Citation: Yulia M. Panchenko, Andrey I. Marshakov, Ludmila A. Nikolaeva, Victoria V. Kovtanyuk. Prediction of first-year corrosion losses of copper and aluminum in continental regions[J]. AIMS Materials Science, 2018, 5(4): 624-649. doi: 10.3934/matersci.2018.4.624
| [1] | Knotkova D, Kreislova K, Dean SW (2010) ISOCORRAG International Atmospheric Exposure Program: Summary of Results, ASTM Series 71, West Conshohocken, PA: ASTM International. |
| [2] | Tidblad J, Kucera V, Mikhailov AA (1998) Statistical analysis of 8 year materials exposure and acceptable deterioration and pollution levels, In: UN/ECE ICP on Effects on Materials, Report No. 30, Stockholm, Sweden: Swedish Corrosion Institute, 1–49. |
| [3] |
Tidblad J, Kucera V, Mikhailov AA, et al. (2001) UN ECE ICP Materials: Dose-Response Functions on Dry and Wet Acid Deposition Effects After 8 Years of Exposure. Water Air Soil Poll 130: 1457–1462. doi: 10.1023/A:1013965030909
|
| [4] | Morcillo M, Almeida EM, Rosales BM, et al. (1998) Functiones de Dano (Dosis/Respuesta) de la Corrosion Atmospherica en Iberoamerica, In: Corrosion y Proteccion de Metales en las Atmosferas de Iberoamerica, Madrid, Spain: Programma CYTED, 629–660. |
| [5] | Morcillo M (1995) Atmospheric corrosion in Ibero-America: The MICAT project, In: Kirk WW, Lawson HH, Atmospheric corrosion, ASTM STP 1239, Philadelphia, PA: American Society for Testing and Materials, 257–275. |
| [6] | Panchenko YM, Shuvakhina LN, Mikhailovsky YN (1982) Atmospheric corrosion of metals in Far Eastern regions. Zashchita metallov 18: 575–582 (in Russian). |
| [7] | ISO 9223:2012(E) (2012) Corrosion of metals and alloys—Corrosivity of atmospheres—Classification, determination and estimation. International Standards Organization, Geneva. |
| [8] | Syed S (2006) Atmospheric corrosion of materials. Emir J Eng Res 11: 1–24. |
| [9] |
De la Fuente D, Castano JG, Morcillo M (2007) Long-term atmospheric corrosion of zinc. Corros Sci 49: 1420–1436. doi: 10.1016/j.corsci.2006.08.003
|
| [10] |
Landolfo R, Cascini L, Portioli F (2010) Modeling of metal structure corrosion damage: A state of the art report. Sustainability 2: 2163–2175. doi: 10.3390/su2072163
|
| [11] |
Morcillo M, De la Fuente D, Diaz I, et al. (2011) Atmospheric corrosion of mild steel. Rev Metal 47: 426–444. doi: 10.3989/revmetalm.1125
|
| [12] |
De la Fuente D, Diaz I, Simancas J, et al. (2011) Long-term atmospheric corrosion of mild steel. Corros Sci 53: 604–617. doi: 10.1016/j.corsci.2010.10.007
|
| [13] |
Morcillo M, Chico B, Diaz I, et al. (2013) Atmospheric corrosion data of weathering steels: A review. Corros Sci 77: 6–24. doi: 10.1016/j.corsci.2013.08.021
|
| [14] |
Surnam BYR, Chiu CW, Xiao HP, et al. (2015) Long-term atmospheric corrosion in Mauritius. Corros Eng Sci Techn 50: 155–159. doi: 10.1179/1743278214Y.0000000240
|
| [15] |
Panchenko YM, Marshakov AI, Igonin TN, et al. (2014) Long-term forecast of corrosion mass losses of technically important metals in various world regions using a power function. Corros Sci 88: 306–316. doi: 10.1016/j.corsci.2014.07.049
|
| [16] |
Panchenko YM, Marshakov AI (2016) Long-term prediction of metal corrosion losses in atmosphere using a power-linear function. Corros Sci 109: 217–229. doi: 10.1016/j.corsci.2016.04.002
|
| [17] | ISO 9224:2012(E) (2012) Corrosion of metals and alloys—Corrosivity of atmospheres—Guiding values for the corrosivity categories. International Standards Organization, Geneva. |
| [18] | Tidblad J, Mikhailov AA, Kucera V (1999) Unified Dose-Response Functions after 8 Years of Exposure. Quantification of Effects of Air Pollutants on Materials,UN ECE Workshop Proceedings, Umweltbundesamt, Berlin, 77–86. |
| [19] | Tidblad J, Mikhailov AA, Kucera V (2000) Acid deposition effects on materials in subtropical and tropical climates. Data compilation and temperate climate comparison, KI Report, Stockholm, Sweden: Swedish Corrosion Institute, 1–33. |
| [20] |
Chico B, De la Fuente D, Díaz I, et al. (2017) Annual atmospheric corrosion of carbon steel worldwide. An integration of ISOCORRAG, ICP/UNECE and MICAT databases. Materials 10: 601. doi: 10.3390/ma10060601
|
| [21] |
Panchenko YM, Marshakov AI (2017) Prediction of first-year corrosion losses of carbon steel and zinc in continental regions. Materials 10: 422. doi: 10.3390/ma10040422
|
| [22] |
Tidblad J, Mikhailov AA, Kucera V (2000) Model for the prediction of the time of wetness from average annual data on relative air humidity and air temperature. Prot Metal 36: 533–540. doi: 10.1023/A:1026621009635
|
| [23] |
Feliu S, Morcillo M, Feliu Jr S (1993) The prediction of atmospheric corrosion from meteorological and pollution parameters—I. Annual corrosion. Corros Sci 34: 403–414. doi: 10.1016/0010-938X(93)90112-T
|
| [24] | Mikhailov AA, Panchenko YM, Kuznetsov YI (2016) Atmospheric corrosion and protection of metals, Tambov: Pershin, Inc. (in Russian). |
| [25] |
Zakipour S, Tidblad J, Leygraf C (1995) Atmospheric Corrosion Effects of SO2 and O3 on Laboratory‐Exposed Copper. J Electrochem Soc 142: 757–760. doi: 10.1149/1.2048530
|
| [26] | Tidblad J, Kucera V (1993) The role of NOx and O3 in the corrosion and degradation of materials, Report 1993:6Е, Stockholm, Sweden: Swedish Corrosion Institute, 1–46. |











