Mini review

On the annihilation of dislocation dipoles in metals

  • Received: 24 July 2016 Accepted: 21 November 2017 Published: 29 November 2017
  • During plastic deformation, there is a wealth of dislocation reactions, in which dislocation dipoles may play an important role. In this review, first, the history of dislocation dipole annihilation is revisited. Then, recent progresses in elucidating the atomic-scale processes during dipole annihilation are presented with examples from representative systems. Last, the consequence of dipole annihilation, as well as experimental verifications are introduced.

    Citation: Hao Wang. On the annihilation of dislocation dipoles in metals[J]. AIMS Materials Science, 2017, 4(6): 1231-1239. doi: 10.3934/matersci.2017.6.1231

    Related Papers:

  • During plastic deformation, there is a wealth of dislocation reactions, in which dislocation dipoles may play an important role. In this review, first, the history of dislocation dipole annihilation is revisited. Then, recent progresses in elucidating the atomic-scale processes during dipole annihilation are presented with examples from representative systems. Last, the consequence of dipole annihilation, as well as experimental verifications are introduced.


    加载中
    [1] Mitchell TE (1964) Dislocations and plasticity in single crystals of face-centred cubic metals and alloys. Prog Appl Mater Res 6: 117–237.
    [2] Veyssière P, Wang H, Xu DS, et al. (2009) Local dislocation reactions, self-organization and hardening in single slip. IOP Conf Ser: Mater Sci Eng 3: 012018. doi: 10.1088/1757-899X/3/1/012018
    [3] Kubin L, Kratochvìl J (2000) Elastic model for the sweeping of dipolar loops. Philos Mag A 80: 201–218. doi: 10.1080/01418610008212049
    [4] Tippelt B (1996) Influence of temperature on microstructural parameters of cyclically deformed nickel single crystals. Phil Mag Lett 74: 161–166. doi: 10.1080/095008396180317
    [5] Appel F, Herrmann D, Fischer FD, et al. (2013) Role of vacancies in work hardening and fatigue of TiAl alloys. Int J Plasticity 42: 83–100. doi: 10.1016/j.ijplas.2012.10.001
    [6] Essmann U, Rapp M (1973) Slip in copper crystals following weak neutron bombardment. Acta Metall 21: 1305–1317. doi: 10.1016/0001-6160(73)90172-7
    [7] Essmann U, Mughrabi H (1979) Annihilation of dislocations during tensile and cyclic deformation and limits of dislocation densities. Philos Mag A 40: 731–756. doi: 10.1080/01418617908234871
    [8] Hahner P (1996) The dynamics of dislocation dipoles during single glide. Scripta Mater 34: 435–441.
    [9] Hahner P, Tippelt B, Holste C (1998) On the dislocation dynamics of persistent slip bands in cyclically deformed f.c.c. metals. Acta Mater 46: 5073–5084.
    [10] Antonopoulos JG, Brown LM, Winter AT (1976) Vacancy dipoles in fatigued copper. Philos Mag 34: 549–563. doi: 10.1080/14786437608223793
    [11] Kassner ME, Perez-Prado MT, Vecchio KS, et al. (2000) Determination of internal stresses in cyclically deformed copper single crystals using convergent-beam electron diffraction and dislocation dipole separation measurements. Acta Mater 48: 4247–4254. doi: 10.1016/S1359-6454(00)00284-6
    [12] Kassner ME, Wall MA, Delos-Reyes MA (2001) Primary and secondary dislocation dipole heights in cyclically deformed copper single crystals. Mater Sci Eng A 317: 28–31. doi: 10.1016/S0921-5093(01)01195-9
    [13] Tippelt B, Bretschneider J, Holste C (1997) The dislocation microstructure of cyclically deformed nickel single crystals at different temperatures. Phys Status Solidi A 163: 11–26. doi: 10.1002/1521-396X(199709)163:1<11::AID-PSSA11>3.0.CO;2-X
    [14] Catalao S, Feaugas X, Pilvin P, et al. (2005) Dipole heights in cyclically deformed polycrystalline AISI 316L stainless steel. Mater Sci Eng A 400–401: 349–352.
    [15] Veyssière P (2006) The weak-beam technique applied to the analysis of materials properties. J Mater Sci 41: 2691–2702. doi: 10.1007/s10853-006-7872-1
    [16] Veyssière P, Chiu YL, Niewczas M (2006) Dislocation micromechanisms under single slip conditions. Z Metallkd 97: 189–199. doi: 10.3139/146.101242
    [17] Duesbery MS, Joos B (1986) Dislocations in two dimensions I. Floating systems. Philos Mag A 54: 145–163. doi: 10.1080/01418618608242892
    [18] Rabier J, Puls MP (1989) On the core structures of edge dislocations in NaCl and MgO. Consequences for the core configurations of dislocation dipoles. Philos Mag A 59: 821–842.
    [19] Tichy G, Essmann U (1989) Modelling of edge dislocation dipoles in face-centred-cubic lattices. Philos Mag B 60: 503–512. doi: 10.1080/13642818908205923
    [20] Aslanides A, Pontikis V (2000) Numerical study of the athermal annihilation of edge-dislocation dipoles. Philos Mag A 80: 2337–2353. doi: 10.1080/01418610008216476
    [21] Essmann U (1982) Irreversibility of cyclic slip in persistent slip bands of fatigued pure fcc metals. Philos Mag A 45: 171–190. doi: 10.1080/01418618208243910
    [22] Essmann U, Gӧsele U, Mughrabi H (1981) A model of extrusions and intrusions in fatigued metals I. Point-defect production and the growth of extrusions. Philos Mag A 44: 405–426.
    [23] Antonopoulos JG, Winter AT (1976) Weak-beam study of dislocation structures in fatigued copper. Philos Mag 33: 87–95. doi: 10.1080/14786437608221093
    [24] Piqueras J, Grosskreutz JC, Frank W (1972) The influence of point defect clusters on fatigue hardening of copper single crystals. Phys Status Solidi A 11: 567–580. doi: 10.1002/pssa.2210110220
    [25] Veyssière P, Chiu YL (2007) Equilibrium and passing properties of dislocation dipoles. Philos Mag 87: 3351–3372. doi: 10.1080/14786430601021678
    [26] Hoppe R, Appel F (2014) Deformation-induced internal stresses in multiphase titanium aluminide alloys. Acta Mater 64: 169–178. doi: 10.1016/j.actamat.2013.10.024
    [27] Wang H, Xu DS, Yang R, et al. (2009) The transformation of narrow dislocation dipoles in selected fcc metals and in γ-TiAl. Acta Mater 57: 3725–3737. doi: 10.1016/j.actamat.2009.04.019
    [28] Wang H, Xu DS, Rodney D, et al. (2013) Atomistic investigation of the annihilation of non-screw dislocation dipoles in Al, Cu, Ni and γ-TiAl. Model Simul Mater Sc 21: 025002. doi: 10.1088/0965-0393/21/2/025002
    [29] Wang H, Xu DS, Yang R, et al. (2008) The transformation of edge dislocation dipoles in aluminium. Acta Mater 56: 4608–4620. doi: 10.1016/j.actamat.2008.05.019
    [30] Wang H, Xu DS, Yang R, et al. (2011) The formation of stacking fault tetrahedra in Al and Cu: I. Dipole annihilation and the nucleation stage. Acta Mater 59: 1–9.
    [31] Wang H, Xu DS, Yang R (2014) Defect clustering upon dislocation annihilation in α-titanium and α-zirconium with hexagonal close-packed structure. Model Simul Mater Sc 22: 085004. doi: 10.1088/0965-0393/22/8/085004
    [32] Brinckmann S, Sivanesapillai R, Hartmaier A (2011) On the formation of vacancies by edge dislocation dipole annihilation in fatigued copper. Int J Fatigue 33: 1369–1375. doi: 10.1016/j.ijfatigue.2011.05.004
    [33] Wang H, Rodney D, Xu D, et al. (2011) Pentavacancy as the key nucleus for vacancy clustering in aluminum. Phys Rev B 84: 220103(R).
    [34] Wang H, Rodney D, Xu DS, et al. (2013) Defect kinetics on experimental timescales using atomistic simulations. Philos Mag 93: 186–202. doi: 10.1080/14786435.2012.674224
    [35] Wang H, Xu DS, Veyssière P, et al. (2013) Interstitial loop strengthening upon deformation in aluminum via molecular dynamics simulations. Acta Mater 61: 3499–3508. doi: 10.1016/j.actamat.2013.02.044
    [36] Niewczas M (2014) Intermittent plastic flow of single crystals: central problems in plasticity: a review. Mater Sci Tech-Lond 30: 739–757. doi: 10.1179/1743284713Y.0000000492
    [37] Wang H, Xu DS, Yang R, et al. (2011) The formation of stacking fault tetrahedra in Al and Cu: II. SFT growth by successive absorption of vacancies generated by dipole annihilation. Acta Mater 59: 10–18.
    [38] He Y, Liu Z, Zhou G, et al. (2018) Dislocation dipole-induced strengthening in intermetallic TiAl. Scripta Mater 143: 98–102. doi: 10.1016/j.scriptamat.2017.09.010
    [39] Fan Y, Kushima A, Yildiz B (2010) Unfaulting mechanism of trapped self-interstitial atom clusters in bcc Fe: A kinetic study based on the potential energy landscape. Phys Rev B 81: 104102. doi: 10.1103/PhysRevB.81.104102
    [40] Zhang YG, Xu Q, Li HX (1992) Observations and formation mechanism of 1/3<121> type faulted dipoles in TiAl deformed at room temperature. Scripta Metall Mater 26: 865–870. doi: 10.1016/0956-716X(92)90673-3
    [41] Viguier B, Hemker KJ, Schaublin R, et al. (1993) Characterizing Faulted Dipoles in TiAl with Electron-Microscopy and Computed Image Simulations. J Phys IV France 3: C7-441–C7-444.
    [42] Xu Q, Zhang YG, Jones IP, et al. (1995) Further verification of 1/3<121> type faulted dipoles in TiAl. Scripta Metall Mater 32: 225–228. doi: 10.1016/S0956-716X(99)80041-7
    [43] Gao Y, Zhu J, Cai QG (1995) The observation on faulted dipoles in deformed TiAl-based alloys, in: Horton JA, Baker I, Hanada S, et al., High-Temperature Ordered Intermetallic Alloys VI, Pittsbugh, PA: Materials Research Society, 617–622.
    [44] Viguier B, Hemker KJ (1996) Characterizing faulted dipoles in deformed gamma TiAl. Philos Mag A 73: 575–599. doi: 10.1080/01418619608242985
    [45] Grégori F, Veyssière P (2000) Properties of <011]{111} slip in Al-rich γ-TiAl II. The formation of faulted dipoles. Philos Mag A 80: 2933–2955.
    [46] Chiu YL, Inui H, Nakano T, et al. (2003) The dependence of the faulted dipole density on load orientation in γ-TiAl. Phil Mag Lett 83: 485–493.
    [47] Chiu YL, Gregori F, Nakano T, et al. (2003) The nucleation of faulted dipoles at intersection jogs in γ-TiAl. Philos Mag 83: 1347–1363. doi: 10.1080/0141861031000063240
  • Reader Comments
  • © 2017 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2612) PDF downloads(1141) Cited by(1)

Article outline

Figures and Tables

Figures(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog