In this paper, for the first time, we used Google Earth, an easily accessible method for obtaining geological information to study Shikotan Island (Lesser Kuril Arc). Google Earth flight mode made it possible to examine coastal cliffs on the island, which are inaccessible for hiking or walking, whereas 3-D visualization mode helped us study topographic features, tectonic dislocations, and sediment layering hidden by vegetation and soil, thereby significantly expanding understanding of the geologic structure of the island. Researchers conducting studies in the northwestern part of the island (Tat'yana Cape) discovered a previously unknown structure—a dike field. In the southern part, two thrust faults were identified: An unnamed peak and Tomari Mountain, previously considered a volcano. In the southwestern part of Shikotan Island, there are four unknown volcanic peaks. Together with the Notoro Volcano, they mark the rim of an interpreted caldera of a paleovolcano, which could have been the main unknown source of tuffaceous material for the Mesozoic-Cenozoic deposits of the Matakotanskaya, Malokuril'skaya, and Zelenovskaya Suites. It has been shown that the gabbroid massif of Tsunami Bay (northeastern part of the island) is an autochthonous (local) formation, and not allochthonous, that is, brought from the Pacific Ocean, as evidenced by an intrusive contact with the rocks of the Malokuril'skaya Suite. Despite these positive results, analysis of satellite images of Shikotan Island unexpectedly has not confirmed the existence of the Central Shikotan thrust fault, the largest previously mapped tectonic structure on the island. This work confirms that Google Earth is a very useful tool for geological research in remote areas.
Citation: Evgeny P Terekhov, Anatoly V Mozherovsky. Some features of geological structure of the Shikotan Island (Lesser Kuril Arc)—A view from 'Space'[J]. AIMS Geosciences, 2024, 10(4): 907-917. doi: 10.3934/geosci.2024042
[1] | Huo Tang, Shahid Khan, Saqib Hussain, Nasir Khan . Hankel and Toeplitz determinant for a subclass of multivalent q-starlike functions of order α. AIMS Mathematics, 2021, 6(6): 5421-5439. doi: 10.3934/math.2021320 |
[2] | Khadeejah Rasheed Alhindi, Khalid M. K. Alshammari, Huda Ali Aldweby . Classes of analytic functions involving the q-Ruschweyh operator and q-Bernardi operator. AIMS Mathematics, 2024, 9(11): 33301-33313. doi: 10.3934/math.20241589 |
[3] | Muhammad Sabil Ur Rehman, Qazi Zahoor Ahmad, H. M. Srivastava, Nazar Khan, Maslina Darus, Bilal Khan . Applications of higher-order q-derivatives to the subclass of q-starlike functions associated with the Janowski functions. AIMS Mathematics, 2021, 6(2): 1110-1125. doi: 10.3934/math.2021067 |
[4] | İbrahim Aktaş . On some geometric properties and Hardy class of q-Bessel functions. AIMS Mathematics, 2020, 5(4): 3156-3168. doi: 10.3934/math.2020203 |
[5] | Chunhong Li, Dandan Yang, Chuanzhi Bai . Some Opial type inequalities in (p, q)-calculus. AIMS Mathematics, 2020, 5(6): 5893-5902. doi: 10.3934/math.2020377 |
[6] | Saqib Hussain, Shahid Khan, Muhammad Asad Zaighum, Maslina Darus . Certain subclass of analytic functions related with conic domains and associated with Salagean q-differential operator. AIMS Mathematics, 2017, 2(4): 622-634. doi: 10.3934/Math.2017.4.622 |
[7] | Muhammad Amer Latif, Mehmet Kunt, Sever Silvestru Dragomir, İmdat İşcan . Post-quantum trapezoid type inequalities. AIMS Mathematics, 2020, 5(4): 4011-4026. doi: 10.3934/math.2020258 |
[8] | Yue Wang, Ghulam Farid, Babar Khan Bangash, Weiwei Wang . Generalized inequalities for integral operators via several kinds of convex functions. AIMS Mathematics, 2020, 5(5): 4624-4643. doi: 10.3934/math.2020297 |
[9] | Mohammad Faisal Khan, Ahmad A. Abubaker, Suha B. Al-Shaikh, Khaled Matarneh . Some new applications of the quantum-difference operator on subclasses of multivalent q-starlike and q-convex functions associated with the Cardioid domain. AIMS Mathematics, 2023, 8(9): 21246-21269. doi: 10.3934/math.20231083 |
[10] | Ala Amourah, B. A. Frasin, G. Murugusundaramoorthy, Tariq Al-Hawary . Bi-Bazilevič functions of order ϑ+iδ associated with (p,q)− Lucas polynomials. AIMS Mathematics, 2021, 6(5): 4296-4305. doi: 10.3934/math.2021254 |
In this paper, for the first time, we used Google Earth, an easily accessible method for obtaining geological information to study Shikotan Island (Lesser Kuril Arc). Google Earth flight mode made it possible to examine coastal cliffs on the island, which are inaccessible for hiking or walking, whereas 3-D visualization mode helped us study topographic features, tectonic dislocations, and sediment layering hidden by vegetation and soil, thereby significantly expanding understanding of the geologic structure of the island. Researchers conducting studies in the northwestern part of the island (Tat'yana Cape) discovered a previously unknown structure—a dike field. In the southern part, two thrust faults were identified: An unnamed peak and Tomari Mountain, previously considered a volcano. In the southwestern part of Shikotan Island, there are four unknown volcanic peaks. Together with the Notoro Volcano, they mark the rim of an interpreted caldera of a paleovolcano, which could have been the main unknown source of tuffaceous material for the Mesozoic-Cenozoic deposits of the Matakotanskaya, Malokuril'skaya, and Zelenovskaya Suites. It has been shown that the gabbroid massif of Tsunami Bay (northeastern part of the island) is an autochthonous (local) formation, and not allochthonous, that is, brought from the Pacific Ocean, as evidenced by an intrusive contact with the rocks of the Malokuril'skaya Suite. Despite these positive results, analysis of satellite images of Shikotan Island unexpectedly has not confirmed the existence of the Central Shikotan thrust fault, the largest previously mapped tectonic structure on the island. This work confirms that Google Earth is a very useful tool for geological research in remote areas.
Let Ap denote the class of analytic and p-valent functions f(z) with the next form
f(z)=zp+∞∑n=1an+pzn+p,(p∈N={1,2,⋯}) | (1.1) |
in the open unit disk Δ={z∈C:∣z∣<1}.
For f∈Ap, its q-derivative or the q-difference Dqf(z) is given by
Dqf(z)=[p]qzp−1+∞∑n=1[n+p]qan+pzn+p−1,(0<q<1), |
where the q-derivative operator Dqf(z) (refer to [13] and [14]) of the function f is defined by
Dqf(z):={f(z)−f(qz)(1−q)z,(z≠0;0<q<1),f′(0),(z=0) |
provided that f′(0) exists, and the q-number [n]q is just [χ]q when χ=n∈N, here
[χ]q={1−qχ1−qforχ∈C,∑χ−1k=0qkforχ=n∈N. |
Note that Dqf(z)⟶f′(z) when q⟶1−, where f′ is the ordinary derivative of the function f.
Consider the generalized Bernardi integral operator Jηp,q:Ap⟶Ap with the next form
Jηp,qf(z)=[p+η]qzη∫z0tη−1f(t)dqt,(z∈Δ,ℜη>−1andf∈Ap). | (1.2) |
Then, for f∈Ap, we obtain that
Jηp,qf(z)=zp+∞∑n=1Lηp,q(n)an+pzn+p,(z∈Δ), | (1.3) |
where
Lηp,q(n)=[p+η]q[n+η]q:=Ln. | (1.4) |
Here we remark that if p=1, it is exactly q-Bernardi integral operator Jηq [21]. Further, if p=1 and q→1−, obviously it is the classical Bernardi integral operator Jη [5]. In fact, Alexander [1] and Libera [18] integral operators are special versions of Jη for η=0 and η=1, respectively.
For two analytic functions f and g, if there exists an analytic function h satisfying h(0)=0 and ∣h(z)∣<1 for z∈Δ so that f(z)=g(h(z)), then f is subordinate to g, i.e., f≺g.
Let Λ be the class of all analytic function ϕ via the form
ϕ(z)=1+∞∑n=1Anzn,(A1>0,z∈Δ). | (1.5) |
It is well known that the q-calculus [13,14], even the (p,q)-calculus [6], is a generalization of the ordinary calculus without the limit symbol, and its related theory has been applied into mathematical, physical and engineering fields (see [11,15,25]). Since Ismail et al.[12] firstly utilized the q-derivative operator to investigate the q-calculus of the class of starlike functions in disk, there had a great deal of work in this respect; for example, refer to Rehman et al. [24] for partial sums of generalized q-Mittag-Leffler functions, Srivastava et al. [31] for Fekete-Szegö inequality for classes of (p,q)-starlike and (p,q)-convex functions and [27] for close-to-convexity of a certain family of q-Mittag-Leffler functions, Seoudy and Aouf [26] for the coefficient estimates of q-starlike and q-convex functions and Uçar [33] for the coefficient inequality for q-starlike functions. Besides, by involving some special functions and operators or increasing the complexity of function classes, many new subclasses of analytic functions associated with q-calculus or (p,q)-calculus were considered. Here we may refer to [9,23], Ahmad et al. [2] for convolution properties for a family of analytic functions involving q-analogue of Ruscheweyh differential operator, Dweby and Darus [8] for subclass of harmonic univalent functions associated with q-analogue of Dziok-Srivastava operator, Mahmmod and Sokól [20] for new subclass of analytic functions in conical domain associated with Ruscheweyh q-differential operator, Srivastava et al. [28] for coefficient inequalities for q-starlike functions associated with the Janowski functions, [31] for Fekete-Szegö inequality for classes of (p,q)-starlike and (p,q)-convex functions using the q-Bernardi integral operator and [32] for some results on the q-analogues of the incomplete Fibonacci and Lucas polynomials. For the multivalent functions, Purohit [22] ever studied a new class of multivalently analytic functions associated with fractional q-calculus operators, while Shi et al. [29] investigated the multivalent q-starlike functions connected with circular domain. Moreover, Arif et al. [4] considered a q-analogue of the Ruscheweyh type operator, and Srivastava et al. [30] dealt with basic and fractional q-calculus and associated Fekete-Szegö problems for p-valently q-starlike functions and p-valently q-convex functions of complex order using certain integral operators, and Khan et al. [17] for a new integral operator in q-analog for multivalent functions. Stimulated by the previous results, in the paper we intend to introduce and investigate several new subclasses of q-starlike and q-convex type analytic and multivalent functions involving a generalized Bernardi integral operator, and establish the corresponding Fekete-Szegö type functional inequalities for these function classes. Besides, the corresponding bound estimates of the coefficients ap+1 and ap+2 are provided.
From now on we introduce some general subclasses of analytic and multivalent functions associated with the q-derivative operator and the generalized Bernardi integral operator.
Definition 1.1. Let f(z)∈Ap and μ,λ≥0. If the following subordination
(1−λ)(Jηp,qf(z)zp)μ+λDq(Jηp,qf)(z)[p]qzp−1(Jηp,qf(z)zp)μ−1≺ϕ(z) | (1.6) |
is satisfied for z∈Δ, then we call that f(z) belongs to the class LNηp,q(μ,λ;ϕ).
Definition 1.2. Let f(z)∈Ap and 0≤λ≤1. If the following subordination
(1−λ)zDq(Jηp,qf)(z)[p]qJηp,qf(z)+λ[p]q(1+qzDq[Dq(Jηp,qf)](z)Dq(Jηp,qf)(z))≺ϕ(z) | (1.7) |
is satisfied for z∈Δ, then we call that f(z) belongs to the class LMηp,q(λ;ϕ).
Definition 1.3. Let f(z)∈Ap and μ≥0. If the following subordination
(zDq(Jηp,qf)(z)[p]qJηp,qf(z))(Jηp,qf(z)zp)μ≺ϕ(z) | (1.8) |
is satisfied for z∈Δ, then we call that f(z) belongs to the class NSηp,q(μ;ϕ).
Remark 1.4. If we put
ϕ(z)=(1+z1−z)αfor0<α≤1 |
or
ϕ(z)=1+(1−2β)z1−zfor0≤β<1 |
in Definition (1.1–1.3), then the class LNηp,q(μ,λ;ϕ) (res. LMηp,q(λ;ϕ) and NSηp,q(μ;ϕ)) reduces to LNηp,q(μ,λ;α) (res. LMηp,q(λ;α) and NSηp,q(μ;α)) or LNηp,q(μ,λ;β) (res. LMηp,q(λ;β) and NSηp,q(μ;β)). Without the generalized Bernardi integral operator, the class LNηp,q(μ,λ;ϕ) (res. LMηp,q(λ;ϕ) and NSηp,q(μ;ϕ)) is the classical function class LN(μ,λ;ϕ) (res. LM(λ;ϕ) and NS(μ;ϕ)) when p=1 and q→1−.
Let Ω be the class of functions ω(z) denoted by
ω(z)=∞∑n=1Enzn,(z∈Δ) | (1.9) |
via the inequality |ω(z)|<1(z∈Δ). Now we recall some necessary Lemmas below.
Lemma 1.5 ([16]). Let the function ω∈Ω. Then
|E2−τE21|≤max{1,|τ|},(τ∈C). |
Specially, the sharp result holds for the next function
ω(z)=zorω(z)=z2,(z∈Δ). |
Lemma 1.6 ([7,10]). Let P be the class of all analytic functions h(z) of the following form
h(z)=1+∞∑n=1cnzn,(z∈Δ) |
satisfying ℜh(z)>0 and h(0)=1. Then there exist the sharp coefficient estimates ∣cn∣≤2(n∈N). In Particular, the equality holds for all n for the next function
h(z)=1+z1−z=1+∞∑n=12zn. |
Lemma 1.7 ([3,19]). Let the function ω∈Ω. Then
∣E2−κE21∣≤{−κifκ≤−1,1if−1≤κ≤1,κifκ≥1. |
For κ<−1 or κ>1, the inequality holds literally if and only if ω(z)=z or one of its rotations. If <κ<1, the inequality holds literally if and only if ω(z)=z2 or one of its rotations. In Particular, if κ=−1, then the sharp result holds for the next function
ω(z)=z(z+ξ)1+ξz,(0≤ξ≤1) |
or one of its rotations. If κ=1, then the sharp result holds for the next function
ω(z)=−z(z+ξ)1+ξz,(0≤ξ≤1) |
or one of its rotations. If −1<κ<1, then the upper bound is sharp as the followings
|E2−κE21|+(κ+1)|E1|2≤1,(−1<κ≤0) |
and
|E2−κE21|+(1−κ)|E1|2≤1,(0<κ<1). |
By (1.9) we give that
ϕ(ω(z))=1+A1E1z+(A1E2+A2E21)z2+(A1E3+2A2E1E2+A3E31)z3+…. | (2.1) |
In the section, with Lemma 1.5 we study Fekete-Szegö functional problem for the class LNηp,q(μ,λ;ϕ) and provide the following theorem.
Theorem 2.1. Let δ∈C. If f(z)∈Ap belongs to the class LNηp,q(μ,λ;ϕ), then
|ap+2−δa2p+1|≤A1[p]q|L2|[μ[p]q+λ([p+2]q−[p]q)]max{1;|A1[p]qΘ2L21[μ[p]q+λ([p+1]q−[p]q)]2−A2A1|}, |
where
Θ=2δL2[μ[p]q+λ([p+2]q−[p]q)]+L21[(μ−1)[μ−λ(λμ−μ+1)][p]q+2λ(2μ−λμ−1)[p+1]q]. |
Moreover, the sharp result holds for the next function
ω(z)=zorω(z)=z2,(z∈Δ). |
Proof. Assume that f(z)∈LNηp,q(μ,λ;ϕ). Then, from Definition 1.1, there exists an analytic function ω(z)∈Ω such that
(1−λ)(Jηp,qf(z)zp)μ+λDq(Jηp,qf)(z)[p]qzp−1(Jηp,qf(z)zp)μ−1=ϕ(ω(z)). | (2.2) |
Part case
(Jηp,qf(z)zp)μ−1=1+(μ−1)L1ap+1z+[(μ−1)L2ap+2+(μ−1)(μ−2)2L21a2p+1]z2+[(μ−1)L3ap+3+(μ−1)(μ−2)2L1L2ap+1ap+2+(μ−1)(μ−2)(μ−3)6L31a3p+1]z3+…, |
λDq(Jηp,qf)(z)[p]qzp−1=λ+λL1ap+1[p+1]q[p]qz+λL2ap+2[p+2]q[p]qz2+λL3ap+3[p+3]q[p]qz3+…, |
λDq(Jηp,qf)(z)[p]qzp−1(Jηp,qf(z)zp)μ−1=λ+λ[μ+([p+1]q[p]q−1)]L1ap+1z+λ{[μ+([p+2]q[p]q−1)]L2ap+2+(μ−1)[μ2+([p+1]q[p]q−1)]L21a2p+1}z2+…, |
(1−λ)(Jηp,qf(z)zp)μ=(1−λ)+(1−λ)μL1ap+1z+(1−λ)[μL2ap+2+μ(μ−1)2L21a2p+1]z2+(1−λ)[μL3ap+3+μ(μ−1)2L1L2ap+1ap+2+μ(μ−1)(μ−2)6L31a3p+1]z3+…. |
Since
(1−λ)(Jηp,qf(z)zp)μ+λDq(Jηp,qf)(z)[p]qzp−1(Jηp,qf(z)zp)μ−1=1+[μ+λ([p+1]q[p]q−1)]L1ap+1z+{[μ+λ([p+2]q[p]q−1)]L2ap+2+[(μ−1)2[μ−2λ(λμ−μ+1)]+λ(2μ−λμ−1)[p+1]q[p]q]L21a2p+1}z2+…, |
by (2.1) and (2.2) we see that
A1E1=[μ+λ([p+1]q[p]q−1)]L1ap+1, |
A1E2+A2E21=[μ+λ([p+2]q[p]q−1)]L2ap+2+[μ−12[μ−2λ(λμ−μ+1)]+λ(2μ−λμ−1)[p+1]q[p]q]L21a2p+1. |
Thereby
ap+1=A1E1[p]qL1[μ[p]q+λ([p+1]q−[p]q)] | (2.3) |
and
ap+2=(A1E2+A2E21)[p]qL2[μ[p]q+λ([p+2]q−[p]q)]−A21E21[p]2q{(μ−1)[μ−2λ(λμ−μ+1)][p]q+2λ(2μ−λμ−1)[p+1]q}2L2[μ[p]q+λ([p+1]q−[p]q)]2[μ[p]q+λ([p+2]q−[p]q)]. | (2.4) |
Further, with (2.3) and (2.4) we obtain that
ap+2−δa2p+1=A1[p]qL2[μ[p]q+λ([p+2]q−[p]q)][E2−ℏE21], |
where
ℏ={2δL2[μ[p]q+λ([p+2]q−[p]q)]+L21[(μ−1)[μ−λ(λμ−μ+1)][p]q+2λ(2μ−λμ−1)[p+1]q]}A1[p]q2L21[μ[p]q+λ([p+1]q−[p]q)]2−A2A1. |
Therefore, according to Lemma 1.5 we finish the proof of Theorem 2.1.
Corollary 2.2. If f(z)∈Ap belongs to the class LNηp,q(μ,λ;ϕ), then
|ap+2|≤A1[p]q|L2|[μ[p]q+λ([p+2]q−[p]q)]×max{1;|(μ−1)[μ−λ(λμ−μ+1)][p]q+2λ(2μ−λμ−1)[p+1]q2[μ[p]q+λ([p+1]q−[p]q)]2−A2A1|}. |
Moreover, the sharp result holds for the next function
ω(z)=zorω(z)=z2,(z∈Δ). |
When ϕ∈P, combining (2.3) and (2.4) with Lemma 1.6 we instantly establish the next corollary for the coefficient bounds of ap+1 and ap+2.
Corollary 2.3. If f(z)∈Ap belongs to the class LNηp,q(μ,λ;ϕ), then
|ap+1|≤2|E1|[p]q|L1|[μ[p]q+λ([p+1]q−[p]q)] |
and
|ap+2|≤2(|E2|+|E1|2)[p]q|L2|[μ[p]q+λ([p+2]q−[p]q)]+2E21[p]2q|(μ−1)[μ−λ(λμ−μ+1)][p]q+2λ(2μ−λμ−1)[p+1]q||L2|[μ[p]q+λ([p+1]q−[p]q)]2[μ[p]q+λ([p+2]q−[p]q)]. |
If we choose real δ and η, then by Lemma 1.7 we derive the next result for Fekete-Szegö problem.
Theorem 2.4. Let δ,η∈R and ϕ∈Λ satisfying
ϕ(z)=1+∞∑n=1Anzn,(A1,A2>0,z∈Δ). |
If f(z)∈Ap belongs to the class LNηp,q(μ,λ;ϕ), then
|ap+2−δa2p+1|≤{[p]qL2[μ[p]q+λ([p+2]q−[p]q)]{A2−A21[p]qΘ2L21|μ[p]q+λ([p+1]q−[p]q)]2},(δ≤Υ1);A1[p]qL2[μ[p]q+λ([p+2]q−[p]q)],(Υ1≤δ≤Υ2);[p]qL2[μ[p]q+λ([p+2]q−[p]q)]{−A2+A21[p]qΘ2L21|μ[p]q+λ([p+1]q−[p]q)]2},(δ≥Υ2), |
where
Υ1=(A2−A1)L21[μ[p]q+λ([p+1]q−[p]q)]2A21L2[p]q[μ[p]q+λ([p+2]q−[p]q)]−L21[(μ−1)[μ−λ(λμ−μ+1)][p]q+2λ(2μ−λμ−1)[p+1]q]2L2[μ[p]q+λ([p+2]q−[p]q)] |
and
Υ2=(A2+A1)L21[μ[p]q+λ([p+1]q−[p]q)]2A21L2[p]q[μ[p]q+λ([p+2]q−[p]q)]−L21[(μ−1)[μ−λ(λμ−μ+1)][p]q+2λ(2μ−λμ−1)[p+1]q]2L2[μ[p]q+λ([p+2]q−[p]q)]. |
Moreover, we take
Υ3=A2L21[μ[p]q+λ([p+1]q−[p]q)]2A21L2[p]q[μ[p]q+λ([p+2]q−[p]q)]−L21[(μ−1)[μ−λ(λμ−μ+1)][p]q+2λ(2μ−λμ−1)[p+1]q]2L2[μ[p]q+λ([p+2]q−[p]q)]. |
Then, each of the following results is true:
(A) For δ∈[Υ1,Υ3],
|ap+2−δa2p+1|+{2(A1−A2)L21[μ[p]q+λ([p+1]q−[p]q)]2+A21[p]qΘ}×|ap+1|22A21L2[p]q[μ[p]q+λ([p+2]q−[p]q)]≤A1[p]qL2[μ[p]q+λ([p+2]q−[p]q)]; |
(B) For δ∈[Υ3,Υ2],
|ap+2−δa2p+1|+{2(A1+A2)L21[μ[p]q+λ([p+1]q−[p]q)]2−A21[p]qΘ}×|ap+1|22A21L2[p]q[μ[p]q+λ([p+2]q−[p]q)]≤A1[p]qL2[μ[p]q+λ([p+2]q−[p]q)], |
where
Θ=2δL2[μ[p]q+λ([p+2]q−[p]q)]+L21[(μ−1)[μ−λ(λμ−μ+1)][p]q+2λ(2μ−λμ−1)[p+1]q]. |
Remark 2.5. Fixing the parameter p=1 in Theorems 2.1 and 2.4, we can state the new results for the univalent function classes LNη1,q(μ,λ;ϕ)=LNηq(μ,λ;ϕ). As Remark 1.4, we may consider LNηp,q(μ,λ;α) or LNηp,q(μ,λ;β) to establish latest results. On the other hand, for the different parameters μ and λ, we can deduce new results for LNηp,q(μ,λ;ϕ).
In the section we mainly consider Fekete-Szegö functional problem for the class LMηp,q(λ;ϕ) and establish the theorem as follows.
Theorem 3.1. Let δ∈C. If f(z)∈Ap belongs to the class LMηp,q(λ;ϕ), then
|ap+2−δa2p+1|≤A1[p]2q|L2|([p+2]q−[p]q)[λ([p+2]q−[p]q)+[p]q]×max{1;|A1[p]qΦL21([p+1]q−[p]q)2[λ([p+1]q−[p]q)+[p]q]2−A2A1|}, |
where
Φ=δL2[p]q([p+2]q−[p]q)[λ([p+2]q−[p]q)+[p]q]+L21([p+1]q−[p]q)[λ([p+1]2q−[p]2q)+[p]2q]. |
Moreover, the sharp result holds for the next function
ω(z)=zorω(z)=z2,(z∈Δ). |
Proof. If f∈LMηp,q(λ;ϕ), from Definition 1.2 there exists an analytic function ω(z)∈Ω such that
(1−λ)zDq(Jηp,qf)(z)[p]qJηp,qf(z)+λ[p]q(1+qzDq[Dq(Jηp,qf)](z)Dq(Jηp,qf)(z))=ϕ(ω(z)). | (3.1) |
Part case
zDq(Jηp,qf)(z)[p]qJηp,qf(z)=1+([p+1]q[p]q−1)L1ap+1z+[([p+2]q[p]q−1)L2ap+2−([p+1]q[p]q−1)L21a2p+1]z2+…, |
1[p]q(1+qzDq[Dq(Jηp,qf)](z)Dq(Jηp,qf)(z))=1+L1[p+1]q[p]q([p+1]q[p]q−1)ap+1z+[L2[p+2]q[p]q([p+2]q[p]q−1)ap+2−L21[p+1]2q[p]2q([p+1]q[p]q−1)a2p+1]z2+…. |
Since
(1−λ)zDq(Jηp,qf)(z)[p]qJηp,qf(z)+λ[p]q(1+qzDq[Dq(Jηp,qf)](z)Dq(Jηp,qf)(z))=1+([p+1]q[p]q−1)[λ([p+1]q[p]q−1)+1]L1ap+1z+{([p+2]q[p]q−1)[λ([p+2]q[p]q−1)+1]L2ap+2−([p+1]q[p]q−1)[λ([p+1]2q[p]2q−1)+1]L21a2p+1}z2+…, |
by (2.1) and (3.1) we note that
A1E1=([p+1]q[p]q−1)[λ([p+1]q[p]q−1)+1]L1ap+1 |
and
A1E2+A2E21=([p+2]q[p]q−1)[λ([p+2]q[p]q−1)+1]L2ap+2−([p+1]q[p]q−1)[λ([p+1]2q[p]2q−1)+1]L21a2p+1. |
Then, it leads to
ap+1=A1E1[p]2qL1([p+1]q−[p]q)[λ([p+1]q−[p]q)+[p]q] | (3.2) |
and
ap+2=[p]2qL2([p+2]q−[p]q)[λ([p+2]q−[p]q)+[p]q]×[(A1E2+A2E21)+A21E21[p]q{λ([p+1]2q−[p]2q)+[p]2q}([p+1]q−[p]q)[λ([p+1]q−[p]q)+[p]q]2]. | (3.3) |
Furthermore, in accordance with (3.2) and (3.3) we gain that
ap+2−δa2p+1=A1[p]2qL2([p+2]q−[p]q)[λ([p+2]q−[p]q)+[p]q][E2−ϱE21], |
where
ϱ=A1[p]qΦL21([p+1]q−[p]q)2[λ([p+1]q−[p]q)+[p]q]2−A2A1. |
Thus, from Lemma 1.5 we give the Fekete-Szegö functional inequality in Theorem 3.1.
Corollary 3.2. If f(z)∈Ap belongs to the class LMηp,q(λ;ϕ), then
|ap+2|≤A1[p]2q|L2|([p+2]q−[p]q)[λ([p+2]q−[p]q)+[p]q]×max{1;|A1[p]q[λ([p+1]2q−[p]2q)+[p]2q]([p+1]q−[p]q)[λ([p+1]q−[p]q)+[p]q]2−A2A1|}. |
Moreover, the sharp result holds for the next function
ω(z)=zorω(z)=z2,(z∈Δ). |
If ϕ∈P, by (3.2) and (3.3) we take Lemma 1.6 to prove the next corollary for the coefficient bounds of ap+1 and ap+2.
Corollary 3.3. If f(z)∈Ap belongs to the class LMηp,q(λ;ϕ), then
|ap+1|≤2|E1|[p]2q|L1|([p+1]q−[p]q)[λ([p+1]q−[p]q)+[p]q] |
and
|ap+2|≤2[p]2q|L2|([p+2]q−[p]q)[λ([p+2]q−[p]q)+[p]q]×[(|E2|+|E1|2)+2|E1|2[p]q{λ([p+1]2q−[p]2q)+[p]2q}([p+1]q−[p]q)[λ([p+1]q−[p]q)+[p]q]2]. |
On the other hand, if we take real δ and η, then by Lemma 1.7 we give the next result for Fekete-Szegö problem.
Theorem 3.4. Let δ,η∈R and ϕ∈Λ satisfying
ϕ(z)=1+∞∑n=1Anzn,(A1,A2>0,z∈Δ). |
If f(z)∈Ap belongs to the class LMηp,q(λ;ϕ), then
|ap+2−δa2p+1|≤ |
{[p]2q|L2|([p+2]q−[p]q)[λ([p+2]q−[p]q)+[p]q]{A2−A21[p]qΦL21([p+1]q−[p]q)2[λ([p+1]q−[p]q)+[p]q]2},(δ≤Γ1);A1[p]2q|L2|([p+2]q−[p]q)[λ([p+2]q−[p]q)+[p]q],(Γ1≤δ≤Γ2);[p]2q|L2|([p+2]q−[p]q)[λ([p+2]q−[p]q)+[p]q]{−A2+A21[p]qΦL21([p+1]q−[p]q)2[λ([p+1]q−[p]q)+[p]q]2},(δ≥Γ2), |
where
Γ1={(A2−A1)([p+1]q−[p]q){λ([p+1]q−[p]q)+[p]q}2−A21[p]q[λ([p+1]2q−[p]2q)+[p]2q)]}×L21([p+1]q−[p]q)L2A21[p]2q([p+2]q−[p]q)[λ([p+2]q−[p]q)+[p]q] |
and
Γ2={(A2+A1)([p+1]q−[p]q){λ([p+1]q−[p]q)+[p]q}2−A21[p]q[λ([p+1]2q−[p]2q)+[p]2q)]}×L21([p+1]q−[p]q)L2A21[p]2q([p+2]q−[p]q)[λ([p+2]q−[p]q)+[p]q]. |
Moreover, we choose
Γ3={A2([p+1]q−[p]q){λ([p+1]q−[p]q)+[p]q}2−A21[p]q[λ([p+1]2q−[p]2q)+[p]2q)]}×L21([p+1]q−[p]q)L2A21[p]2q([p+2]q−[p]q)[λ([p+2]q−[p]q)+[p]q]. |
Then, each of the following results is true:
(A) For δ∈[Γ1,Γ3],
|ap+2−δa2p+1|+(A1−A2)L21([p+1]q−[p]q)2[λ([p+1]q−[p]q)+[p]q]2+A21[p]qΦA21L2[p]2q([p+2]q−[p]q)[λ([p+2]q−[p]q)+[p]q]|ap+1|2≤A1[p]2qL2([p+2]q−[p]q)[λ([p+2]q−[p]q)+[p]q]; |
(B) For δ∈[Γ3,Γ2],
|ap+2−δa2p+1|+(A1+A2)L21([p+1]q−[p]q)2[λ([p+1]q−[p]q)+[p]q]2−A21[p]qΦA21L2[p]2q([p+2]q−[p]q)[λ([p+2]q−[p]q)+[p]q]|ap+1|2≤A1[p]2qL2([p+2]q−[p]q)[λ([p+2]q−[p]q)+[p]q], |
where
Φ=δL2[p]q([p+2]q−[p]q)[λ([p+2]q−[p]q)+[p]q]+L21[p+1]q([p+1]q−[p]q)[λ([p+1]q−[p]q)+[p]q]. |
Remark 3.5. Similarly, by taking the parameter p=1 in Theorems 3.1 and 3.4, we can obtain the new results for the univalent function classes LMη1,q(λ;ϕ)=LMηq(λ;ϕ). As Remark 1.4, we may consider LMηp,q(λ;α) or LMηp,q(λ;β) to establish latest results. Clearly, for special parameter λ, we can still imply new results for LMηp,q(λ;ϕ).
In the section we investigate Fekete-Szegö functional problem for the class NSηp,q(μ;ϕ) and obtain the corresponding theorem below.
Theorem 4.1. Let δ∈C. If f(z)∈Ap belongs to the class NSηp,q(μ;ϕ), then
|ap+2−δa2p+1|≤A1[p]q|L2|(μ[p]q+[p+2]q−[p]q)×max{1;|A1[p]qΨ2L21(μ[p]q+[p+1]q−[p]q)2−A2A1|}, |
where
Ψ=2δL2[p]q(μ[p]q+[p+2]q−[p]q)+(μ−1)[μ[p]q+2([p+1]q−[p]q)]L21. |
Moreover, the sharp result holds for the next function
ω(z)=zorω(z)=z2,(z∈Δ). |
Proof. Since f∈NSηp,q(μ;ϕ), from Definition 1.3 there exists an analytic function ω(z)∈Ω such that
(zDq(Jηp,qf)(z)[p]qJηp,qf(z))(Jηp,qf(z)zp)μ=ϕ(ω(z)). | (4.1) |
Part case
zDq(Jηp,qf)(z)[p]qJηp,qf(z)=1+([p+1]q[p]q−1)L1ap+1z+[([p+2]q[p]q−1)L2ap+2−([p+1]q[p]q−1)L21a2p+1]z2+…, |
(Jηp,qf(z)zp)μ=1+μL1ap+1z+[μL2ap+2+μ(μ−1)2L21a2p+1]z2+[μL3ap+3+μ(μ−1)2L1L2ap+1ap+2+μ(μ−1)(μ−2)6L31a3p+1]z3+…. |
Since
(zDq(Jηp,qf)(z)[p]qJηp,qf(z))(Jηp,qf(z)zp)μ=1+([p+1]q[p]q−1+μ)L1ap+1z |
+{([p+2]q[p]q−1+μ)L2ap+2+(μ−1)[([p+1]q[p]q−1)+μ2]L21a2p+1}z2+…, |
from (2.1) and (4.1) we know that
A1E1=([p+1]q[p]q−1+μ)L1ap+1 |
and
A1E2+A2E21=([p+2]q[p]q−1+μ)L2ap+2+(μ−1)[([p+1]q[p]q−1)+μ2]L21a2p+1. |
Thus it deduces that
ap+1=A1E1[p]qL1(μ[p]q+[p+1]q−[p]q) | (4.2) |
and
ap+2=(A1E2+A2E21)[p]qL2(μ[p]q+[p+2]q−[p]q)−(μ−1)A21E21[p]2q[μ[p]q+2([p+1]q−[p]q)]2L2(μ[p]q+[p+2]q−[p]q)(μ[p]q+[p+1]q−[p]q)2. | (4.3) |
Moreover, in the light of (4.2) and (4.3) we know that
ap+2−δa2p+1=A1[p]qL2(μ[p]q+[p+2]q−[p]q)[E2−ℵE21], |
where
ℵ=2δL2[p]q(μ[p]q+[p+2]q−[p]q)+(μ−1)[μ[p]q+2([p+1]q−[p]q)]L212L21(μ[p]q+[p+1]q−[p]q)2A1[p]q−A2A1. |
Hence, in view of Lemma 1.5 we get the Fekete-Szegö functional inequality in Theorem 4.1.
Corollary 4.2. If f(z)∈Ap belongs to the class NSηp,q(μ;ϕ), then
|ap+2|≤A1[p]q|L2|(μ[p]q+[p+2]q−[p]q)×max{1;|A1(μ−1)[p]q{μ[p]q+2([p+1]q−[p]q)}2(μ[p]q+[p+1]q−[p]q)2−A2A1|}. |
Moreover, the sharp result holds for the next function
ω(z)=zorω(z)=z2,(z∈Δ). |
Once ϕ∈P, together with (4.2) and (4.3) we apply Lemma 1.6 to prove the next corollary for the coefficient bounds of ap+1 and ap+2.
Corollary 4.3. If f(z)∈Ap belongs to the class NSηp,q(μ;ϕ), then
|ap+1|≤2E1[p]q|L1|(μ[p]q+[p+1]q−[p]q) |
and
|ap+2|≤2(|E2|+|E1|2)[p]q|L2|(μ[p]q+[p+2]q−[p]q)+2|μ−1||E1|2[p]2q[μ[p]q+2([p+1]q−[p]q)]|L2|(μ[p]q+[p+2]q−[p]q)(μ[p]q+[p+1]q−[p]q)2. |
Clearly, if we let δ and η be real, then from Lemma 1.7 we also show the following result for Fekete-Szegö problem.
Theorem 4.4. Let δ,η∈R and ϕ∈Λ satisfying
ϕ(z)=1+∞∑n=1Anzn,(A1,A2>0,z∈Δ). |
If f(z)∈Ap belongs to the class NSηp,q(μ;ϕ), then
|ap+2−δa2p+1|≤{[p]qL2(μ[p]q+[p+2]q−[p]q){A2−A21[p]qΨ2L21(μ[p]q+[p+1]q−[p]q)2},(δ≤Π1);A1[p]qL2(μ[p]q+[p+2]q−[p]q);[p]qL2(μ[p]q+[p+2]q−[p]q){−A2+A21[p]qΨ2L21(μ[p]q+[p+1]q−[p]q)2},(δ≥Π2), |
where
Π1=2(A2−A1)L21(μ[p]q+[p+1]q−[p]q)2−A21(μ−1)L21[p]q[μ[p]q+2([p+1]q−[p]q)]2L2A21[p]2q(μ[p]q+[p+2]q−[p]q) |
and
Π2=2(A2+A1)L21(μ[p]q+[p+1]q−[p]q)2−A21(μ−1)L21[p]q[μ[p]q+2([p+1]q−[p]q)]2L2A21[p]2q(μ[p]q+[p+2]q−[p]q). |
Moreover, we put
Π1=2A2L21(μ[p]q+[p+1]q−[p]q)2−A21(μ−1)L21[p]q[μ[p]q+2([p+1]q−[p]q)]2L2A21[p]2q(μ[p]q+[p+2]q−[p]q). |
Then, each of the following results is true:
(A) For δ∈[Π1,Π3],
|ap+2−δa2p+1|+2(A1−A2)L21(μ[p]q+[p+1]q−[p]q)2+A21[p]qΨ2L2A21[p]q[μ[p]q+([p+2]q−[p]q)]|ap+1|2≤A1[p]qL2(μ[p]q+[p+2]q−[p]q); |
(B) For δ∈[Π3,Π2],
|ap+2−δa2p+1|+2(A1+A2)L21(μ[p]q+[p+1]q−[p]q)2−A21[p]qΨ2L2A21[p]q[μ[p]q+([p+2]q−[p]q)]|ap+1|2≤A1[p]qL2(μ[p]q+[p+2]q−[p]q), |
where
Ψ=2δL2[p]q(μ[p]q+[p+2]q−[p]q)+(μ−1)[μ[p]q+2([p+1]q−[p]q)]L21. |
Remark 4.5. Similarly, by choose the parameter p=1 in Theorems 4.1 and 4.4, we can provide the new results for the univalent function classes NSη1,q(μ;ϕ)=NSηq(μ;ϕ). As Remark 1.4, we may consider NSηp,q(μ;α) or NSηp,q(μ;β) to establish latest results. Besides, for the fixed parameter μ, we can still infer new results for NSηp,q(μ;ϕ).
By involving a generalized Bernardi integral operator, several new subclasses of q-starlike and q-convex type analytic and multivalent functions are introduced to generalize the classical starlike and convex functions. Meanwhile, for these classes we may know integral operator and q-derivative as well as multivalency how to change the coefficients of functions. In our main results, we establish the Fekete-Szegö type functional inequalities for these function classes. Further, the corresponding bound estimates of the coefficients ap+1 and ap+2 are interpreted. In fact, if we use the other integral operators or take (p,q)-operator when certain function is univalent but not multivalent, we may get many similar results as in this article.
We thank the referees for their careful readings and using comments so that this manuscript is greatly improved. This work is supported by Institution of Higher Education Scientific Research Project in Ningxia of the People's Republic of China under Grant NGY2017011, Natural Science Foundation of Ningxia of the People's Republic of China under Grant 2020AAC03066, the Program for Young Talents of Science and Technology in Universities of Inner Mongolia Autonomous Region under Grant NJYT-18-A14, the Natural Science Foundation of Inner Mongolia of the People's Republic of China under Grant 2018MS01026, the Natural Science Foundation of the People's Republic of China under Grant 11561001, 42064004 and 11762016.
The authors declare no conflict of interest.
[1] | Govorov G (2000) Geodynamics of Small-Kuril paleoarc system after geochronological and petrochemical data. Dokl Earth Sci 372: 521–524. In Russian. |
[2] | Govorov G (2002) Phanerozoic Magmatic Belts and Origin of the Okhotsk Sea Geoblock Structure. Dalnauka Vladivostok: 1–97. In Russian. |
[3] | Parfenov L, Popeko V, Popeko L (1983) The main structural and material complexes of Shikotan Island and their geological nature (Lesser Kurile Islands). Russ Geol Geophys 10: 24–34. In Russian. |
[4] | Melankholina EN (1978) Gabbroids and parallel dikes in the structure of the island of Shikotan (Lesser Kuril Islands). Geotectonics. 3: 128–136. |
[5] | Gorshkov G, Markhinin E, Rodionova R, et al. (1964) Description of the volcanoes of the Kuril Islands. Geol USSR 31: 581–604. In Russian. |
[6] | Sasa Y (1932) On the geological structure of Shikotan Island (Lesser Kuril Ridge). Geol J 39: 465. In Russian. |
[7] | Goliokko B (1992) The structure and geological development of the southern part of the Kuril island arc in the Late Cretaceous-Miocene in connection with the subduction of the Pacific plate. Dissertation, Shirshov Institute of Oceanology of Russian Academy of Sciences. In Russian. |
[8] | Bogatikov O, Tsvetkov A (1988) Magmatic Evolution of Island Arcs, Nauka, Moscow, 1–247. In Russian. |
[9] | Frolova T, Burikova I, Guschin A, et al. (1985) The Origin of the Volcanic Series of Island Arcs, Nedra, Moscow, 275. In Russian. |
[10] | Frolova T, Burikova I, Frolov V, et al. (1977) Peculiarities of volcanism of the Lesser Kuril Arc. Bulletin MOIP Branch of the Geology 4: 38–50. In Russian. |
[11] | Govorov G, Tsvetkov A (1985) Basaltoid magmatism of the Lesser Kuril Arc, In: Volcanic and Volcanic-Sedimentary Rocks of the Far East, Far Eastern Branch of the USSR Academy of Sciences, Vladivostok. In Russian. |
[12] | Krasilov V, Blohina N, Kundyshev A, et al. (1986) New data on the stratigraphy and geological history of the Lesser Kuril Arc. Dokl Earth Sci 291: 177–180. In Russian. |
[13] | Terekhov E, Mozherovsky A (2007) Bottom relief of the central part of the Sea of Okhotsk (View from space). Dep. VINITI 327-В2007. Available from: https://elibrary.ru/item.asp?id = 18282357. In Russian. |
[14] |
Markevich VS, Mozherovsky AV, Terekhov EP (2012) Palynological characteristics of the sediments of the Malokuril'skaya formation (Maastrichtian-Danian), Shikotan Island. Stratigr Geol Correl 20: 466–477. https://doi.org/10.1134/S0869593812040041 doi: 10.1134/S0869593812040041
![]() |
[15] | Mozherovsky AV, Terekhov EP (2016) Authigenic minerals of Meso-Cenozoic volcanic-sedimentary rocks of marginal seas bottom of the North-Western Pacific. Stand Glob J Geol Explor Res 3: 105–114. |
[16] |
Palechek TN, Terekhov EP, Mozherovskii AV (2008) Campanian-Maastrichtian radiolarians from the Malokuril'skaya formation, the Shikotan Island. Stratigr Geol Correl 16: 650–663. https://doi.org/10.1134/S0869593808060051 doi: 10.1134/S0869593808060051
![]() |
[17] |
Tsvetkov AA, Govorov GI, Tsvetkova MV, et al. (1986) The Evolution of Magmatism in the Lesser Kuril Ridge of the Kuril Island-Arc System. Int Geol Rev 28: 180–196. https://doi.org/10.1080/00206818609466259 doi: 10.1080/00206818609466259
![]() |
1. | Julalak Prabseang, Kamsing Nonlaopon, Jessada Tariboon, Sotiris K. Ntouyas, Refinements of Hermite–Hadamard Inequalities for Continuous Convex Functions via (p,q)-Calculus, 2021, 9, 2227-7390, 446, 10.3390/math9040446 | |
2. | Ammara Nosheen, Anum Saba, Khuram Ali Khan, Michael Kikomba Kahungu, Ewa Pawluszewicz, q,h-Opial-Type Inequalities via Hahn Operators, 2022, 2022, 1607-887X, 1, 10.1155/2022/2650126 | |
3. | Suriyakamol Thongjob, Kamsing Nonlaopon, Jessada Tariboon, Sortiris K. Ntouyas, Generalizations of some integral inequalities related to Hardy type integral inequalities via (p,q)-calculus, 2021, 2021, 1029-242X, 10.1186/s13660-021-02641-8 | |
4. | Mohammed Muniru Iddrisu, Some New Integral Inequalities for Convex Functions in (p,q)-Calculus, 2022, 2581-8147, 237, 10.34198/ejms.9222.237247 | |
5. | Zhao Guo, Lei Ren, Solving elliptic Schrödinger systems with control constraints, 2021, 11, 1664-2368, 10.1007/s13324-021-00601-5 | |
6. | Suriyakamol Thongjob, Kamsing Nonlaopon, Sortiris K. Ntouyas, Some (p, q)-Hardy type inequalities for (p, q)-integrable functions, 2021, 6, 2473-6988, 77, 10.3934/math.2021006 | |
7. | José Oscar González-Cervantes, Juan Bory-Reyes, Irene Sabadini, A Borel–Pompeiu formula in a (q,q′)-model of quaternionic analysis, 2025, 66, 0022-2488, 10.1063/5.0196814 | |
8. | Jiao Yu, Lin Han, Some Carleman-type inequalities in (p,q)-calculus, 2025, 2025, 1029-242X, 10.1186/s13660-025-03281-y |