\{\nu , \mathit{\boldsymbol{\lambda }}\right\}}^{2}}{\frac{\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}}{\phi \left(\nu , \mathit{\boldsymbol{\lambda }}\right)}}\right\}

    Hence,

    {R}_{\phi }\left(\varpi , \mathit{\boldsymbol{\lambda }}, \left({\mathit{\boldsymbol{\tau }}}+\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}\right)\right)\le {R}_{\phi }\left(\varpi , \nu , \frac{{\mathit{\boldsymbol{\tau }}}}{\phi \left(\varpi , \nu \right)}\right)\text{*}{R}_{\phi }\left(\nu , \mathit{\boldsymbol{\lambda }}, \frac{\mathit{\boldsymbol{ \boldsymbol{\varsigma } }}}{\phi \left(\nu , \mathit{\boldsymbol{\lambda }}\right)}\right)

    ({\rm{xv}}) is satisfied.

    Remark 3.1. If we let, 𝛶*\varrho = \mathrm{min}\left\{𝛶, \varrho \right\} and 𝛶○\varrho = \mathrm{max}\left\{𝛶, \varrho \right\}, then above example is also a CNMLS.

    Example 3.2. Suppose \mathrm{\Xi } = \left(0, \infty \right), \ \mathrm{d}\mathrm{e}\mathrm{f}\mathrm{i}\mathrm{n}\mathrm{e}\ {{ P}}_{\phi }, {Q}_{\phi }, {R}_{\phi }:{\mathit{\boldsymbol{ \boldsymbol{\varXi} }}}\times {\mathit{\boldsymbol{ \boldsymbol{\varXi} }}}\times \left(0, \infty \right)\to \left[\mathrm{0, 1}\right] by

    {{ P}}_{\phi }\left(\varpi , \nu , {\mathit{\boldsymbol{\tau }}}\right) = \frac{{\mathit{\boldsymbol{\tau }}}}{{\mathit{\boldsymbol{\tau }}}+\mathrm{max}\left\{\varpi , \nu \right\}}
    {Q}_{\phi }\left(\varpi , \nu , {\mathit{\boldsymbol{\tau }}}\right) = \frac{\mathrm{max}\left\{\varpi , \nu \right\}}{{\mathit{\boldsymbol{\tau }}}+\mathrm{max}\left\{\varpi , \nu \right\}},

    and

    {R}_{\phi }\left(\varpi , \nu , \tau \right) = \frac{\mathrm{max}\left\{\varpi , \nu \right\}}{{\mathit{\boldsymbol{\tau }}}}

    for all \varpi, \nu \in {\mathit{\boldsymbol{ \boldsymbol{\varXi} }}}\ \mathrm{a}\mathrm{n}\mathrm{d}\ {\mathit{\boldsymbol{\tau }}} > 0, define CTN "\text{*"} by 𝛶*\varrho = 𝛶\cdot \varrho and CTCN "\text{○"} by 𝛶○\varrho = \mathrm{max}\left\{𝛶, \varrho \right\} and define "\phi " by

    \phi \left(\varpi , \nu \right) = 1+\varpi +\nu

    Then \left({\mathit{\boldsymbol{ \boldsymbol{\varXi} }}}, {{ P}}_{\phi }, {Q}_{\phi }, {R}_{\phi }, *, ○\right) be a CNMLS.

    Remark 3.2. The above Examples 3.1 and 3.2 are not neutrosophic metric spaces.

    Definition 3.2. Let \left({\mathit{\boldsymbol{ \boldsymbol{\varXi} }}}, {{ P}}_{\phi }, {Q}_{\phi }, {R}_{\phi }, *, ○\right) is a CNMLS, then we define an open ball B\left(\varpi, r, {\mathit{\boldsymbol{\tau }}}\right) with centre \varpi, radius r, 0 < r < 1 and {\mathit{\boldsymbol{\tau }}} > 0 as follows:

    B\left(\varpi , r, {\mathit{\boldsymbol{\tau }}}\right) = \left\{\nu \in {\mathit{\boldsymbol{ \boldsymbol{\varXi} }}}:{ P}\left(\varpi , \nu , {\mathit{\boldsymbol{\tau }}}\right) > 1-r, Q\left(\varpi , \nu , {\mathit{\boldsymbol{\tau }}}\right) < r, R\left(\varpi , \nu , {\mathit{\boldsymbol{\tau }}}\right) < r\right\}.

    Definition 3.3. Let \left({\mathit{\boldsymbol{ \boldsymbol{\varXi} }}}, {{ P}}_{\phi }, {Q}_{\phi }, {R}_{\phi }, *, ○\right) be a CNMLS. Then

    1) a sequence \left\{{\varpi }_{n}\right\} in {\mathit{\boldsymbol{ \boldsymbol{\varXi} }}} is named to be G-Cauchy sequence (GCS) if and only if for all q > 0\ \mathrm{a}\mathrm{n}\mathrm{d}\ {\mathit{\boldsymbol{\tau }}} > 0,

    \underset{n\to \infty }{\mathrm{lim}}{{ P}}_{\phi }\left({\varpi }_{n}, {\varpi }_{n+q}, {\mathit{\boldsymbol{\tau }}}\right), \underset{n\to \infty }{\mathrm{lim}}{Q}_{\phi }\left({\varpi }_{n}, {\varpi }_{n+q}, {\mathit{\boldsymbol{\tau }}}\right)\ \mathrm{a}\mathrm{n}\mathrm{d}\ \underset{n\to \infty }{\mathrm{lim}}{R}_{\phi }\left({\varpi }_{n}, {\varpi }_{n+q}, {\mathit{\boldsymbol{\tau }}}\right) \ {\rm{exists}}\ {\rm{and}}\ {\rm{finite}}

    2) a sequence \left\{{\varpi }_{n}\right\} in {\mathit{\boldsymbol{ \boldsymbol{\varXi} }}} is named to be G-convergent (GC) to \varpi in {\mathit{\boldsymbol{ \boldsymbol{\varXi} }}} , if and only if for all {\mathit{\boldsymbol{\tau }}} > 0,

    \underset{n\to \infty }{\mathrm{lim}}{{ P}}_{\phi }\left({\varpi }_{n}, \varpi , {\mathit{\boldsymbol{\tau }}}\right) = {{ P}}_{\phi }\left(\varpi , \varpi , {\mathit{\boldsymbol{\tau }}}\right), \underset{n\to \infty }{\mathrm{lim}}{Q}_{\phi }\left({\varpi }_{n}, \varpi , {\mathit{\boldsymbol{\tau }}}\right) = {Q}_{\phi }\left(\varpi , \varpi , {\mathit{\boldsymbol{\tau }}}\right)
    \ \mathrm{a}\mathrm{n}\mathrm{d}\ \underset{n\to \infty }{\mathrm{lim}}{R}_{\phi }\left({\varpi }_{n}, \varpi , {\mathit{\boldsymbol{\tau }}}\right) = {R}_{\phi }\left(\varpi , \varpi , {\mathit{\boldsymbol{\tau }}}\right).

    3) a CNMLS is named to be complete if each GCS is convergent i.e.,

    \underset{n\to \infty }{\mathrm{lim}}{{ P}}_{\phi }\left({\varpi }_{n}, {\varpi }_{n+q}, {\mathit{\boldsymbol{\tau }}}\right) = \underset{n\to \infty }{\mathrm{lim}}{{ P}}_{\phi }\left({\varpi }_{n}, \varpi , {\mathit{\boldsymbol{\tau }}}\right) = {{ P}}_{\phi }\left(\varpi , \varpi , {\mathit{\boldsymbol{\tau }}}\right),
    \underset{n\to \infty }{\mathrm{lim}}{Q}_{\phi }\left({\varpi }_{n}, {\varpi }_{n+q}, {\mathit{\boldsymbol{\tau }}}\right) = \underset{n\to \infty }{\mathrm{lim}}{Q}_{\phi }\left({\varpi }_{n}, \varpi , {\mathit{\boldsymbol{\tau }}}\right) = {Q}_{\phi }\left(\varpi , \varpi , {\mathit{\boldsymbol{\tau }}}\right),
    \underset{n\to \infty }{\mathrm{lim}}{R}_{\phi }\left({\varpi }_{n}, {\varpi }_{n+q}, {\mathit{\boldsymbol{\tau }}}\right) = \underset{n\to \infty }{\mathrm{lim}}{R}_{\phi }\left({\varpi }_{n}, \varpi , {\mathit{\boldsymbol{\tau }}}\right) = {R}_{\phi }\left(\varpi , \varpi , {\mathit{\boldsymbol{\tau }}}\right)

    Theorem 3.1. Suppose \left({\mathit{\boldsymbol{ \boldsymbol{\varXi} }}}, {{ P}}_{\phi }, {Q}_{\phi }, {R}_{\phi }, *, ○\right) be a G-complete CNMLS with \phi :{\mathit{\boldsymbol{ \boldsymbol{\varXi} }}}\times {\mathit{\boldsymbol{ \boldsymbol{\varXi} }}}\to \left[1, \infty \right) and assume that

    \underset{{\mathit{\boldsymbol{\tau }}}\to \infty }{\mathrm{lim}}{{ P}}_{\phi }\left(\varpi , \nu , {\mathit{\boldsymbol{\tau }}}\right) = 1, \underset{{\mathit{\boldsymbol{\tau }}}\to \infty }{\mathrm{lim}}{Q}_{\phi }\left(\varpi , \nu , {\mathit{\boldsymbol{\tau }}}\right) = 0\ \mathrm{a}\mathrm{n}\mathrm{d}\ \underset{{\mathit{\boldsymbol{\tau }}}\to \infty }{\mathrm{lim}}{R}_{\phi }\left(\varpi , \nu , {\mathit{\boldsymbol{\tau }}}\right) = 0 (1)

    for all \varpi, \nu \in {\mathit{\boldsymbol{ \boldsymbol{\varXi} }}} and {\mathit{\boldsymbol{\tau }}} > 0 . Suppose \xi :{\mathit{\boldsymbol{ \boldsymbol{\varXi} }}}\to {\mathit{\boldsymbol{ \boldsymbol{\varXi} }}} be a mapping verifying

    \begin{array}{*{20}{c}} {{{ P}}_{\phi }\left(\xi \varpi , \xi \nu , £ {\mathit{\boldsymbol{\tau }}}\right)\ge {{ P}}_{\phi }\left(\varpi , \nu , {\mathit{\boldsymbol{\tau }}}\right),}\\ {{Q}_{\phi }\left(\xi \varpi , \xi \nu , £ {\mathit{\boldsymbol{\tau }}}\right)\le {Q}_{\phi }\left(\varpi , \nu , {\mathit{\boldsymbol{\tau }}}\right)\ \mathrm{a}\mathrm{n}\mathrm{d}\ {R}_{\phi }\left(\xi \varpi , \xi \nu , £ {\mathit{\boldsymbol{\tau }}}\right)\le {R}_{\phi }\left(\varpi , \nu , {\mathit{\boldsymbol{\tau }}}\right)} \end{array} (2)

    for all \varpi, \nu \in {\mathit{\boldsymbol{ \boldsymbol{\varXi} }}} , 0 < £ < 1 and {\mathit{\boldsymbol{\tau }}} > 0. Also assume that for every \varpi \in { Z},

    \underset{n\to \infty }{\mathrm{lim}}\phi \left({\varpi }_{n}, \nu \right) \ {\rm{and}} \ \underset{n\to \infty }{\mathrm{lim}}\phi \left(\nu , {\varpi }_{n}\right) (3)

    exists and finite. Then \zeta has a unique fixed point in { Z}. Then \xi has a unique FP.

    Proof. Let {\varpi }_{0} be an arbitrary point of {\mathit{\boldsymbol{ \boldsymbol{\varXi} }}} and define a sequence {\varpi }_{n} by {\varpi }_{n} = {\xi }^{n}{\varpi }_{0} = \xi {\varpi }_{n-1} , n\in \mathbb{N}. By utilizing \left(2\right) for all {\mathit{\boldsymbol{\tau }}} > 0, we get

    {{ P}}_{\phi }\left({\varpi }_{n}, {\varpi }_{n+1}, £ {\mathit{\boldsymbol{\tau }}}\right) = {{ P}}_{\phi }\left({\xi \varpi }_{n-1}, \xi {\varpi }_{n}, £ {\mathit{\boldsymbol{\tau }}}\right)\ge {{ P}}_{\phi }\left({\varpi }_{n-1}, {\varpi }_{n}, {\mathit{\boldsymbol{\tau }}}\right)\ge {{ P}}_{\phi }\left({\varpi }_{n-2}, {\varpi }_{n-1}, \frac{{\mathit{\boldsymbol{\tau }}}}{£ }\right)
    \ge {{ P}}_{\phi }\left({\varpi }_{n-3}, {\varpi }_{n-2}, \frac{{\mathit{\boldsymbol{\tau }}}}{{£ }^{2}}\right)\ge \cdots \ge {{ P}}_{\phi }\left({\varpi }_{0}, {\varpi }_{1}, \frac{{\mathit{\boldsymbol{\tau }}}}{{£ }^{n-1}}\right),
    {Q}_{\phi }\left({\varpi }_{n}, {\varpi }_{n+1}, £ {\mathit{\boldsymbol{\tau }}}\right) = {Q}_{\phi }\left({\xi \varpi }_{n-1}, \xi {\varpi }_{n}, £ {\mathit{\boldsymbol{\tau }}}\right)\le {Q}_{\phi }\left({\varpi }_{n-1}, {\varpi }_{n}, {\mathit{\boldsymbol{\tau }}}\right)\le {Q}_{\phi }\left({\varpi }_{n-2}, {\varpi }_{n-1}, \frac{{\mathit{\boldsymbol{\tau }}}}{£ }\right)
    \le {Q}_{\phi }\left({\varpi }_{n-3}, {\varpi }_{n-2}, \frac{{\mathit{\boldsymbol{\tau }}}}{{£ }^{2}}\right)\le \cdots \le {Q}_{\phi }\left({\varpi }_{0}, {\varpi }_{1}, \frac{{\mathit{\boldsymbol{\tau }}}}{{£ }^{n-1}}\right)

    and

    {R}_{\phi }\left({\varpi }_{n}, {\varpi }_{n+1}, £ {\mathit{\boldsymbol{\tau }}}\right) = {R}_{\phi }\left({\xi \varpi }_{n-1}, \xi {\varpi }_{n}, £ {\mathit{\boldsymbol{\tau }}}\right)\le {R}_{\phi }\left({\varpi }_{n-1}, {\varpi }_{n}, {\mathit{\boldsymbol{\tau }}}\right)\le {R}_{\phi }\left({\varpi }_{n-2}, {\varpi }_{n-1}, \frac{{\mathit{\boldsymbol{\tau }}}}{£ }\right)
    \le {R}_{\phi }\left({\varpi }_{n-3}, {\varpi }_{n-2}, \frac{{\mathit{\boldsymbol{\tau }}}}{{£ }^{2}}\right)\le \cdots \le {R}_{\phi }\left({\varpi }_{0}, {\varpi }_{1}, \frac{{\mathit{\boldsymbol{\tau }}}}{{£ }^{n-1}}\right)

    We obtain

    \begin{array}{*{20}{c}} { {{ P}}_{\phi }\left({\varpi }_{n}, {\varpi }_{n+1}, £ {\mathit{\boldsymbol{\tau }}}\right)\ge {{ P}}_{\phi }\left({\varpi }_{0}, {\varpi }_{1}, \frac{{\mathit{\boldsymbol{\tau }}}}{{£ }^{n-1}}\right), }\\ {{Q}_{\phi }\left({\varpi }_{n}, {\varpi }_{n+1}, £ {\mathit{\boldsymbol{\tau }}}\right)\le {Q}_{\phi }\left({\varpi }_{0}, {\varpi }_{1}, \frac{{\mathit{\boldsymbol{\tau }}}}{{£ }^{n-1}}\right)\ \mathrm{a}\mathrm{n}\mathrm{d}\ {R}_{\phi }\left({\varpi }_{n}, {\varpi }_{n+1}, £ {\mathit{\boldsymbol{\tau }}}\right)\le {R}_{\phi }\left({\varpi }_{0}, {\varpi }_{1}, \frac{{\mathit{\boldsymbol{\tau }}}}{{£ }^{n-1}}\right)} \end{array} (4)

    for any q\in \mathbb{N}, \mathrm{u}\mathrm{s}\mathrm{i}\mathrm{n}\mathrm{g}\left(\mathrm{v}\right), \left(\mathrm{x}\right)\ \mathrm{a}\mathrm{n}\mathrm{d}\ \left(\mathrm{x}\mathrm{v}\right) , we deduce

    {{ P}}_{\phi }\left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+q}\ \ ,\ \ {\mathit{\boldsymbol{\tau }}}\ \ \ \ \right)\ge {{ P}}_{\phi }\left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\left(\phi \left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)*{{ P}}_{\phi }\left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)
    \ge {{ P}}_{\phi }\left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\left(\phi \left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)*{{ P}}_{\phi }\left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+2}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{2}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+2}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)
    *{{ P}}_{\phi }\left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{2}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)
    \ge {{ P}}_{\phi }\left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\left(\phi \left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)*{{ P}}_{\phi }\left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+2}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{2}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+2}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)
    *{{ P}}_{\phi }\left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+3}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{3}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+3}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)
    *{{ P}}_{\phi }\left({\varpi }_{n+3}\ \ ,\ \ {\varpi }_{n+q}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{3}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+3}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)
    \ge {{ P}}_{\phi }\left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\left(\phi \left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)*{{ P}}_{\phi }\left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+2}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{2}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+2}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)
    *{{ P}}_{\phi }\left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+3}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{3}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+3}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)
    *{{ P}}_{\phi }\left({\varpi }_{n+3}\ \ ,\ \ {\varpi }_{n+4}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{4}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+3}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+3}\ \ ,\ \ {\varpi }_{n+4}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)*\ \ \cdots\ \ *
    {{ P}}_{\phi }\left({\varpi }_{n+q-2}\ \ ,\ \ {\varpi }_{n+q-1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{q-1}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+3}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\ \ \cdots\ \ \phi \left({\varpi }_{n+q-2}\ \ ,\ \ {\varpi }_{n+q-1}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)
    *{{ P}}_{\phi }\left({\varpi }_{n+q-1}\ \ ,\ \ {\varpi }_{n+q}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{q-1}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+3}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\ \ \cdots\ \ \phi \left({\varpi }_{n+q-1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)\ \ ,\ \
    {Q}_{\phi }\left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+q}\ \ ,\ \ {\mathit{\boldsymbol{\tau }}}\ \ \ \ \right)\le {Q}_{\phi }\left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\left(\phi \left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)○{Q}_{\phi }\left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)
    \le {Q}_{\phi }\left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\left(\phi \left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)○{Q}_{\phi }\left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+2}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{2}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+2}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)
    ○{Q}_{\phi }\left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{2}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)
    \le {Q}_{\phi }\left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\left(\phi \left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)○{Q}_{\phi }\left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+2}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{2}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+2}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)
    ○{Q}_{\phi }\left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+3}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{3}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+3}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)
    ○{Q}_{\phi }\left({\varpi }_{n+3}\ \ ,\ \ {\varpi }_{n+q}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{3}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+3}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)
    \le {Q}_{\phi }\left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\left(\phi \left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)○{Q}_{\phi }\left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+2}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{2}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+2}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)
    ○{Q}_{\phi }\left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+3}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{3}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+3}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)
    ○{Q}_{\phi }\left({\varpi }_{n+3}\ \ ,\ \ {\varpi }_{n+4}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{4}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+3}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+3}\ \ ,\ \ {\varpi }_{n+4}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)○\ \ \cdots\ \ ○
    {Q}_{\phi }\left({\varpi }_{n+q-2}\ \ ,\ \ {\varpi }_{n+q-1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{q-1}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+3}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\ \ \cdots\ \ \phi \left({\varpi }_{n+q-2}\ \ ,\ \ {\varpi }_{n+q-1}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)
    ○{Q}_{\phi }\left({\varpi }_{n+q-1}\ \ ,\ \ {\varpi }_{n+q}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{q-1}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+3}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\ \ \cdots\ \ \phi \left({\varpi }_{n+q-1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)

    and

    {R}_{\phi }\left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+q}\ \ ,\ \ {\mathit{\boldsymbol{\tau }}}\ \ \ \ \right)\le {R}_{\phi }\left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\left(\phi \left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)○{R}_{\phi }\left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)
    \le {R}_{\phi }\left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\left(\phi \left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)○{R}_{\phi }\left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+2}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{2}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+2}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)
    ○{R}_{\phi }\left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{2}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)
    \le {R}_{\phi }\left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\left(\phi \left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)○{R}_{\phi }\left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+2}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{2}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+2}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)
    ○{R}_{\phi }\left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+3}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{3}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+3}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)
    ○{R}_{\phi }\left({\varpi }_{n+3}\ \ ,\ \ {\varpi }_{n+q}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{3}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+3}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)
    \le {R}_{\phi }\left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\left(\phi \left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)○{R}_{\phi }\left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+2}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{2}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+2}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)
    ○{R}_{\phi }\left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+3}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{3}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+3}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)
    ○{R}_{\phi }\left({\varpi }_{n+3}\ \ ,\ \ {\varpi }_{n+4}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{4}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+3}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+3}\ \ ,\ \ {\varpi }_{n+4}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)○\ \ \cdots\ \ ○
    {R}_{\phi }\left({\varpi }_{n+q-2}\ \ ,\ \ {\varpi }_{n+q-1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{q-1}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+3}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\ \ \cdots\ \ \phi \left({\varpi }_{n+q-2}\ \ ,\ \ {\varpi }_{n+q-1}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)
    ○{R}_{\phi }\left({\varpi }_{n+q-1}\ \ ,\ \ {\varpi }_{n+q}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{q-1}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+3}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\ \ \cdots\ \ \phi \left({\varpi }_{n+q-1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)

    Using (4) in the above inequalities, we deduce

    \ge {{ P}}_{\phi }\left({\varpi }_{0}\ \ ,\ \ {\varpi }_{1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2{\left(£ \ \ \ \ \right)}^{n-1}\ \ \left(\phi \left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)*{{ P}}_{\phi }\left({\varpi }_{0}\ \ ,\ \ {\varpi }_{1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{2}{\left(£ \ \ \ \ \right)}^{n}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+2}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)
    *{{ P}}_{\phi }\left({\varpi }_{0}\ \ ,\ \ {\varpi }_{1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{3}{\left(£ \ \ \ \ \right)}^{n+1}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+3}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)
    *{{ P}}_{\phi }\left({\varpi }_{0}\ \ ,\ \ {\varpi }_{1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{4}{\left(£ \ \ \ \ \right)}^{n+2}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+3}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+3}\ \ ,\ \ {\varpi }_{n+4}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)
    *\ \ \cdots\ \ *
    {{ P}}_{\phi }\left({\varpi }_{0}\ \ ,\ \ {\varpi }_{1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{q-1}{\left(£ \ \ \ \ \right)}^{n+q-2}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+3}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\ \ \cdots\ \ \phi \left({\varpi }_{n+q-2}\ \ ,\ \ {\varpi }_{n+q-1}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)
    *{{ P}}_{\phi }\left({\varpi }_{0}\ \ ,\ \ {\varpi }_{1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{q-1}{\left(£ \ \ \ \ \right)}^{n+q-1}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+3}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\ \ \cdots\ \ \phi \left({\varpi }_{n+q-1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)\ \ ,\ \
    \le {Q}_{\phi }\left({\varpi }_{0}\ \ ,\ \ {\varpi }_{1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2{\left(£ \ \ \ \ \right)}^{n-1}\ \ \left(\phi \left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)
    ○{Q}_{\phi }\left({\varpi }_{0}\ \ ,\ \ {\varpi }_{1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{2}{\left(£ \ \ \ \ \right)}^{n}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+2}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)
    ○{Q}_{\phi }\left({\varpi }_{0}\ \ ,\ \ {\varpi }_{1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{3}{\left(£ \ \ \ \ \right)}^{n+1}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+3}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)
    ○{Q}_{\phi }\left({\varpi }_{0}\ \ ,\ \ {\varpi }_{1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{4}{\left(£ \ \ \ \ \right)}^{n+2}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+3}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+3}\ \ ,\ \ {\varpi }_{n+4}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)
    ○\ \ \cdots\ \ ○
    {Q}_{\phi }\left({\varpi }_{0}\ \ ,\ \ {\varpi }_{1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{q-1}{\left(£ \ \ \ \ \right)}^{n+q-2}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+3}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\ \ \cdots\ \ \phi \left({\varpi }_{n+q-2}\ \ ,\ \ {\varpi }_{n+q-1}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)
    ○{Q}_{\phi }\left({\varpi }_{0}\ \ ,\ \ {\varpi }_{1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{q-1}{\left(£ \ \ \ \ \right)}^{n+q-1}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+3}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\ \ \cdots\ \ \phi \left({\varpi }_{n+q-1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)

    and

    \le {R}_{\phi }\left({\varpi }_{0}\ \ ,\ \ {\varpi }_{1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2{\left(£ \ \ \ \ \right)}^{n-1}\ \ \left(\phi \left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)
    ○{R}_{\phi }\left({\varpi }_{0}\ \ ,\ \ {\varpi }_{1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{2}{\left(£ \ \ \ \ \right)}^{n}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+2}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)
    ○{R}_{\phi }\left({\varpi }_{0}\ \ ,\ \ {\varpi }_{1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{3}{\left(£ \ \ \ \ \right)}^{n+1}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+3}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)
    ○{R}_{\phi }\left({\varpi }_{0}\ \ ,\ \ {\varpi }_{1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{4}{\left(£ \ \ \ \ \right)}^{n+2}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+3}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+3}\ \ ,\ \ {\varpi }_{n+4}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)
    ○\ \ \cdots\ \ ○
    {R}_{\phi }\left({\varpi }_{0}\ \ ,\ \ {\varpi }_{1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{q-1}{\left(£ \ \ \ \ \right)}^{n+q-2}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+3}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\ \ \cdots\ \ \phi \left({\varpi }_{n+q-2}\ \ ,\ \ {\varpi }_{n+q-1}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)
    ○{R}_{\phi }\left({\varpi }_{0}\ \ ,\ \ {\varpi }_{1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{q-1}{\left(£ \ \ \ \ \right)}^{n+q-1}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+3}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\ \ \cdots\ \ \phi \left({\varpi }_{n+q-1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)

    Using (1), \ \mathrm{f}\mathrm{o}\mathrm{r}\ n\to \infty, we deduce

    \underset{n\to \infty }{\mathrm{lim}}{{ P}}_{\phi }\left({\varpi }_{n}, {\varpi }_{n+q}, {\mathit{\boldsymbol{\tau }}}\right) = 1*1*\cdots *1 = 1,
    \underset{n\to \infty }{\mathrm{lim}}{Q}_{\phi }\left({\varpi }_{n}, {\varpi }_{n+q}, {\mathit{\boldsymbol{\tau }}}\right) = 0○0○\cdots ○0 = 0,
    \ \mathrm{a}\mathrm{n}\mathrm{d}\
    \underset{n\to \infty }{\mathrm{lim}}{R}_{\phi }\left({\varpi }_{n}, {\varpi }_{n+q}, {\mathit{\boldsymbol{\tau }}}\right) = 0○0○\cdots ○0 = 0

    i.e., \left\{{\varpi }_{n}\right\} is a GCS. Therefore, \left({\mathit{\boldsymbol{ \boldsymbol{\varXi} }}}, {{ P}}_{\phi }, {Q}_{\phi }, {R}_{\phi }, *, ○\right) be a G-complete CNMS, there exists \varpi \in {\mathit{\boldsymbol{ \boldsymbol{\varXi} }}}.

    Now investigate that \varpi is a FP of \xi , using \left(\mathrm{v}\right), \left(\mathrm{x}\right), \left(\mathrm{x}\mathrm{v}\right)\ \mathrm{a}\mathrm{n}\mathrm{d}\ \left(1\right), we obtain

    {{ P}}_{\phi }\left(\varpi \ \ ,\ \ \xi \varpi \ \ ,\ \ {\mathit{\boldsymbol{\tau }}}\ \ \ \ \right)\ge {{ P}}_{\phi }\left(\varpi \ \ ,\ \ {\varpi }_{n+1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\left(\phi \left(\varpi \ \ ,\ \ {\varpi }_{n+1}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)*{{ P}}_{\phi }\left({\varpi }_{n+1}\ \ ,\ \ \xi \varpi \ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\left(\phi \left({\varpi }_{n+1}\ \ ,\ \ \xi \varpi \ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)
    {{ P}}_{\phi }\left(\varpi \ \ ,\ \ \xi \varpi \ \ ,\ \ {\mathit{\boldsymbol{\tau }}}\ \ \ \ \right)\ge {{ P}}_{\phi }\left(\varpi \ \ ,\ \ {\varpi }_{n+1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\left(\phi \left(\varpi \ \ ,\ \ {\varpi }_{n+1}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)*{{ P}}_{\phi }\left({\xi \varpi }_{n}\ \ ,\ \ \xi \varpi \ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\left(\phi \left({\varpi }_{n+1}\ \ ,\ \ \xi \varpi \ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)
    {{ P}}_{\phi }\left(\varpi \ \ ,\ \ \xi \varpi \ \ ,\ \ {\mathit{\boldsymbol{\tau }}}\ \ \ \ \right)\ge {{ P}}_{\phi }\left(\varpi \ \ ,\ \ {\varpi }_{n+1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\left(\phi \left(\varpi \ \ ,\ \ {\varpi }_{n+1}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)*{{ P}}_{\phi }\left({\varpi }_{n}\ \ ,\ \ \varpi \ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2£ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ \xi \varpi \ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)\to 1*1 = 1
    \mathrm{a}\mathrm{s}\ n\to \infty \ \ ,\ \
    {Q}_{\phi }\left(\varpi \ \ ,\ \ \xi \varpi \ \ ,\ \ {\mathit{\boldsymbol{\tau }}}\ \ \ \ \right)\le {Q}_{\phi }\left(\varpi \ \ ,\ \ {\varpi }_{n+1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\left(\phi \left(\varpi \ \ ,\ \ {\varpi }_{n+1}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)○{Q}_{\phi }\left({\varpi }_{n+1}\ \ ,\ \ \xi \varpi \ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\left(\phi \left({\varpi }_{n+1}\ \ ,\ \ \xi \varpi \ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)
    {Q}_{\phi }\left(\varpi \ \ ,\ \ \xi \varpi \ \ ,\ \ {\mathit{\boldsymbol{\tau }}}\ \ \ \ \right)\le {Q}_{\phi }\left(\varpi \ \ ,\ \ {\varpi }_{n+1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\left(\phi \left(\varpi \ \ ,\ \ {\varpi }_{n+1}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)○{Q}_{\phi }\left({\xi \varpi }_{n}\ \ ,\ \ \xi \varpi \ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\left(\phi \left({\varpi }_{n+1}\ \ ,\ \ \xi \varpi \ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)
    {Q}_{\phi }\left(\varpi \ \ ,\ \ \xi \varpi \ \ ,\ \ {\mathit{\boldsymbol{\tau }}}\ \ \ \ \right)\le {Q}_{\phi }\left(\varpi \ \ ,\ \ {\varpi }_{n+1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\left(\phi \left(\varpi \ \ ,\ \ {\varpi }_{n+1}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)○{Q}_{\phi }\left({\varpi }_{n}\ \ ,\ \ \varpi \ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2£ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ \xi \varpi \ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)\to 0○0 = 0

    \mathrm{a}\mathrm{s}\ n\to \infty, and

    {R}_{\phi }\left(\varpi \ \ ,\ \ \xi \varpi \ \ ,\ \ {\mathit{\boldsymbol{\tau }}}\ \ \ \ \right)\le {R}_{\phi }\left(\varpi \ \ ,\ \ {\varpi }_{n+1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\left(\phi \left(\varpi \ \ ,\ \ {\varpi }_{n+1}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)○{R}_{\phi }\left({\varpi }_{n+1}\ \ ,\ \ \xi \varpi \ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\left(\phi \left({\varpi }_{n+1}\ \ ,\ \ \xi \varpi \ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)
    {R}_{\phi }\left(\varpi \ \ ,\ \ \xi \varpi \ \ ,\ \ {\mathit{\boldsymbol{\tau }}}\ \ \ \ \right)\le {R}_{\phi }\left(\varpi \ \ ,\ \ {\varpi }_{n+1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\left(\phi \left(\varpi \ \ ,\ \ {\varpi }_{n+1}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)○{R}_{\phi }\left({\xi \varpi }_{n}\ \ ,\ \ \xi \varpi \ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\left(\phi \left({\varpi }_{n+1}\ \ ,\ \ \xi \varpi \ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)
    {R}_{\phi }\left(\varpi \ \ ,\ \ \xi \varpi \ \ ,\ \ {\mathit{\boldsymbol{\tau }}}\ \ \ \ \right)\le {R}_{\phi }\left(\varpi \ \ ,\ \ {\varpi }_{n+1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\left(\phi \left(\varpi \ \ ,\ \ {\varpi }_{n+1}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)○{R}_{\phi }\left({\varpi }_{n}\ \ ,\ \ \varpi \ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2£ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ \xi \varpi \ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)\to 0○0 = 0

    \mathrm{a}\mathrm{s}\ n\to \infty. This implies that \xi \varpi = \varpi, a FP. Now we show the uniqueness, suppose \xi c = c for some c\in {\mathit{\boldsymbol{ \boldsymbol{\varXi} }}} , then

    1\ge {{ P}}_{\phi }\left(c, \varpi , {\mathit{\boldsymbol{\tau }}}\right) = {{ P}}_{\phi }\left(\xi c, \xi \varpi , {\mathit{\boldsymbol{\tau }}}\right)\ge {{ P}}_{\phi }\left(c, \varpi , \frac{{\mathit{\boldsymbol{\tau }}}}{£ }\right) = {{ P}}_{\phi }\left(\xi c, \xi \varpi , \frac{{\mathit{\boldsymbol{\tau }}}}{£ }\right)
    \ge {{ P}}_{\phi }\left(c, \varpi , \frac{{\mathit{\boldsymbol{\tau }}}}{{£ }^{2}}\right)\ge \cdots \ge {{ P}}_{\phi }\left(c, \varpi , \frac{{\mathit{\boldsymbol{\tau }}}}{{£ }^{n}}\right)\to 1\ \mathrm{a}\mathrm{s}\ n\to \infty ,
    0\le {Q}_{\phi }\left(c, \varpi , {\mathit{\boldsymbol{\tau }}}\right) = {Q}_{\phi }\left(\xi c, \xi \varpi , {\mathit{\boldsymbol{\tau }}}\right)\le {Q}_{\phi }\left(c, \varpi , \frac{{\mathit{\boldsymbol{\tau }}}}{£ }\right) = {Q}_{\phi }\left(\xi c, \xi \varpi , \frac{{\mathit{\boldsymbol{\tau }}}}{£ }\right)
    \le {Q}_{\phi }\left(c, \varpi , \frac{{\mathit{\boldsymbol{\tau }}}}{{£ }^{2}}\right)\le \cdots \le {Q}_{\phi }\left(c, \varpi , \frac{{\mathit{\boldsymbol{\tau }}}}{{£ }^{n}}\right)\to 0\ \mathrm{a}\mathrm{s}\ n\to \infty ,

    and

    0\le {R}_{\phi }\left(c, \varpi , {\mathit{\boldsymbol{\tau }}}\right) = {R}_{\phi }\left(\xi c, \xi \varpi , {\mathit{\boldsymbol{\tau }}}\right)\le {R}_{\phi }\left(c, \varpi , \frac{{\mathit{\boldsymbol{\tau }}}}{£ }\right) = {R}_{\phi }\left(\xi c, \xi \varpi , \frac{{\mathit{\boldsymbol{\tau }}}}{£ }\right)
    \le {R}_{\phi }\left(c, \varpi , \frac{{\mathit{\boldsymbol{\tau }}}}{{£ }^{2}}\right)\le \cdots \le {R}_{\phi }\left(c, \varpi , \frac{{\mathit{\boldsymbol{\tau }}}}{{£ }^{n}}\right)\to 0\ \mathrm{a}\mathrm{s}\ n\to \infty ,

    by using \left(\mathrm{i}\mathrm{i}\mathrm{i}\right), \left(\mathrm{v}\mathrm{i}\mathrm{i}\mathrm{i}\right)\ \mathrm{a}\mathrm{n}\mathrm{d}\ \left(\mathrm{x}\mathrm{i}\mathrm{i}\right), \varpi = c.

    Definition 3.4. Let \left({\mathit{\boldsymbol{ \boldsymbol{\varXi} }}}, {{ P}}_{\phi }, {Q}_{\phi }, {R}_{\phi }, *, ○\right) be a CNMLS. A map \xi :{\mathit{\boldsymbol{ \boldsymbol{\varXi} }}}\to {\mathit{\boldsymbol{ \boldsymbol{\varXi} }}} is CNL-contraction if there exists 0 < £ < 1 , such that

    \frac{1}{{{ P}}_{\phi }\left(\xi \varpi \ \ ,\ \ \xi \nu \ \ ,\ \ {\mathit{\boldsymbol{\tau }}}\right)}-1\le £ \left[\frac{1}{{{ P}}_{\phi }\left(\varpi \ \ ,\ \ \nu \ \ ,\ \ {\mathit{\boldsymbol{\tau }}}\right)}-1\right] (5)

    and

    {Q}_{\phi }\left(\xi \varpi , \xi \nu , {\mathit{\boldsymbol{\tau }}}\right)\le £ {Q}_{\phi }\left(\varpi , \nu , {\mathit{\boldsymbol{\tau }}}\right), {R}_{\phi }\left(\xi \varpi , \xi \nu , {\mathit{\boldsymbol{\tau }}}\right)\le £ {R}_{\phi }\left(\varpi , \nu , {\mathit{\boldsymbol{\tau }}}\right) (6)

    for all \varpi, \nu \in {\mathit{\boldsymbol{ \boldsymbol{\varXi} }}}\ \mathrm{a}\mathrm{n}\mathrm{d}\ {\mathit{\boldsymbol{\tau }}} > 0.

    Theorem 3.2. Let \left({\mathit{\boldsymbol{ \boldsymbol{\varXi} }}}, {{ P}}_{\phi }, {Q}_{\phi }, {R}_{\phi }, *, ○\right) be a G-complete CNMLS with \phi :{\mathit{\boldsymbol{ \boldsymbol{\varXi} }}}\times {\mathit{\boldsymbol{ \boldsymbol{\varXi} }}}\to \left[1, \infty \right) and suppose that

    \underset{{\mathit{\boldsymbol{\tau }}}\to \infty }{\mathrm{lim}}{{ P}}_{\phi }\left(\varpi , \nu , {\mathit{\boldsymbol{\tau }}}\right) = 1, \underset{{\mathit{\boldsymbol{\tau }}}\to \infty }{\mathrm{lim}}{Q}_{\phi }\left(\varpi , \nu , {\mathit{\boldsymbol{\tau }}}\right) = 0\ \mathrm{a}\mathrm{n}\mathrm{d}\ \underset{{\mathit{\boldsymbol{\tau }}}\to \infty }{\mathrm{lim}}{R}_{\phi }\left(\varpi , \nu , {\mathit{\boldsymbol{\tau }}}\right) = 0 (7)

    for all \varpi, \nu \in {\mathit{\boldsymbol{ \boldsymbol{\varXi} }}} and {\mathit{\boldsymbol{\tau }}} > 0 . Let \xi :{\mathit{\boldsymbol{ \boldsymbol{\varXi} }}}\to {\mathit{\boldsymbol{ \boldsymbol{\varXi} }}} be a CN-contraction. Further, assume that for an arbitrary {\varpi }_{0}\in {\mathit{\boldsymbol{ \boldsymbol{\varXi} }}}, \ \mathrm{a}\mathrm{n}\mathrm{d}\ n, q\in \mathbb{N}, where {\varpi }_{n} = {\xi }^{n}{\varpi }_{0} = \xi {\varpi }_{n-1} also \underset{n\to \infty }{\mathrm{lim}}\phi \left({\varpi }_{n}, \nu \right) and \underset{n\to \infty }{\mathrm{lim}}\phi \left(\nu, {\varpi }_{n}\right) exists and finite. Then \xi has a unique FP.

    Proof. Suppose {\varpi }_{0} be an arbitrary point of {\mathit{\boldsymbol{ \boldsymbol{\varXi} }}} and define a sequence {\varpi }_{n} by {\varpi }_{n} = {\xi }^{n}{\varpi }_{0} = \xi {\varpi }_{n-1} , n\in \mathbb{N}. By utilizing \left(5\right) and \left(6\right) for all {\mathit{\boldsymbol{\tau }}} > 0, n > q, we get

    \frac{1}{{{ P}}_{\phi }\left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ ,\ \ {\mathit{\boldsymbol{\tau }}}\ \ \ \ \right)}-1 = \frac{1}{{{ P}}_{\phi }\left({\xi \varpi }_{n-1}\ \ ,\ \ {\varpi }_{n}\ \ ,\ \ {\mathit{\boldsymbol{\tau }}}\ \ \ \ \right)}-1
    \le £ \left[\frac{1}{{{ P}}_{\phi }\left({\varpi }_{n-1}\ \ ,\ \ {\varpi }_{n}\ \ ,\ \ {\mathit{\boldsymbol{\tau }}}\ \ \ \ \right)}-1\right] = \frac{£ }{{{ P}}_{\phi }\left({\varpi }_{n-1}\ \ ,\ \ {\varpi }_{n}\ \ ,\ \ {\mathit{\boldsymbol{\tau }}}\ \ \ \ \right)}-£
    \Rightarrow \frac{1}{{{ P}}_{\phi }\left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ ,\ \ {\mathit{\boldsymbol{\tau }}}\ \ \ \ \right)}\le \frac{£ }{{{ P}}_{\phi }\left({\varpi }_{n-1}\ \ ,\ \ {\varpi }_{n}\ \ ,\ \ {\mathit{\boldsymbol{\tau }}}\ \ \ \ \right)}+\left(1-£ \ \ \ \ \right)
    \le \frac{{£ }^{2}}{{{ P}}_{\phi }\left({\varpi }_{n-2}\ \ ,\ \ {\varpi }_{n-1}\ \ ,\ \ {\mathit{\boldsymbol{\tau }}}\ \ \ \ \right)}+£ \left(1-£ \ \ \ \ \right)+\left(1-£ \ \ \ \ \right)

    Continuing in this way, we get

    \frac{1}{{{ P}}_{\phi }\left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ ,\ \ {\mathit{\boldsymbol{\tau }}}\ \ \ \ \right)}\le \frac{{£ }^{n}}{{{ P}}_{\phi }\left({\varpi }_{\ 0}\ \ ,\ \ {\varpi }_{\ 1}\ \ ,\ \ {\mathit{\boldsymbol{\tau }}}\ \ \ \ \right)}+{£ }^{n-1}\left(1-£ \right)+{£ }^{n-2}\left(1-£ \right)+\cdots +£ \left(1-£ \right)+\left(1-£\right)
    \le \frac{{£ }^{n}}{{{ P}}_{\phi }\left({\varpi }_{0}\ \ ,\ \ {\varpi }_{1}\ \ ,\ \ {\mathit{\boldsymbol{\tau }}}\ \ \ \ \right)}+\left({£ }^{n-1}+{£ }^{n-2}+\cdots +1\right)\left(1-£ \ \ \ \ \right)\le \frac{{£ }^{n}}{{{ P}}_{\phi }\left({\varpi }_{0}\ \ ,\ \ {\varpi }_{1}\ \ ,\ \ {\mathit{\boldsymbol{\tau }}}\ \ \ \ \right)}+\left(1-{£ }^{n}\right)

    We obtain

    \frac{1}{\frac{{£ }^{n}}{{{ P}}_{\phi }\left({\varpi }_{\ 0}\ \ ,\ \ {\varpi }_{\ 1}\ \ ,\ \ {\mathit{\boldsymbol{\tau }}}\ \ \ \ \right)}+\left(1-{£ }^{n}\ \ \ \ \right)}\le {{ P}}_{\phi }\left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ ,\ \ {\mathit{\boldsymbol{\tau }}}\ \ \ \ \right) (8)

    and

    \begin{array}{*{20}{c}} {{Q}_{\phi }\left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ ,\ \ {\mathit{\boldsymbol{\tau }}}\ \ \ \ \right) = {Q}_{\phi }\left(\xi {\varpi }_{n-1}\ \ ,\ \ {\varpi }_{n}\ \ ,\ \ {\mathit{\boldsymbol{\tau }}}\ \ \ \ \right)\le £ {Q}_{\phi }\left({\varpi }_{n-1}\ \ ,\ \ {\varpi }_{n}\ \ ,\ \ {\mathit{\boldsymbol{\tau }}}\ \ \ \ \right) = {Q}_{\phi }\left(\xi {\varpi }_{n-2}\ \ ,\ \ {\varpi }_{n-1}\ \ ,\ \ {\mathit{\boldsymbol{\tau }}}\ \ \ \ \right) }\\ {\le {£ }^{2}{Q}_{\phi }\left({\varpi }_{n-2}\ \ ,\ \ {\varpi }_{n-1}\ \ ,\ \ {\mathit{\boldsymbol{\tau }}}\ \ \ \ \right)\le \cdots \le {£ }^{n}{Q}_{\phi }\left({\varpi }_{0}\ \ ,\ \ {\varpi }_{1}\ \ ,\ \ {\mathit{\boldsymbol{\tau }}}\ \ \ \ \right)} \end{array} (9)
    \begin{array}{*{20}{c}} { {R}_{\phi }\left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ ,\ \ {\mathit{\boldsymbol{\tau }}}\ \ \ \ \right) = {R}_{\phi }\left(\xi {\varpi }_{n-1}\ \ ,\ \ {\varpi }_{n}\ \ ,\ \ {\mathit{\boldsymbol{\tau }}}\ \ \ \ \right)\le £ {R}_{\phi }\left({\varpi }_{n-1}\ \ ,\ \ {\varpi }_{n}\ \ ,\ \ {\mathit{\boldsymbol{\tau }}}\ \ \ \ \right) = {R}_{\phi }\left(\xi {\varpi }_{n-2}\ \ ,\ \ {\varpi }_{n-1}\ \ ,\ \ {\mathit{\boldsymbol{\tau }}}\ \ \ \ \right)}\\ {\le {£ }^{2}{R}_{\phi }\left({\varpi }_{n-2}\ \ ,\ \ {\varpi }_{n-1}\ \ ,\ \ {\mathit{\boldsymbol{\tau }}}\ \ \ \ \right)\le \cdots \le {£ }^{n}{R}_{\phi }\left({\varpi }_{0}\ \ ,\ \ {\varpi }_{1}\ \ ,\ \ {\mathit{\boldsymbol{\tau }}}\ \ \ \ \right)} \end{array} (10)

    for any q\in \mathbb{N}, \mathrm{u}\mathrm{s}\mathrm{i}\mathrm{n}\mathrm{g}\left(\mathrm{v}\right), \left(\mathrm{x}\right)\ \mathrm{a}\mathrm{n}\mathrm{d}\ \left(\mathrm{x}\mathrm{v}\right) , we deduce

    {{ P}}_{\phi }\left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+q}\ \ ,\ \ {\mathit{\boldsymbol{\tau }}}\ \ \ \ \right)\ge {{ P}}_{\phi }\left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\left(\phi \left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)*{{ P}}_{\phi }\left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)
    \ge {{ P}}_{\phi }\left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\left(\phi \left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)*{{ P}}_{\phi }\left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+2}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{2}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+2}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)
    *{{ P}}_{\phi }\left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{2}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)
    \ge {{ P}}_{\phi }\left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\left(\phi \left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)*{{ P}}_{\phi }\left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+2}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{2}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+2}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)
    *{{ P}}_{\phi }\left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+3}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{3}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+3}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)
    *{{ P}}_{\phi }\left({\varpi }_{n+3}\ \ ,\ \ {\varpi }_{n+q}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{3}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+3}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)
    \ge {{ P}}_{\phi }\left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\left(\phi \left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)*{{ P}}_{\phi }\left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+2}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{2}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+2}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)
    *{{ P}}_{\phi }\left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+3}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{3}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+3}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)
    *{{ P}}_{\phi }\left({\varpi }_{n+3}\ \ ,\ \ {\varpi }_{n+4}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{4}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+3}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+3}\ \ ,\ \ {\varpi }_{n+4}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)*\ \ \cdots\ \ *
    {{ P}}_{\phi }\left({\varpi }_{n+q-2}\ \ ,\ \ {\varpi }_{n+q-1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{q-1}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+3}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\ \ \cdots\ \ \phi \left({\varpi }_{n+q-2}\ \ ,\ \ {\varpi }_{n+q-1}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)
    *{{ P}}_{\phi }\left({\varpi }_{n+q-1}\ \ ,\ \ {\varpi }_{n+q}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{q-1}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+3}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\ \ \cdots\ \ \phi \left({\varpi }_{n+q-1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)

    and

    {Q}_{\phi }\left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+q}\ \ ,\ \ {\mathit{\boldsymbol{\tau }}}\ \ \ \ \right)\le {Q}_{\phi }\left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\left(\phi \left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)○{Q}_{\phi }\left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)
    \le {Q}_{\phi }\left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\left(\phi \left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)○{Q}_{\phi }\left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+2}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{2}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+2}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)
    ○{Q}_{\phi }\left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{2}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)
    \le {Q}_{\phi }\left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\left(\phi \left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)○{Q}_{\phi }\left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+2}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{2}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+2}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)
    ○{Q}_{\phi }\left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+3}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{3}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+3}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)
    ○{Q}_{\phi }\left({\varpi }_{n+3}\ \ ,\ \ {\varpi }_{n+q}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{3}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+3}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)
    \le {Q}_{\phi }\left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\left(\phi \left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)○{Q}_{\phi }\left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+2}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{2}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+2}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)
    ○{Q}_{\phi }\left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+3}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{3}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+3}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)
    ○{Q}_{\phi }\left({\varpi }_{n+3}\ \ ,\ \ {\varpi }_{n+4}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{4}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+3}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+3}\ \ ,\ \ {\varpi }_{n+4}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)○\ \ \cdots\ \ ○
    {Q}_{\phi }\left({\varpi }_{n+q-2}\ \ ,\ \ {\varpi }_{n+q-1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{q-1}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+3}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\ \ \cdots\ \ \phi \left({\varpi }_{n+q-2}\ \ ,\ \ {\varpi }_{n+q-1}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)
    ○{Q}_{\phi }\left({\varpi }_{n+q-1}\ \ ,\ \ {\varpi }_{n+q}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{q-1}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+3}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\ \ \cdots\ \ \phi \left({\varpi }_{n+q-1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)\ \ ,\ \
    {R}_{\phi }\left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+q}\ \ ,\ \ {\mathit{\boldsymbol{\tau }}}\ \ \ \ \right)\le {R}_{\phi }\left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\left(\phi \left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)○{R}_{\phi }\left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)
    \le {R}_{\phi }\left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\left(\phi \left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)○{R}_{\phi }\left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+2}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{2}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+2}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)
    ○{R}_{\phi }\left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{2}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)
    \le {R}_{\phi }\left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\left(\phi \left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)○{R}_{\phi }\left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+2}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{2}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+2}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)
    ○{R}_{\phi }\left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+3}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{3}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+3}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)
    ○{R}_{\phi }\left({\varpi }_{n+3}\ \ ,\ \ {\varpi }_{n+q}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{3}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+3}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)
    \le {R}_{\phi }\left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\left(\phi \left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)○{R}_{\phi }\left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+2}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{2}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+2}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)
    ○{R}_{\phi }\left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+3}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{3}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+3}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)
    ○{R}_{\phi }\left({\varpi }_{n+3}\ \ ,\ \ {\varpi }_{n+4}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{4}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+3}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+3}\ \ ,\ \ {\varpi }_{n+4}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)○\ \ \cdots\ \ ○
    {R}_{\phi }\left({\varpi }_{n+q-2}\ \ ,\ \ {\varpi }_{n+q-1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{q-1}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+3}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\ \ \cdots\ \ \phi \left({\varpi }_{n+q-2}\ \ ,\ \ {\varpi }_{n+q-1}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)
    ○{R}_{\phi }\left({\varpi }_{n+q-1}\ \ ,\ \ {\varpi }_{n+q}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{q-1}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+3}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\ \ \cdots\ \ \phi \left({\varpi }_{n+q-1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)
    {{ P}}_{\phi }\left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+q}\ \ ,\ \ {\mathit{\boldsymbol{\tau }}}\ \ \ \ \right)
    \ge \frac{1}{\frac{{£ }^{n}}{{{ P}}_{\phi }\left({\varpi }_{0}\ \ ,\ \ {\varpi }_{1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\left(\phi \left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)}+\left(1-{£ }^{n}\ \ \ \ \right)}
    *\frac{1}{\frac{{£ }^{n+1}}{{{ P}}_{\phi }\left({\varpi }_{0}\ \ ,\ \ {\varpi }_{1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{2}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+2}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)}+\left(1-{£ }^{n+1}\ \ \ \ \right)}
    *\frac{1}{\frac{{£ }^{n+2}}{{{ P}}_{\phi }\left({\varpi }_{0}\ \ ,\ \ {\varpi }_{1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{3}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+3}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)}+\left(1-{£ }^{n+2}\ \ \ \ \right)}*\ \ \cdots\ \ *
    \frac{1}{\frac{{£ }^{n+q-2}}{{{ P}}_{\phi }\left({\varpi }_{0}\ \ ,\ \ {\varpi }_{1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{q-1}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+3}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\ \ \cdots\ \ \phi \left({\varpi }_{n+q-2}\ \ ,\ \ {\varpi }_{n+q-1}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \right)}\ \ \ \ +\left(1-{£ }^{n+q-2}\ \ \ \ \right)}
    *\frac{1}{\frac{{£ }^{n+q-1}}{{{ P}}_{\phi }\left({\varpi }_{0}\ \ ,\ \ {\varpi }_{1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{q-1}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+3}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\ \ \cdots\ \ \phi \left({\varpi }_{n+q-1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\ \ \right)}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \right)}\ \ \ \ +\left(1-{£ }^{n+q-1}\ \ \ \ \right)}

    and

    {Q}_{\phi }\left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+q}\ \ ,\ \ {\mathit{\boldsymbol{\tau }}}\ \ \ \ \right)
    \le {£ }^{n}{Q}_{\phi }\left({\varpi }_{0}\ \ ,\ \ {\varpi }_{1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\left(\phi \left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)○{£ }^{n+1}{Q}_{\phi }\left({\varpi }_{0}\ \ ,\ \ {\varpi }_{1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{2}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+2}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)
    ○{£ }^{n+2}{Q}_{\phi }\left({\varpi }_{0}\ \ ,\ \ {\varpi }_{1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{3}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+3}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)○\ \ \cdots\ \ ○
    {£ }^{n+q-2}{Q}_{\phi }\left({\varpi }_{0}\ \ ,\ \ {\varpi }_{1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{q-1}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+3}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\ \ \cdots\ \ \phi \left({\varpi }_{n+q-2}\ \ ,\ \ {\varpi }_{n+q-1}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)
    ○{£ }^{n+q-1}{Q}_{\phi }\left({\varpi }_{0}\ \ ,\ \ {\varpi }_{1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{q-1}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+3}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\ \ \cdots\ \ \phi \left({\varpi }_{n+q-1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)\ \ ,\ \
    {R}_{\phi }\left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+q}\ \ ,\ \ {\mathit{\boldsymbol{\tau }}}\ \ \ \ \right)
    \le {£ }^{n}{R}_{\phi }\left({\varpi }_{0}\ \ ,\ \ {\varpi }_{1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\left(\phi \left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)○{£ }^{n+1}{R}_{\phi }\left({\varpi }_{0}\ \ ,\ \ {\varpi }_{1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{2}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+2}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)
    ○{£ }^{n+2}{R}_{\phi }\left({\varpi }_{0}\ \ ,\ \ {\varpi }_{1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{3}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+3}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)○\ \ \cdots\ \ ○
    {£ }^{n+q-2}{R}_{\phi }\left({\varpi }_{0}\ \ ,\ \ {\varpi }_{1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{q-1}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+3}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\ \ \cdots\ \ \phi \left({\varpi }_{n+q-2}\ \ ,\ \ {\varpi }_{n+q-1}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)
    ○{£ }^{n+q-1}{R}_{\phi }\left({\varpi }_{0}\ \ ,\ \ {\varpi }_{1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{{\left(2\right)}^{q-1}\ \ \left(\phi \left({\varpi }_{n+1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+2}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\phi \left({\varpi }_{n+3}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\ \ \cdots\ \ \phi \left({\varpi }_{n+q-1}\ \ ,\ \ {\varpi }_{n+q}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)

    Therefore,

    \underset{n\to \infty }{\mathrm{lim}}{{ P}}_{\phi }\left({\varpi }_{n}, {\varpi }_{n+q}, {\mathit{\boldsymbol{\tau }}}\right) = 1*1*\cdots * = 1,
    \ \mathrm{a}\mathrm{n}\mathrm{d}\
    \underset{n\to \infty }{\mathrm{lim}}{Q}_{\phi }\left({\varpi }_{n}, {\varpi }_{n+q}, {\mathit{\boldsymbol{\tau }}}\right) = 0○0○\cdots ○0 = 0,
    \underset{n\to \infty }{\mathrm{lim}}{R}_{\phi }\left({\varpi }_{n}, {\varpi }_{n+q}, {\mathit{\boldsymbol{\tau }}}\right) = 0○0○\cdots ○0 = 0,

    i.e., \left\{{\varpi }_{n}\right\} is a GCS. Therefore, \left({\mathit{\boldsymbol{ \boldsymbol{\varXi} }}}, {{ P}}_{\phi }, {Q}_{\phi }, {R}_{\phi }, *, ○\right) be a G-complete CNMS, there exists \varpi \in {\mathit{\boldsymbol{ \boldsymbol{\varXi} }}}.

    Now, we show that \varpi is a FP of \xi , utilizing \left(\mathrm{v}\right), \left(\mathrm{x}\right)\ \mathrm{a}\mathrm{n}\mathrm{d}\ \left(\mathrm{x}\mathrm{v}\right), we get

    \frac{1}{{{ P}}_{\phi }\left({\xi \varpi }_{n}\ \ ,\ \ \xi \varpi \ \ ,\ \ {\mathit{\boldsymbol{\tau }}}\right)}-1\le £ \left[\frac{1}{{{ P}}_{\phi }\left({\varpi }_{n}\ \ ,\ \ \varpi \ \ ,\ \ {\mathit{\boldsymbol{\tau }}}\right)}-1\right] = \frac{£ }{{{ P}}_{\phi }\left({\varpi }_{n}\ \ ,\ \ \varpi \ \ ,\ \ {\mathit{\boldsymbol{\tau }}}\right)}-£
    \Rightarrow \frac{1}{\frac{£ }{{{ P}}_{\phi }\left({\varpi }_{n}\ \ ,\ \ \varpi \ \ ,\ \ {\mathit{\boldsymbol{\tau }}}\right)}\ \ \ +\left(1-£ \right)}\le {{ P}}_{\phi }\left({\xi \varpi }_{n}\ \ ,\ \ \xi \varpi \ \ ,\ \ {\mathit{\boldsymbol{\tau }}}\right)

    Using above inequality, we obtain

    {{ P}}_{\phi }\left(\varpi \ \ ,\ \ \xi \varpi \ \ ,\ \ {\mathit{\boldsymbol{\tau }}}\ \ \ \ \right)\ge {{ P}}_{\phi }\left(\varpi \ \ ,\ \ {\varpi }_{n+1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\phi \left(\varpi \ \ ,\ \ {\varpi }_{n+1}\ \ \ \ \right)}\ \ \ \ \right)*{{ P}}_{\phi }\left({\varpi }_{n+1}\ \ ,\ \ \xi \varpi \ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\phi \left({\varpi }_{n+1}\ \ ,\ \ \xi \varpi \ \ \ \ \right)}\ \ \ \ \right)
    \ge {{ P}}_{\phi }\left(\varpi \ \ ,\ \ {\varpi }_{n+1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\phi \left(\varpi \ \ ,\ \ {\varpi }_{n+1}\ \ \ \ \right)}\ \ \ \ \right)*{{ P}}_{\phi }\left(\xi {\varpi }_{n}\ \ ,\ \ \xi \varpi \ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\phi \left({\varpi }_{n+1}\ \ ,\ \ \xi \varpi \ \ \ \ \right)}\ \ \ \ \right)
    \ge {{ P}}_{\phi }\left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\phi \left(2\phi \left(\varpi \ \ ,\ \ {\varpi }_{n+1}\ \ \ \ \right)\ \ \ \ \right)}\ \ \ \ \right)*\frac{1}{\frac{£ }{{{ P}}_{\phi }\left({\varpi }_{n}\ \ ,\ \ \varpi \ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\phi \left({\varpi }_{n+1}\ \ ,\ \ \xi \varpi \ \ \ \ \right)}\ \ \ \ \right)+\left(1-£ \ \ \ \ \right)}}\to 1*1 = 1

    \mathrm{a}\mathrm{s}\ n\to \infty , and

    {Q}_{\phi }\left(\varpi \ \ ,\ \ \xi \varpi \ \ ,\ \ {\mathit{\boldsymbol{\tau }}}\ \ \ \ \right)\le {{ P}}_{\phi }\left(\varpi \ \ ,\ \ {\varpi }_{n+1}\ \ ,\ \ \frac{\tau }{2\phi \left(\varpi \ \ ,\ \ {\varpi }_{n+1}\ \ \ \ \right)}\ \ \ \ \right)○{Q}_{\phi }\left({\varpi }_{n+1}\ \ ,\ \ \xi \varpi \ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\phi \left({\varpi }_{n+1}\ \ ,\ \ \xi \varpi \ \ \ \ \right)}\ \ \ \ \right)
    \le {Q}_{\phi }\left(\varpi \ \ ,\ \ {\varpi }_{n+1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\phi \left(\varpi \ \ ,\ \ {\varpi }_{n+1}\ \ \ \ \right)}\ \ \ \ \right)○{Q}_{\phi }\left({\xi \varpi }_{n}\ \ ,\ \ \xi \varpi \ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\phi \left({\varpi }_{n+1}\ \ ,\ \ \xi \varpi \ \ \ \ \right)}\ \ \ \ \right)
    \le {Q}_{\phi }\left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\phi \left(\varpi \ \ ,\ \ {\varpi }_{n+1}\ \ \ \ \right)}\ \ \ \ \right)○£ {Q}_{\phi }\left({\varpi }_{n}\ \ ,\ \ \varpi \ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\phi \left({\varpi }_{n+1}\ \ ,\ \ \xi \varpi \ \ \ \ \right)}\ \ \ \ \right)\to 0○0 = 0\ \mathrm{a}\mathrm{s}\ n\to \infty \ \ ,\ \
    {R}_{\phi }\left(\varpi \ \ ,\ \ \xi \varpi \ \ ,\ \ {\mathit{\boldsymbol{\tau }}}\ \ \ \ \right)\le {R}_{\phi }\left(\varpi \ \ ,\ \ {\varpi }_{n+1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\phi \left(\varpi \ \ ,\ \ {\varpi }_{n+1}\ \ \ \ \right)}\ \ \ \ \right)○{R}_{\phi }\left({\varpi }_{n+1}\ \ ,\ \ \xi \varpi \ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\phi \left({\varpi }_{n+1}\ \ ,\ \ \xi \varpi \ \ \ \ \right)}\ \ \ \ \right)
    \le {R}_{\phi }\left(\varpi \ \ ,\ \ {\varpi }_{n+1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\phi \left(\varpi \ \ ,\ \ {\varpi }_{n+1}\ \ \ \ \right)}\ \ \ \ \right)○{R}_{\phi }\left({\xi \varpi }_{n}\ \ ,\ \ \xi \varpi \ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\phi \left({\varpi }_{n+1}\ \ ,\ \ \xi \varpi \ \ \ \ \right)}\ \ \ \ \right)
    \le {R}_{\phi }\left({\varpi }_{n}\ \ ,\ \ {\varpi }_{n+1}\ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\phi \left(\varpi \ \ ,\ \ {\varpi }_{n+1}\ \ \ \ \right)}\ \ \ \ \right)○£ {R}_{\phi }\left({\varpi }_{n}\ \ ,\ \ \varpi \ \ ,\ \ \frac{{\mathit{\boldsymbol{\tau }}}}{2\phi \left({\varpi }_{n+1}\ \ ,\ \ \xi \varpi \ \ \ \ \right)}\ \ \ \ \right)\to 0○0 = 0\ \mathrm{a}\mathrm{s}\ n\to \infty .

    Hence, \xi \varpi = \varpi, a FP.

    Uniqueness: Assume \xi c = c for some c\in \Xi , then

    \frac{1}{{{ P}}_{\phi }\left(\varpi \ \ ,\ \ c\ \ ,\ \ {\mathit{\boldsymbol{\tau }}}\ \ \ \ \right)}-1 = \frac{1}{{{ P}}_{\phi }\left(\xi \varpi \ \ ,\ \ \xi c\ \ ,\ \ {\mathit{\boldsymbol{\tau }}}\ \ \ \ \right)}-1
    \le £ \left[\frac{1}{{{ P}}_{\phi }\left(\varpi \ \ ,\ \ c\ \ ,\ \ {\mathit{\boldsymbol{\tau }}}\ \ \ \ \right)}-1\right] < \frac{1}{{{ P}}_{\phi }\left(\varpi \ \ ,\ \ c\ \ ,\ \ {\mathit{\boldsymbol{\tau }}}\ \ \ \ \right)}-1

    a contradiction, and

    {Q}_{\phi }\left(\varpi , c, {\mathit{\boldsymbol{\tau }}}\right) = {Q}_{\phi }\left(\xi \varpi , \xi c, {\mathit{\boldsymbol{\tau }}}\right)\le £ {Q}_{\phi }\left(\varpi , c, {\mathit{\boldsymbol{\tau }}}\right) < {Q}_{\phi }\left(\varpi , c, {\mathit{\boldsymbol{\tau }}}\right),
    {R}_{\phi }\left(\varpi , c, {\mathit{\boldsymbol{\tau }}}\right) = {R}_{\phi }\left(\xi \varpi , \xi c, {\mathit{\boldsymbol{\tau }}}\right)\le £ {R}_{\phi }\left(\varpi , c, {\mathit{\boldsymbol{\tau }}}\right) < {R}_{\phi }\left(\varpi , c, {\mathit{\boldsymbol{\tau }}}\right),

    are contradictions.

    Therefore, we must have {{ P}}_{\phi }\left(\varpi, c, {\mathit{\boldsymbol{\tau }}}\right) = 1, {Q}_{\phi }\left(\varpi, c, {\mathit{\boldsymbol{\tau }}}\right) = 0\ \mathrm{a}\mathrm{n}\mathrm{d}\ {R}_{\phi }\left(\varpi, c, {\mathit{\boldsymbol{\tau }}}\right) = 0 , that is \varpi = c.

    Example 3.3. Suppose {\mathit{\boldsymbol{ \boldsymbol{\varXi} }}} = \left[\mathrm{0, 1}\right] . Define 𝜙 by

    \phi \left(\varpi , \nu \right) = \left\{\begin{array}{c}\ \ \ 1\ \ \ \ \ {\rm{if}}\ \varpi = \nu , \\ \frac{1+\mathrm{max}\left\{\varpi , \nu \right\}}{\mathrm{min}\left\{\varpi , \nu \right\}}\ {\rm{if}}\ \varpi \ne \nu \ne 0.\end{array}\right.

    Also, define

    {{ P}}_{\phi }\left(\varpi \ \ ,\ \ \nu \ \ ,\ \ {\mathit{\boldsymbol{\tau }}}\right) = \frac{{\mathit{\boldsymbol{\tau }}}}{{\mathit{\boldsymbol{\tau }}}+\mathrm{max}\left\{\varpi \ \ ,\ \ \nu \right\}}
    {Q}_{\phi }\left(\varpi \ \ ,\ \ \nu \ \ ,\ \ {\mathit{\boldsymbol{\tau }}}\right) = \frac{\mathrm{max}\left\{\varpi \ \ ,\ \ \nu \right\}}{{\mathit{\boldsymbol{\tau }}}+\mathrm{max}\left\{\varpi \ \ ,\ \ \nu \right\}}\ \ ,\ \

    and

    {R}_{\phi }\left(\varpi , \nu , {\mathit{\boldsymbol{\tau }}}\right) = \frac{\mathrm{max}\left\{\varpi , \nu \right\}}{{\mathit{\boldsymbol{\tau }}}},

    with 𝛶*\varrho = 𝛶.\varrho \ \mathrm{a}\mathrm{n}\mathrm{d}\ 𝛶○\varrho = \mathrm{max}\left\{𝛶, \varrho \right\}. Then \left({\mathit{\boldsymbol{ \boldsymbol{\varXi} }}}, {{ P}}_{\phi }, {Q}_{\phi }, {R}_{\phi }, *, ○\right) is a G-complete CNMLS. Observe that \underset{{\mathit{\boldsymbol{\tau }}}\to \infty }{\mathrm{lim}}{{ P}}_{\phi }\left(\varpi, \nu, {\mathit{\boldsymbol{\tau }}}\right) = 1, \underset{{\mathit{\boldsymbol{\tau }}}\to \infty }{\mathrm{lim}}{Q}_{\phi }\left(\varpi, \nu, {\mathit{\boldsymbol{\tau }}}\right) = 0\ \mathrm{a}\mathrm{n}\mathrm{d}\ \underset{{\mathit{\boldsymbol{\tau }}}\to \infty }{\mathrm{lim}}{R}_{\phi }\left(\varpi, \nu, {\mathit{\boldsymbol{\tau }}}\right) = 0, satisfied. Define \xi :{\mathit{\boldsymbol{ \boldsymbol{\varXi} }}}\to {\mathit{\boldsymbol{ \boldsymbol{\varXi} }}} by

    \xi \left(\varpi \right) = \frac{\varpi }{9}

    Then,

    {{ P}}_{\phi }\left(\xi \varpi , \xi \nu , £ {\mathit{\boldsymbol{\tau }}}\right)\ge {{ P}}_{\phi }\left(\varpi , \nu , {\mathit{\boldsymbol{\tau }}}\right),
    {Q}_{\phi }\left(\xi \varpi , \xi \nu , £ {\mathit{\boldsymbol{\tau }}}\right)\le {Q}_{\phi }\left(\varpi , \nu , {\mathit{\boldsymbol{\tau }}}\right)\ \mathrm{a}\mathrm{n}\mathrm{d}\ {R}_{\phi }\left(\xi \varpi , \xi \nu , £ {\mathit{\boldsymbol{\tau }}}\right)\le {R}_{\phi }\left(\varpi , \nu , {\mathit{\boldsymbol{\tau }}}\right)

    are satisfied for £ \in \left[\frac{1}{2}, 1\right) , as we can see that Figure 1 shows that {{ P}}_{\phi }\left(\xi \varpi, \xi \nu, £ {\mathit{\boldsymbol{\tau }}}\right)\ge {{ P}}_{\phi }\left(\varpi, \nu, {\mathit{\boldsymbol{\tau }}}\right), Figure 2 shows that {Q}_{\phi }\left(\xi \varpi, \xi \nu, £ {\mathit{\boldsymbol{\tau }}}\right)\le {Q}_{\phi }\left(\varpi, \nu, {\mathit{\boldsymbol{\tau }}}\right) and Figure 3 shows that {R}_{\phi }\left(\xi \varpi, \xi \nu, £ {\mathit{\boldsymbol{\tau }}}\right)\le {R}_{\phi }\left(\varpi, \nu, {\mathit{\boldsymbol{\tau }}}\right).

    Figure 1.  Shows the graphical behavior of {{ P}}_{\phi }\left(\xi \varpi, \xi \nu, £ {\mathit{\boldsymbol{\tau }}}\right)\ge {{ P}}_{\phi }\left(\varpi, \nu, {\mathit{\boldsymbol{\tau }}}\right), when {\mathit{\boldsymbol{\tau }}} = 10 and £ = 0.5.
    Figure 2.  Shows the graphical behavior of {Q}_{\phi }\left(\xi \varpi, \xi \nu, £ {\mathit{\boldsymbol{\tau }}}\right)\le {Q}_{\phi }\left(\varpi, \nu, {\mathit{\boldsymbol{\tau }}}\right), when {\mathit{\boldsymbol{\tau }}} = 10 and £ = 0.5.
    Figure 3.  Shows the graphical behavior of {R}_{\phi }\left(\xi \varpi, \xi \nu, £ {\mathit{\boldsymbol{\tau }}}\right)\le {R}_{\phi }\left(\varpi, \nu, {\mathit{\boldsymbol{\tau }}}\right), when {\mathit{\boldsymbol{\tau }}} = 10 and £ = 0.5.

    Also,

    \begin{array}{*{20}{c}} {\frac{1}{{{ P}}_{\phi }\left(\xi \varpi, \xi \nu, {\mathit{\boldsymbol{\tau }}}\right)}-1\le £ \left[\frac{1}{{{ P}}_{\phi }\left(\varpi, \nu, {\mathit{\boldsymbol{\tau }}}\right)}-1\right] \ {\rm{and}}}\\ {{Q}_{\phi }\left(\xi \varpi , \xi \nu , {\mathit{\boldsymbol{\tau }}}\right)\le £ {Q}_{\phi }\left(\varpi , \nu , {\mathit{\boldsymbol{\tau }}}\right), \ \mathrm{a}\mathrm{n}\mathrm{d}\ {R}_{\phi }\left(\xi \varpi , \xi \nu , {\mathit{\boldsymbol{\tau }}}\right)\le £ {R}_{\phi }\left(\varpi , \nu , {\mathit{\boldsymbol{\tau }}}\right),} \end{array}

    are satisfied for £ \in \left[\frac{1}{2}, 1\right), as we can see that Figure 4 shows that \frac{1}{{{ P}}_{\phi }\left(\xi \varpi, \xi \nu, {\mathit{\boldsymbol{\tau }}}\right)}-1\le £ \left[\frac{1}{{{ P}}_{\phi }\left(\varpi, \nu, {\mathit{\boldsymbol{\tau }}}\right)}-1\right], Figure 5 shows that {Q}_{\phi }\left(\xi \varpi, \xi \nu, {\mathit{\boldsymbol{\tau }}}\right)\le £ {Q}_{\phi }\left(\varpi, \nu, {\mathit{\boldsymbol{\tau }}}\right) and Figure 6 shows that {R}_{\phi }\left(\xi \varpi, \xi \nu, {\mathit{\boldsymbol{\tau }}}\right)\le £ {R}_{\phi }\left(\varpi, \nu, {\mathit{\boldsymbol{\tau }}}\right).

    Figure 4.  Shows the graphical behavior of \frac{1}{{{ P}}_{\phi }\left(\xi \varpi, \xi \nu, {\mathit{\boldsymbol{\tau }}}\right)}-1\le £ \left[\frac{1}{{{ P}}_{\phi }\left(\varpi, \nu, {\mathit{\boldsymbol{\tau }}}\right)}-1\right], when {\mathit{\boldsymbol{\tau }}} = 10 and £ = 0.5.
    Figure 5.  Shows the graphical behavior of {Q}_{\phi }\left(\xi \varpi, \xi \nu, {\mathit{\boldsymbol{\tau }}}\right)\le £ {Q}_{\phi }\left(\varpi, \nu, {\mathit{\boldsymbol{\tau }}}\right), when {\mathit{\boldsymbol{\tau }}} = 10 and £ = 0.5.
    Figure 6.  Shows the graphical behavior of {R}_{\phi }\left(\xi \varpi, \xi \nu, {\mathit{\boldsymbol{\tau }}}\right)\le £ {R}_{\phi }\left(\varpi, \nu, {\mathit{\boldsymbol{\tau }}}\right), when {\mathit{\boldsymbol{\tau }}} = 10 and £ = 0.5.

    We can easily see that \underset{n\to \infty }{\mathrm{lim}}\phi \left({\varpi }_{n}, \nu \right) and \underset{n\to \infty }{\mathrm{lim}}\phi \left(\nu, {\varpi }_{n}\right) exists and finite. Observe that all circumstances of Theorems 3.1 and 3.2 are fulfilled, and 0 is a unique FP of \xi as we can see in the Figure 7.

    Figure 7.  Shows that the fixed point of is 0 and is unique.

    Suppose \Xi = C(\left[{\rm{c}}, а\right], \mathbb{ }\mathbb{ }\mathbb{ }\mathbb{ }\mathbb{R}) be the set of real valued continuous functions defined on [\mathbb{{\rm{c}}}, \mathbb{ }\mathbb{а}] .

    Suppose the integral equation:

    \varpi \left(\tau \right) = \Lambda \left(\tau \right)+\delta {\int }_{{\rm{c}}}^{а}Л\left(\tau , \upsilon \right)\varpi \left(\tau \right)d\upsilon \ {\rm{for}} \ \tau , \upsilon \in \left[{\rm{c}}, а\right] (11)

    where \delta > 0, \Lambda \left(\upsilon \right) is a function of \upsilon :\upsilon \in \left[{\rm{c}}, а\right] and Л:C\left(\left[{\rm{c}}, а\right]\times \mathbb{ }\mathbb{ }\mathbb{ }\mathbb{ }\mathbb{ }\mathbb{ }\mathbb{R}\right)\to {\mathbb{R}}^{+}. Define P\ \mathrm{a}\mathrm{n}\mathrm{d}\ Q by

    P\left(\varpi \left(\tau \right), \nu \left(\tau \right), ȓ\right) = \underset{\tau \in \left[{\rm{c}}, { а }\right]}{\mathrm{sup}}\frac{ȓ}{ȓ+{\left|\varpi \left(\tau \right)-\nu \left(\tau \right)\right|}^{2}} \ {\rm{for}} \ {\rm{all}} \ \varpi , \nu \in \mathfrak{C} \ {\rm{and}} \ \mathfrak{ȓ} > 0,
    Q\left(\varpi \left(\tau \right), \nu \left(\tau \right), ȓ\right) = 1-\underset{\tau \in \left[{\rm{c}}, { а }\right]}{\mathrm{sup}}\frac{ȓ}{ȓ+{\left|\varpi \left(\tau \right)-\nu \left(\tau \right)\right|}^{2}}\ {\rm{for}}\ {\rm{all}} \ \varpi , \nu \in \mathfrak{C} \ {\rm{and}} \ \mathfrak{ȓ} > 0,

    and

    R\left(\varpi \left(\tau \right), \nu \left(\tau \right), ȓ\right) = \underset{\tau \in \left[{\rm{c}}, { а }\right]}{\mathrm{sup}}\frac{{\left|\varpi \left(\tau \right)-\nu \left(\tau \right)\right|}^{2}}{ȓ} \ {\rm{for}} \ {\rm{all}} \ \varpi , \nu \in \mathfrak{C} \ {\rm{and}}\ \mathfrak{ȓ} > 0 ,

    with continuous t-norm and continuous t-conorm define by ȇ*ā = ȇ.ā\ \mathrm{a}\mathrm{n}\mathrm{d}\ ȇ○ā = \mathrm{max}\left\{ȇ, ā\right\}. Define \xi, \mathfrak{Г}:\mathfrak{C}\times \mathfrak{C}\to \left[1, \infty \right) as

    \xi \left(\varpi , \nu \right) = \left\{\begin{array}{c}\ \ \ 1\ \ \ \ \ \ {\rm{if}}\ \varpi = \nu \\ \frac{1+\mathrm{max}\left\{\varpi , \nu \right\}}{\mathrm{min}\left\{\varpi , \nu \right\}}\ {\rm{if}}\ \varpi \ne \nu \ne 0\end{array};\right.

    Then ({\mathit{\boldsymbol{ \boldsymbol{\varXi} }}}, \mathit{\boldsymbol{P}}, \mathit{\boldsymbol{Q}}, \mathit{\boldsymbol{R}}, {*}, ○) be a complete controlled neutrosophic metric-like space.

    Suppose that

    \left|\mathrm{Л}\left(\tau, \upsilon \right)\varpi \left(\tau \right)-\mathrm{Л}\left(\tau, \upsilon \right)\nu \left(\tau \right)\right|\le \left|\varpi \left(\tau \right)-\nu \left(\tau \right)\right| for \varpi, \nu \in \mathfrak{C} , \theta \in (0, \ 1) and \forall \tau, \upsilon \in [\mathrm{{\rm{c}}}, \ \mathrm{а}] . Also, let {\mathrm{Л}\left(\tau, \upsilon \right)\left(\delta {\int }_{\mathrm{{\rm{c}}}}^{\mathrm{а}}d\upsilon \right)}^{2}\le \theta < 1. Then integral Eq (11) has a unique solution.

    Proof. Define \xi :\mathfrak{C}\to \mathfrak{C} by

    \xi \varpi \left(\tau \right) = \Lambda \left(\tau \right)+\delta {\int }_{{\rm{c}}}^{а}Л\left(\tau , \upsilon \right){\rm{c}}\left(\tau \right)d\upsilon \ {\rm{for}}\ {\rm{all}} \ \tau , \upsilon \in \left[{\rm{c}}, а\right]

    Now for all \varpi, \nu \in \mathfrak{C} , we deduce

    P\left(\xi \varpi \left(\tau \right), \xi \nu \left(\tau \right), \theta ȓ\right) = \underset{\tau \in \left[{\rm{c}}, { а }\right]}{\mathrm{sup}}\frac{\theta ȓ}{\theta ȓ+{\left|\xi \varpi \left(\tau \right)-\xi \nu \left(\tau \right)\right|}^{2}}
    = \underset{\tau \in \left[{\rm{c}}, { а }\right]}{\mathrm{sup}}\frac{\theta ȓ}{\theta ȓ+{\left|\Lambda \left(\tau \right)+\delta {\int }_{{\rm{c}}}^{а}Л\left(\tau , \upsilon \right){\rm{c}}\left(\tau \right)d\upsilon -\Lambda \left(\tau \right)-\delta {\int }_{{\rm{c}}}^{а}Л\left(\tau , \upsilon \right){\rm{c}}\left(\tau \right)d\upsilon \right|}^{2}}\\ = \underset{\tau \in \left[{\rm{c}}, { а }\right]}{\mathrm{sup}}\frac{\theta ȓ}{\theta ȓ+{\left|\delta {\int }_{{\rm{c}}}^{а}Л\left(\tau , \upsilon \right){\rm{c}}\left(\tau \right)d\upsilon -\delta {\int }_{{\rm{c}}}^{а}Л\left(\tau , \upsilon \right){\rm{c}}\left(\tau \right)d\upsilon \right|}^{2}}\\ = \underset{\tau \in \left[{\rm{c}}, { а }\right]}{\mathrm{sup}}\frac{\theta ȓ}{\theta ȓ+{\left|Л\left(\tau , \upsilon \right)\varpi \left(\tau \right)-Л\left(\tau , \upsilon \right)\nu \left(\tau \right)\right|}^{2}{\left(\delta {\int }_{{\rm{c}}}^{а}d\upsilon \right)}^{2}}\\ \ge \underset{\tau \in \left[{\rm{c}}, { а }\right]}{\mathrm{sup}}\frac{ȓ}{ȓ+{\left|\varpi \left(\tau \right)-\nu \left(\tau \right)\right|}^{2}}\\ \ge P\left(\varpi \left(\tau \right), \nu \left(\tau \right), ȓ\right),
    Q\left(\xi \varpi \left(\tau \right), \xi \nu \left(\tau \right), \theta ȓ\right) = 1-\underset{\tau \in \left[{\rm{c}}, { а }\right]}{\mathrm{sup}}\frac{\theta ȓ}{\theta ȓ+{\left|\xi \varpi \left(\tau \right)-\xi \nu \left(\tau \right)\right|}^{2}}
    = 1-\underset{\tau \in \left[{\rm{c}}, { а }\right]}{\mathrm{sup}}\frac{\theta ȓ}{\theta ȓ+{\left|\Lambda \left(\tau \right)+\delta {\int }_{{\rm{c}}}^{а}Л\left(\tau , \upsilon \right){\rm{c}}\left(\tau \right)d\upsilon -\Lambda \left(\tau \right)-\delta {\int }_{{\rm{c}}}^{а}Л\left(\tau , \upsilon \right){\rm{c}}\left(\tau \right)d\upsilon \right|}^{2}} \\ = 1-\underset{\tau \in \left[{\rm{c}}, { а }\right]}{\mathrm{sup}}\frac{\theta ȓ}{\theta ȓ+{\left|\delta {\int }_{{\rm{c}}}^{а}Л\left(\tau , \upsilon \right){\rm{c}}\left(\tau \right)d\upsilon -\delta {\int }_{{\rm{c}}}^{а}Л\left(\tau , \upsilon \right){\rm{c}}\left(\tau \right)d\upsilon \right|}^{2}}\\ = 1-\underset{\tau \in \left[{\rm{c}}, { а }\right]}{\mathrm{sup}}\frac{\theta ȓ}{\theta ȓ+{\left|Л\left(\tau , \upsilon \right)\varpi \left(\tau \right)-Л\left(\tau , \upsilon \right)\nu \left(\tau \right)\right|}^{2}{\left(\delta {\int }_{{\rm{c}}}^{а}d\upsilon \right)}^{2}}\\ \le 1-\underset{\tau \in \left[{\rm{c}}, { а }\right]}{\mathrm{sup}}\frac{ȓ}{ȓ+{\left|\varpi \left(\tau \right)-\nu \left(\tau \right)\right|}^{2}}\\ \le Q\left(\varpi \left(\tau \right), \nu \left(\tau \right), ȓ\right),

    and

    R\left(\xi \varpi \left(\tau \right), \xi \nu \left(\tau \right), \theta ȓ\right) = \underset{\tau \in \left[{\rm{c}}, { а }\right]}{\mathrm{sup}}\frac{{\left|\xi \varpi \left(\tau \right)-\xi \nu \left(\tau \right)\right|}^{2}}{\theta ȓ}
    = \underset{\tau \in \left[{\rm{c}}, { а }\right]}{\mathrm{sup}}\frac{{\left|\Lambda \left(\tau \right)+\delta {\int }_{{\rm{c}}}^{а}Л\left(\tau , \upsilon \right){\rm{c}}\left(\tau \right)d\upsilon -\Lambda \left(\tau \right)-\delta {\int }_{{\rm{c}}}^{а}Л\left(\tau , \upsilon \right){\rm{c}}\left(\tau \right)d\upsilon \right|}^{2}}{\theta ȓ} \\ = \underset{\tau \in \left[{\rm{c}}, { а }\right]}{\mathrm{sup}}\frac{{\left|\delta {\int }_{{\rm{c}}}^{а}Л\left(\tau , \upsilon \right){\rm{c}}\left(\tau \right)d\upsilon -\delta {\int }_{{\rm{c}}}^{а}Л\left(\tau , \upsilon \right){\rm{c}}\left(\tau \right)d\upsilon \right|}^{2}}{\theta ȓ} \\ = \underset{\tau \in \left[{\rm{c}}, { а }\right]}{\mathrm{sup}}\frac{{\left|Л\left(\tau , \upsilon \right)\varpi \left(\tau \right)-Л\left(\tau , \upsilon \right)\nu \left(\tau \right)\right|}^{2}{\left(\delta {\int }_{{\rm{c}}}^{а}d\upsilon \right)}^{2}}{\theta ȓ}\\ \le \underset{\tau \in \left[{\rm{c}}, { а }\right]}{\mathrm{sup}}\frac{{\left|\varpi \left(\tau \right)-\nu \left(\tau \right)\right|}^{2}}{ȓ}\\ \le R\left(\varpi \left(\tau \right), \nu \left(\tau \right), ȓ\right).

    As a result, all of the conditions of Theorem 3.1 are satisfied and operator \xi has a unique fixed point. This indicates that an integral Eq (11) has a unique solution.

    In this manuscript, we introduced the notion of controlled neutrosophic metric-like spaces as a generalization of a neutrosophic metric space and established some new type of fixed point theorems for contraction mappings in this new setting. Moreover, we provided the non-trivial examples with graphical analysis to demonstrate the viability of the proposed methods. Also, our structure is more general than the controlled fuzzy metric space and fuzzy metric like space and neutrosophic metric space. Also, our results and notions expand and generalize a number of previously published results.

    The authors declare no conflict of interest.



    [1] K. S. Miller, B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley, New York, 1993.
    [2] I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.
    [3] V. Lakshmikantham, S. Leela, D. J. Vasundhara, Theory of Fractional Dynamic Systems, Cambridge Academic Publishers, Cambridge, 2009.
    [4] A. A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations. North-Holland Mathematics Studies, Elsevier, Amsterdam, 2006.
    [5] V. Lakshmikantham, A. S. Vatsala, Basic theory of fractional differential equations, Nonlinear Anal., 69 (2008), 2677-2682. doi: 10.1016/j.na.2007.08.042
    [6] F. Mirzaee, N. Samadyar, Application of orthonormal Bernstein polynomials to construct a efficient scheme for solving fractional stochastic integro-differential equation, Optik, 132 (2017), 262-273. doi: 10.1016/j.ijleo.2016.12.029
    [7] F. Mirzaee, N. Samadyar, On the numerical method for solving a system of nonlinear fractional ordinary differential equations arising in HIV infection of CD4+T cells, Iran. J. Sci. Technol. Trans. Sci., 43 (2018), 1127-1138.
    [8] F. Mirzaee, N. Samadyar, Numerical solution of nonlinear stochastic Itô-Volterra integral equations driven by fractional Brownian motion, Math. Method. Appl. Sci., 41 (2018), 1410-1423. doi: 10.1002/mma.4671
    [9] F. Mirzaee, S. Alipour, Numerical solution of nonlinear partial quadratic integro-differential equations of fractional order via hybrid of block-pulse and parabolic functions, Numer. Meth. Part. D. E., 35 (2019), 1134-1151. doi: 10.1002/num.22342
    [10] F. Mirzaee, S. Alipour, Solving two-dimensional nonlinear quadratic integral equations of fractional order via operational matrix method, Multidiscipline Modeling in Materials and Structures, 15 (2019), 1136-1151. doi: 10.1108/MMMS-10-2018-0168
    [11] F. Mirzaee, N. Samadyar, Numerical solution of time fractional stochastic Korteweg-de Vries equation via implicit meshless approach, Iran. J. Sci. Technol. Trans. A Sci., 43 (2019), 2905-2912. doi: 10.1007/s40995-019-00763-9
    [12] F. Mirzaee, N. Samadyar, Numerical solution based on two-dimensional orthonormal Bernstein polynomials for solving some classes of two-dimensional nonlinear integral equations of fractional order, Appl. Math. Comput., 344 (2019), 191-203.
    [13] F. Mirzaee, N. Samadyar, On the numerical solution of fractional stochastic integro-differential equations via meshless discrete collocation method based on radial basis functions, Eng. Anal. Bound. Elem., 100 (2019), 246-255. doi: 10.1016/j.enganabound.2018.05.006
    [14] F. Mirzaee, S. Alipour, Fractional-order orthogonal Bernstein polynomials for numerical solution of nonlinear fractional partial Volterra integro-differential equations, Math. Method. Appl. Sci., 42 (2019), 1870-1893. doi: 10.1002/mma.5481
    [15] F. Mirzaee, N. Samadyar, Combination of finite difference method and meshless method based on radial basis functions to solve fractional stochastic advection-diffusion equations, Eng. Comput., (2019), in press.
    [16] Z. Bai, On positive solutions of a nonlocal fractional boundary value problem, Nonlinear Anal., 72 (2010), 916-924. doi: 10.1016/j.na.2009.07.033
    [17] B. Ahmad, S. K. Ntouyas, A. Alsaedi, New existence results for nonlinear fractional differential equations with three-point integral boundary conditions, Adv. Differ. Equ., 2011 (2011), 107384.
    [18] W. Sudsutad, J. Tariboon, Boundary value problems for fractional differential equations with threepoint fractional integral boundary conditions, Adv. Differ. Equ., 2012 (2012), 93.
    [19] X. Liu, Z. Liu, Separated boundary value problem for fractional differential equations depending on lower-order derivative, Adv. Differ. Equ., 2013 (2013), 78.
    [20] X. Fu, Existence results for fractional differential equations with three-point boundary conditions, Adv. Differ. Equ., 2013 (2013), 257.
    [21] B. Ahmad, S. K. Ntouyas, A. Alsaedi, Existence theorems for nonlocal multi-valued Hadamard fractional integro-differential boundary value problems, J. Inequal. Appl., 2014 (2014), 454.
    [22] J. Tariboon, S. K. Ntouyas, W. Sudsutad, Fractional integral problems for fractional differential equations via Caputo derivative, Adv. Differ. Equ., 2014 (2014), 181.
    [23] P. Thiramanus, S. K. Ntouyas, J. Tariboon, Existence and uniqueness results for Hadamardtype fractional differential equations with nonlocal fractional integral boundary conditions, Abstr. Appl. Anal., 2014 (2014), 902054.
    [24] W. Chen, Y. Zhao, Solvability of boundary value problems of nonlinear fractional differential equations, Adv. Differ. Equ., 2015 (2015), 36.
    [25] B. C. Dhage, Quadratic perturbations of periodic boundary value problems of second order ordinary differential equations, Differ. Equ. Appl., 2 (2010), 465-486.
    [26] B. C. Dhage, V. Lakshmikantham, Basic results on hybrid differential equation, Nonlinear AnalHybri., 4 (2010), 414-424.
    [27] S. Sun, Y. Zhao, Z. Han, The existence of solutions for boundary value problem of fractional hybrid differential equations, Commun. Nonlinear Sci. Numer. Simul., 17 (2012), 4961-4967. doi: 10.1016/j.cnsns.2012.06.001
    [28] B. Ahmad, S. K. Ntouyas, An existence theorem for fractional hybrid differential inclusions of Hadamard type with Dirichlet boundary conditions, Abstr. Appl. Anal., 2014 (2014), 705809.
    [29] B. C. Dhage, S. K. Ntouyas, Existence results for boundary value problems for fractional hybrid differential inclusions, Topol. Method. Nonl. An., 44 (2014), 229-238.
    [30] Y. Zhao, Y. Wang, Existence of solutions to boundary value problem of a class of nonlinear fractional differential equations, Adv. Differ. Equ., 2014 (2014), 174.
    [31] S. Sitho, S. K. Ntouyas, J. Tariboon, Existence results for hybrid fractional integro-differential equations, Adv. Differ. Equ., 2015 (2015), 113.
    [32] A. U. K. Niazi, J. Wei, M. U. Rehman, Existence results for hybrid fractional neutral differential equations, Adv. Differ. Equ., 2017 (2017), 353.
    [33] J. Tariboon, A. Cuntavepanit, S. K. Ntouyas, Separated Boundary Value Problems of Sequential Caputo and Hadamard Fractional Differential Equations, J. Funct. Space., 2018 (2018), 6974046.
    [34] D. Chergui, T. E. Oussaeif, M. Ahcene, Existence and uniqueness of solutions for nonlinear fractional differential equations depending on lower-order derivative with non-separated type integral boundary conditions, AIMS Mathematics, 4 (2019), 112-133. doi: 10.3934/Math.2019.1.112
    [35] C. Derbazi, H. Hammouche, M. Benchohra, Fractional hybrid differential equations with threepoint boundary hybrid conditions, Adv. Differ. Equ., 2019 (2019), 125.
  • This article has been cited by:

    1. Egor V. Yakovlev, Ivan V. Simkin, Anastasiya A. Shirokova, Nataliya A. Kolotieva, Svetlana V. Novikova, Artur D. Nasyrov, Ilya R. Denisenko, Konstantin D. Gursky, Ivan N. Shishkov, Diana E. Narzaeva, Alla B. Salmina, Stanislav O. Yurchenko, Nikita P. Kryuchkov, Machine learning approach for recognition and morphological analysis of isolated astrocytes in phase contrast microscopy, 2024, 14, 2045-2322, 10.1038/s41598-024-59773-2
    2. Veronika Kopylova, Stanislav Boronovskiy, Yaroslav Nartsissov, Approaches to vascular network, blood flow, and metabolite distribution modeling in brain tissue, 2023, 15, 1867-2450, 1335, 10.1007/s12551-023-01106-0
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4083) PDF downloads(610) Cited by(15)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog