Processing math: 100%
Research article

Spatio-temporal alterations, configurations, and distribution of green areas, along with their sustainability in Parakou, Benin

  • Green areas (GAs) are swiftly declining in urban areas worldwide, amplifying adverse local climate impacts on the well-being of city residents. Despite this, there is limited empirical research on the changing patterns and distribution of GAs and their vulnerability. This is especially notable in dry tropical cities where these spaces function as vital microclimate areas that control against climate change effects such as flooding and heat islands. This study focused on examining the changing GA coverage, scrutinizing the spatial distribution of different GA categories, and investigating threat factors associated with their perceived sustainability in Parakou. Employing a mixed-methods approach, open-source geospatial data and collected primary data were acquired through on-site observations as well as semi-structured interviews. Data analysis involved the application of geospatial, statistical, and textual techniques. The results indicated that, from 2000 to 2020, the city experienced a loss of 16.48 km2 (24.73%) in its GA cover. The predominant land use change observed was the conversion of sparse vegetation (21.86%) into built-up areas. A notable difference (P < 0.0001) was observed among GA categories, revealing an aggregated spatial pattern [g (r) > 1] that emphasizes the necessity for tailored strategies to enhance and conserve each GA category within the city. Furthermore, there is a perception of critical degradation in various GA categories, namely city bush, cropland, and forest plantation. The primary causes identified for GA depletion in the city were poor management strategies and lack of planning. These results could provide valuable guidance for policymakers, urban planners, and cityscape architects with a focus on urban sustainability, particularly regarding the development of GAs in the Republic of Benin.

    Citation: Bokon A Akakpo, Elie A Padonou, Appollonia A Okhimamhe, Emmanuel T Umaru, Akomian F Azihou, Haruna Ibrahim, Vincent AO Orekan, Brice A Sinsin. Spatio-temporal alterations, configurations, and distribution of green areas, along with their sustainability in Parakou, Benin[J]. AIMS Geosciences, 2024, 10(3): 553-572. doi: 10.3934/geosci.2024029

    Related Papers:

    [1] Ruizhi Yang, Dan Jin . Dynamics in a predator-prey model with memory effect in predator and fear effect in prey. Electronic Research Archive, 2022, 30(4): 1322-1339. doi: 10.3934/era.2022069
    [2] Miao Peng, Rui Lin, Zhengdi Zhang, Lei Huang . The dynamics of a delayed predator-prey model with square root functional response and stage structure. Electronic Research Archive, 2024, 32(5): 3275-3298. doi: 10.3934/era.2024150
    [3] Wenbin Zhong, Yuting Ding . Spatiotemporal dynamics of a predator-prey model with a gestation delay and nonlocal competition. Electronic Research Archive, 2025, 33(4): 2601-2617. doi: 10.3934/era.2025116
    [4] Xiaowen Zhang, Wufei Huang, Jiaxin Ma, Ruizhi Yang . Hopf bifurcation analysis in a delayed diffusive predator-prey system with nonlocal competition and schooling behavior. Electronic Research Archive, 2022, 30(7): 2510-2523. doi: 10.3934/era.2022128
    [5] Yujia Xiang, Yuqi Jiao, Xin Wang, Ruizhi Yang . Dynamics of a delayed diffusive predator-prey model with Allee effect and nonlocal competition in prey and hunting cooperation in predator. Electronic Research Archive, 2023, 31(4): 2120-2138. doi: 10.3934/era.2023109
    [6] Fengrong Zhang, Ruining Chen . Spatiotemporal patterns of a delayed diffusive prey-predator model with prey-taxis. Electronic Research Archive, 2024, 32(7): 4723-4740. doi: 10.3934/era.2024215
    [7] Jiani Jin, Haokun Qi, Bing Liu . Hopf bifurcation induced by fear: A Leslie-Gower reaction-diffusion predator-prey model. Electronic Research Archive, 2024, 32(12): 6503-6534. doi: 10.3934/era.2024304
    [8] San-Xing Wu, Xin-You Meng . Hopf bifurcation analysis of a multiple delays stage-structure predator-prey model with refuge and cooperation. Electronic Research Archive, 2025, 33(2): 995-1036. doi: 10.3934/era.2025045
    [9] Jiange Dong, Xianyi Li . Bifurcation of a discrete predator-prey model with increasing functional response and constant-yield prey harvesting. Electronic Research Archive, 2022, 30(10): 3930-3948. doi: 10.3934/era.2022200
    [10] Chen Wang, Ruizhi Yang . Hopf bifurcation analysis of a pine wilt disease model with both time delay and an alternative food source. Electronic Research Archive, 2025, 33(5): 2815-2839. doi: 10.3934/era.2025124
  • Green areas (GAs) are swiftly declining in urban areas worldwide, amplifying adverse local climate impacts on the well-being of city residents. Despite this, there is limited empirical research on the changing patterns and distribution of GAs and their vulnerability. This is especially notable in dry tropical cities where these spaces function as vital microclimate areas that control against climate change effects such as flooding and heat islands. This study focused on examining the changing GA coverage, scrutinizing the spatial distribution of different GA categories, and investigating threat factors associated with their perceived sustainability in Parakou. Employing a mixed-methods approach, open-source geospatial data and collected primary data were acquired through on-site observations as well as semi-structured interviews. Data analysis involved the application of geospatial, statistical, and textual techniques. The results indicated that, from 2000 to 2020, the city experienced a loss of 16.48 km2 (24.73%) in its GA cover. The predominant land use change observed was the conversion of sparse vegetation (21.86%) into built-up areas. A notable difference (P < 0.0001) was observed among GA categories, revealing an aggregated spatial pattern [g (r) > 1] that emphasizes the necessity for tailored strategies to enhance and conserve each GA category within the city. Furthermore, there is a perception of critical degradation in various GA categories, namely city bush, cropland, and forest plantation. The primary causes identified for GA depletion in the city were poor management strategies and lack of planning. These results could provide valuable guidance for policymakers, urban planners, and cityscape architects with a focus on urban sustainability, particularly regarding the development of GAs in the Republic of Benin.



    Recently, using Solodov and Svaiter's projection technique [1], several conjugate gradient methods for solving large-scale unconstrained optimization problems have been extended to solve nonlinear equations with convex constraints (see, [2,3,4,5,6,7,8,9] and the references therein). Due to its simplicity, low storage requirement, and applications, the method has been of interest to various research communities [10,11,12,13,14]. As known, the Fletcher-Reeves (FR) [15], Conjugate Descent (CD) [16] and Dai-Yuan (DY) [17] conjugate gradient methods have strong convergence properties, but due to jamming, they do not do well in practice. Having said that, the Hestenes-Stiefel (HS) [18], Polak-Ribiére-Polyak (PRP) [19,20], and Liu-Storey (LS) [21] conjugate gradient methods do not necessarily converge, but they often work better than FR, CD and DY. In [22], in order to combine the numerical efficiency of the LS method and the strong convergence of the FR method, Djordjević proposed a hybrid LS-FR conjugate gradient method for solving the unconstrained optimization problem. In her work, the conjugate gradient parameter was computed as a convex combination of the LS and FR conjugate gradient parameter. The hybridization parameter for the convex combination was obtained in such a way that the direction of the proposed method satisfies the condition of the Newton direction but also at the same time, it satisfies the famous Dai-Liao conjugacy condition.

    In an attempt to extend the LS-FR method of Djordjević to solve monotone nonlinear equations with convex constraints, Ibrahim et al. [23] proposed a derivative-free hybrid LS-FR conjugate gradient method with a conjugate gradient parameter computed as a convex combination of derivative-free LS and FR conjugate gradient parameter. The hybridization parameter of the convex combination in their work was obtained to satisfy the famous conjugacy condition. Numerical results show that the method is efficient for solving nonlinear monotone equations with convex constraints. It is noteworthy to state that, several conditions were imposed on the hybridization parameter used in [23] in order for the hybridization parameter to take values within the interval (0,1).

    Our motivation is the following: Can we extend the LS-FR method proposed by Djordjević to construct an efficient hybrid gradient-free projection algorithm where the hybridization parameter has no condition imposed on it and the hybridization parameter will always take values in the interval [0,1])? In this paper, we give a positive answer to this question. The remainder of the paper is organized as follows. In Section 2, we describe the algorithm and some properties. In Section 3, we analyze the global convergence of the method. Numerical example and application are presented in Section 4 and 5 respectively.

    Consider the following unconstrained optimization problem

    minimizeg(z),zRn, (2.1)

    where g:RnR is a continuously differentiable function whose gradient at zk is denoted by f(zk):=(zk). Given any starting point z0Rn, the algorithm in [22] is to generate a sequence of approximation {zk} to the minimum z of g, in which

    zk+1=zk+tkjk,k0, (2.2)

    where tk>0 is the steplength which is computed by a certain line search and jk is the search direction defined by

    jk={f(zk)+βkjk1if k>0,f(zk)if k=0, (2.3)

    with βk defined by

    βk=(1θk)f(zk)Tyk1f(zk1)Tjk1+θkf(zk)2f(zk1)2,yk1=f(zk)f(zk1). (2.4)

    where θk is a hybridization parameter chosen to satisfy the Dai-Liao's condition, that is, {for t>0,}

    jTkyk1=tsTk1f(zk),

    where sk1=zk+1zk.

    Motivated by (2.3) and (2.4), we propose a gradient free projection algorithm for solving the following nonlinear equation with convex constraints:

    ρ(z)=0,zΩ (2.5)

    where ΩRn is a nonempty closed convex set, and ρ:RnRn is a continuous mapping. Our propose gradient-free projection iterative method first generates a trial point say {ck} using the relation:

    ck=zk+tkjk,tk>0, (2.6)

    the search direction jk is computed by

    jk={ρ(zk)if k=0,πkρ(zk)+βkwk1if k>0, (2.7)

    where βk is computed

    βk:=(1θk)ρ(zk)Tyk1ρ(zk1)Tjk1+θkρ(zk)2ρ(zk1)2,θk:=yk12yTk1wk1,wk1:=wk1+(max{0,wTk1yk1yk12}+1)yk1,yk1:=ρ(zk)ρ(zk1),wk1:=ck1zk1,

    and πk is obtained to satisfy the descent condition, that is, for α>0,

    jTkρ(zk)αρ(zk)2. (2.8)

    For k=0, (2.8) obviously holds. For kN, we have

    ρ(zk)Tjk(πkβkρ(zk)Twk1ρ(zk1)2)ρ(zk)2. (2.9)

    To satisfy (2.8), we only need that

    πkl+βkρ(zk)Twk1ρ(zk1)2,l>0. (2.10)

    In this paper, we choose πk as

    πk=l+βkρ(zk)Twk1ρ(zk1)2. (2.11)

    It is important to note that, θk has the following property:

    yTk1wk1max{yTk1wk1,yk12}yk12>0.

    Thus,

    θk=yk12yTk1wk1(0,1),k.

    The definition of wk1 is from the ideas of Li and Fukushima [24,25]. The definition of θk was originally proposed by Birgin and Martinez [26] and similar idea can be found in [27,28] and other optimization literature. The proposed algorithm is described immediately after recalling the definition of the projection operator.

    Definition 2.1. Let ΩRn be a nonempty closed convex set. Then for any xRn, its projection onto Ω, denoted by PΩ[x], is defined by

    PΩ[x]:=argmin{xy :yΩ}.

    The projection operator PΩ has a well-known property, that is, for any x,yRn the following nonexpansive property hold

    PΩ(x)PΩ(y)xy,x,yRn. (2.12)

    Algorithm 1:
    Input. Choose an initial point z0Ω, Initialize the variables: τ(0,1),η(0,2) Tol>0, κ>0,l>0. Set k=0.
    Step 0. Compute ρ(zk). If ρ(zk)Tol, stop. Otherwise, compute jk by (2.7)
    Step 1. Determine the steplength tk=max{τm|m=0,1,2,} such that
    ρ(zk+τmjk)Tjkκτmjk2.    (2.13)
    Step 2. Compute the trial point ck=zk+tkjk.
    Step 3. If ckΩ and ρ(ck)Tol, stop. Otherwise, compute
    zk+1=PΩ[zkημkρ(ck)]  (2.14)
    where
    μk=ρ(ck)T(zkck)ρ(ck)2.
    Step 4. Set k:=k+1 and go to step 1.

    In what follows, we assume that ρ satisfies the following assumptions.

    Assumption 1. The solution set Ω is nonempty.

    Assumption 2. The mapping ρ is Lipschitz continuous on Rn. That is,

    ρ(x)ρ(y)Lxy,x,yRn.

    Assumption 3. For any yΩ and xRn, it holds that

    ρ(x)T(xy)0. (3.1)

    Lemma 3.1. Suppose that Assumption 1 holds. Then there exists a step-size tk satisfying the line search (2.13) for k0.

    Proof. Assume there exist k00 such that (2.13) fails to hold for any i0, that is

    ρ(zk0+τijk0),jk0<κτijk02,i1.

    Applying the continuity property of ρ and letting i yields

    ρ(zk0)Tjk00,

    which negates (2.8). Hence proved.

    Lemma 3.2. Suppose Assumption 1-3 is satisfied and the sequences {zk,ck,tk,jk} are generated by Algorithm 1. Then

    tkmin{1,τ(L+κ)ρ(zk)2jk2}.

    Proof. Note that from (2.13), if tk1, then ˉtk=τ1tk does not satisfy (2.13), that is,

    ρ(zk+τ1tkjk)Tjk<κτ1tkjk2. (3.2)

    Combining the above inequality with the descent condition (2.8), we have

    ρ(zk)2=ρ(zk)Tjk=(ρ(zk+τ1tk)ρ(zk))Tjkρ(zk+τ1tk)Tjkτ1tkLjk2+τ1tkκjk2=τ1tk(L+κ)jk2. (3.3)

    Since ρ satisfies Assumption 2 then, (3.3) holds. Thus, from (3.3),

    tkmin{1,τ(L+κ)ρ(zk)2jk2}. (3.4)

    This proves Lemma 3.2.

    Lemma 3.3. Suppose that Assumptions 1-3 hold and let {zk} and {ck} be the sequences generated by Algorithm 1. Then, ρ(ck) is an ascent direction of the function zz2 at the point zk, where zΩ.

    Proof. At zk, the function 12xz2 has a gradient of zkz. By the weakly monotonicity property (3.1), it can be seen that

    ρ(ck)T(zkz)=ρ(ck)T(zk+ckckz)=ρ(ck)T(ckz)+ρ(ck)T(zkck)=ρ(ck)T(zkck)κt2kjk2=κzkck2>0. (3.5)

    The inequality above, i.e., (3.5) points out that ρ(ck) is a descent direction of the function zz at the iteration point zk.

    Lemma 3.4. Let Assumption 1-3 hold and the sequence {zk} be generated by Algorithm 1. Suppose that z is a solution of problem (2.5) with ρ(z)=0. Then there exists a positive δ>0 such that

    ρ(zk)δ. (3.6)

    Proof. Remember, by using the well-known property of PΩ, we can deduce that for any zΩ,

    zk+1z2=PΩ[zkημkρ(ck)]z2zkημkρ(ck)z2=zkz2ημkρ(ck)T(zkz)+η2μ2kρ(ck)2=zkz2ηρ(ck)T(zkck)ρ(ck)2ρ(ck)T(zkz)+η2(ρ(ck)T(zkck)ρ(ck))2zkz2ηρ(ck)T(zkck)ρ(ck)2ρ(ck)T(zkck)+η2(ρ(ck)T(zkck)ρ(ck))2=zkz2η(2η)(ρ(ck)T(zkck)ρ(ck))2 (3.7)
    zkz2. (3.8)

    From inequality (3.8) we see that {zkz} is a decreasing sequence and hence {zk} is bounded. That is,

    zka0,a0>0. (3.9)

    Furthermore, we obtain

    zk+1zzkzzk1zz0z. (3.10)

    Using the Lipchitz continuity of ρ, we have

    ρ(zk)=ρ(zk)ρ(z)LzkzLz0z. (3.11)

    Setting δ=Lz0z proves Lemma 3.4.

    Lemma 3.5. Suppose Assumption 1-3 hold and the sequence {zk} and {ck} are generated by Algorithm 1. Then,

    (a) {ck} is bounded

    (b) limkzkck=0

    (c) limkzkzk+1=0.

    Proof. (a) From (3.10), we know that the sequence {zk} is bounded. So by (3.5), we have

    ρ(ck)T(zkck)κzkck2. (3.12)

    By (3.1) and (3.6) we have

    ρ(ck)T(zkck)=(ρ(ck)ρ(zk))T(zkck)+ρ(zk)T(zkck)ρ(zk)zkckδzkck.

    Combined with (3.12), it is easy to deduce that

    zkckδκ.

    Then, we obtain,

    ckδκ+zk

    Thus {ck} is bounded due to {zk} boundedness.

    (b) From inequality (3.7), we get

    zk+1zzkz2η(2η)[ρ(ck)T(zkck)]2ρ(ck)2zkz2η(2η)κ2zkck4ρ(ck)2,

    which means

    η(2η)zkck4ρ(ck)2κ2(zkz2zk+1z2).

    Since the mapping ρ is continuous, and the {ck} is bounded, we know that {ρ(ck)} is bounded. Therefore a positive δ1>0 exists, such that ρ(ck)δ1 and moreover

    η(2η)k=0zkck4δ21κ2k=0(zkz2zkz2)=δ21κ2z0z2<+.

    Hence,

    limktkjk=limkzkck=0. (3.13)

    Using the property of the projection operator, i.e., (2.12), we have

    zkzk+1=zkPΩ[zkημkρ(ck)]zk(zkημkρ(ck))=ημkρ(ck)ηzkck.

    The global convergence result for Algorithm 1 is established via the following theorem.

    Theorem 3.6. Suppose Assumption 1-3 is satisfied and the sequences {zk} are generated by the Algorithm 1. Then we

    lim infkρ(zk)=0. (3.14)

    Proof. Suppose (3.14) does not hold, meaning there exist a constant ε0>0 such that

    ρ(zk)ε0k0. (3.15)

    By (2.8), we know

    ρ(zk)jkρ(zk)Tjkαρ(zk)2,

    which implies

    jkαρ(zk)ε0,k0. (3.16)

    By (2.3), we have

    jk=πkρ(zk)+βkwk1=(c+βkρ(zk)Twk1ρ(zk1)2)ρ(zk)+((1θk)ρ(zk)Tyk1ρ(zk1)Tjk1+θkρ(zk)2ρ(zk1)2)wk1lρ(zk)+|βk|wk1+(ρ(zk)|ρ(zk1)Tjk1|yk1+ρ(zk)2ρ(zk1)2)wk1lρ(zk)+2(ρ(zk)|ρ(zk1)Tjk1|yk1+ρ(zk)2ρ(zk1)2)wk1lρ(zk)+2(ρ(zk)αρ(zk1)2tk1jk1+ρ(zk)2ρ(zk1)2)tk1jk1lδ+2δε20(tk1jk1)2+2δ2ε20tk1jk1

    for all kN. Since (3.13) holds, it follows that for every ε1>0 there exist k0 such that tk1jk1<ε1 for every k>k0. Choosing ε1=ε0 and 0=max{j0,j1,,jk0,01} where 01=δ(c+2+2δ/ε0), it holds that

    jk0 (3.17)

    for every kN. Integrating with (3.4),(3.15),(3.16) and (3.17), we know that for any k sufficiently large

    tkjkmin{1,τ(L+κ)ρ(zk)2jk2}jk=min{jk,τ(L+κ)ρ(zk)2jk}min{ε0,τε20(L+κ)0}

    The last inequality yields a contradiction with (b) in Lemma 3.5. Consequently, (3.14) holds. The proof is completed.

    The Dolan and Moré performance profile [29] is used in this section to evaluate the efficiency of the proposed algorithm on a set of test problems with varying dimensions and initial points. Comparison is made with algorithm of the same class proposed in [30]. All codes were written in MATLAB environment and compiled on a HP laptop (CPU Corei3-2.5 GHz, RAM 8 GB) with Windows 10 operating system.

    Algo.1: The new method (Algorithm 1).

    Algo.2: MFRM method proposed in [30].

    The parameters for Algo.1 are chosen as: τ=0.9,κ=104,η=1.2. While parameters for Algo.2 are set as reported in [30]. All iterative procedure are terminated whenever ρ(zk)<106. The experiment is carried out on nine different problems with dimensions ranging from n=1000,5000,10,000,50,000,100,000 using seven different initial points: z1=(0.1,,0.1)T,z2=(0.2,,0.2)T,z3=(0.5,,0.5)T,z4=(1.2,,1.2)T,z5=(1.5,,1.5)T,z6=(2,,2)T and z7=rand(n,1). The test problems considered are listed the below where the mapping ρ(z)=(ρ1(z),ρ2(z),,ρn(z))T

    Problem 1 [31] Exponential Function.

    ρ1(z)=ez11,ρi(z)=ezi+zi1,for i=2,3,...,n,and Ω=Rn+.

    Problem 2 [31] Modified Logarithmic Function.

    ρi(z)=ln(zi+1)zin,for i=1,2,3,...,n,and Ω={zRn:ni=1zin,zi>1,i=1,2,,n}.

    Problem 3 [32]

    ρi(z)=min(min(|zi|,z2i),max(|zi|,z3i))for i=2,3,...,n,and Ω=Rn+.

    Problem 4 [31] Strictly Convex Function I.

    ρi(z)=ezi1,for i=1,2,...,n,and Ω=Rn+.

    Problem 5 [31] Strictly Convex Function II.

    ρi(z)=inezi1,for i=1,2,...,n,and Ω=Rn+.

    Problem 6 [33] Tridiagonal Exponential Function.

    ρ1(z)=z1ecos(h(z1+z2)),ρi(z)=ziecos(h(zi1+zi+zi+1)),for i=2,...,n1,ρn(z)=znecos(h(zn1+zn)),h=1n+1

    Problem 7 [34] Nonsmooth Function.

    ρi(z)=zisin|zi1|,i=1,2,3,...,n,and Ω={zRn:ni=1zin,zi1,i=1,2,,n}.

    Problem 8 [31] The Trig exp function

    ρ1(z)=3z31+2z25+sin(z1z2)sin(z1+z2)ρi(z)=3z3i+2zi+15+sin(zizi+1)sin(zi+zi+1)+4zizi1ezi1zi3fori=2,3,...,n1ρn(z)=zn1ezn1zn4zn3,where h=1m+1 and  Ω=Rn+..

    Problem 9 [35]

    ti=ni=1z2i,c=105ρi(z)=2c(zi1)+4(ti0.25)zi,i=1,2,3,...,n.and Ω=Rn+.

    Figures 1-3 presents the results of the comparisons of the mentioned methods. Figure 1 shows the graph of the two methods where the performance measure is the total number of iterations. In the figure, we see that the Algo.1 obtain the most wins with the probability around 78 % and the Algo.2 method is in the second place. Figure 2 shows the performance of the considered methods relative to the total number of function evaluation. Graph of this measure shows that Algo.1 has better performance in comparison with Algo.2. In Figure 3 the performance measure is the CPU running time. The CPU running time figure also indicates that Algo.1 outperforms Algo.2. From the presented figures, it is clear that Algo.1 is the most efficient in solving the considered test problems. A detailed result of the numerical experiment for the test problems is reported in Table 2-10 in the appendix section.

    Figure 1.  Performance profiles for the number of iterations.
    Figure 2.  Performance profiles for the number of function evaluations.
    Figure 3.  Performance profiles for the CPU time.

    The restoration of images is a process in which a distorted or damaged image is restored to its original form. Having an algorithm that can perform such function with high restoration efficiency is of importance. We consider the signal-to-noise ratio (SNR), peak signal-to-noise ratio (PSNR) and the structural similarity index (SSIM) as a metric for measuring the restoration efficiency. SNR, PSNR and SSIM's larger values reflect better quality of the restored images and indicate that the restored images are closer to the original. Consider the following disturbed or incomplete observation

    b=ρz+ω, (5.1)

    where zRn,bRk is the observation data, ρRk×n(k<<n) is a linear operator and ωRk is an error term. Our goal in this section is to recover the unknown vector z. A well-known approach for obtaining z is by solving the following 1-regularization problem

    minzRn{σz1+12ρzb22} (5.2)

    where the regularization term σ is positive, 1, and 2 are the 1-norm and 2-norm respectively. See (Refs. [36,37,38,39,40]) for various algorithms for solving (5.2). For a comprehensive procedure on how to use our proposed algorithm to solve (5.2), see [41,42].

    To assess the efficiency of Algo.1 in restoring the images degraded using a Gaussian blur kernel of standard deviation 0.1, we compare its performance with the modified Fletcher-Reeves conjugate Gradient method proposed in [30]. The algorithm is referred to as Algo.2. Four test images with different sizes are considered in this experiment. The images are labelled as A, B, C and D. The algorithms are implemented based on the following

    ● All codes were written and implemented in Matlab environment.

    ● Same starting point and stopping condition (with Tol=105) for all the algorithms.

    ● Parameters for Algo.1, are chosen as η=1,τ=0.55,κ=104. Parameters for Algo.2 are chosen as reported in the application section of [30].

    ● The linear operator ρ in the experiment is choosen as the Gaussian matrix generated by the command rand(k,n) in MATLAB.

    ● The signal-to-noise ratio (SNR) is defined as

    SNR:=20×log10(z˜zz),

    where ˜z is recovered vector. The definition of the peak-to-signal and the structural similarity index (SSIM) ratio (PSNR) can be found in [43] and [44], respectively.

    Table 1.  The numerical results obtained by Algo.1 and Algo.2 methods in restoring the blurred and noisy images.
    Algo.1 Algo.2
    Test Image SNR PSNR SSIM SNR PSNR SSIM
    A 16.74 19.03 0.765 16.66 18.95 0.760
    B 16.65 21.98 0.911 16.59 21.93 0.910
    C 20.93 22.76 0.913 20.87 22.70 0.912
    D 18.80 21.71 0.931 18.68 21.58 0.929

     | Show Table
    DownLoad: CSV

    Figure 4 has four columns labelled ORI, BNI, RA1 and RA2. Images on the column labelled ORI are the original images, images on the column labelled BNI are the blurred and noisy images. RA1 are the images restored by Algo.1 and RA2 are images restored by Algo.2. Table 1 provides the SNR, PSNR and SSIM values for Algo.1 and Algo.2. It can be seen that Algo.1 has the highest SNR, PSNR and SSIM in all the images used for the experiment. This indicates that Algo.1 is more effective than Algo.2 in restoring blurred and noisy images.

    Figure 4.  From the left: The original, blurred and noisy images, restored images by Algo.1 and 2.

    "The authors acknowledge the support provided by the Theoretical and Computational Science (TaCS) Center under Computational and Applied Science for Smart research Innovation Cluster (CLASSIC), Faculty of Science, KMUTT. The first author was supported by the Petchra Pra Jom Klao Doctoral Scholarship, Academic for Ph.D. Program at KMUTT (Grant No.16/2561)."

    The authors declare that they have no conflict of interest.

    Table 2.  Numerical result for Problem 1.
    Algo.1 Algo.2
    dim inp nit nfv tim norm nit nfv tim norm
    1000 z1 3 11 0.020026 0 32 128 0.15285 5.77E-07
    z2 2 7 0.022233 0 23 92 0.046757 1.03E-07
    z3 3 11 0.028924 0.00E+00 43 172 0.085067 3.24E-07
    z4 2 7 0.01272 0.00E+00 28 112 0.042162 8.50E-07
    z5 2 7 0.012594 0 38 152 0.082875 7.44E-07
    z6 2 7 0.006795 0.00E+00 34 136 0.061034 4.36E-07
    z7 29 116 0.098046 3.71E-08 62 248 0.1162 3.84E-07
    5000 z1 2 7 0.1681 0 16 64 0.097823 4.98E-07
    z2 2 7 0.07673 0 27 108 0.16998 5.89E-08
    z3 2 7 0.019262 0.00E+00 34 136 0.43167 8.96E-07
    z4 2 7 0.041163 0.00E+00 43 172 0.24401 4.77E-07
    z5 2 7 0.035437 0.00E+00 36 144 0.28409 4.72E-07
    z6 2 7 0.031377 0 25 100 0.1577 8.50E-07
    z7 68 272 1.5225 2.22E-08 NaN NaN NaN NaN
    10000 z1 2 7 0.067548 0 7 28 0.080462 7.04E-07
    z2 2 7 0.02502 0 24 96 0.9236 2.84E-07
    z3 2 7 0.037267 0.00E+00 21 84 0.82591 6.94E-07
    z4 2 7 0.027143 0 38 152 0.97602 5.16E-07
    z5 2 7 0.070627 0 28 112 0.46927 8.68E-07
    z6 2 7 0.052355 0 25 100 0.28425 8.52E-07
    z7 107 428 9.536 3.42E-08 NaN NaN NaN NaN
    50000 z1 2 7 0.35904 0 7 28 0.29707 2.32E-07
    z2 2 7 0.24819 0 15 60 1.212 2.10E-07
    z3 2 7 0.21212 0.00E+00 7 28 0.33872 7.76E-07
    z4 2 7 0.265 0.00E+00 24 96 1.2315 7.36E-07
    z5 2 7 0.22679 0.00E+00 21 84 0.98662 9.19E-07
    z6 2 7 0.46048 0.00E+00 8 32 0.44742 4.62E-07
    z7 353 1412 85.8011 1.12E-11 NaN NaN NaN NaN
    100000 z1 2 7 0.26127 0 7 28 0.66487 2.45E-07
    z2 2 7 0.42916 0 14 56 1.9555 4.72E-07
    z3 2 7 0.29924 0.00E+00 7 28 0.65463 8.36E-07
    z4 2 7 0.47753 0 28 112 4.5812 5.94E-07
    z5 2 7 0.28228 0.00E+00 17 68 2.0596 5.23E-07
    z6 2 7 0.45284 0.00E+00 8 32 1.4187 3.26E-07
    z7 NaN NaN NaN NaN NaN NaN NaN NaN

     | Show Table
    DownLoad: CSV
    Table 3.  Numerical result for Problem 2.
    Algo.1 Algo.2
    dim inp nit nfv tim norm nit nfv tim norm
    1000 z1 7 22 0.047242 1.58E-09 4 12 0.075993 5.17E-07
    z2 7 22 0.011612 2.12E-09 5 15 0.01685 6.04E-09
    z3 6 19 0.008748 7.52E-09 5 15 0.009081 4.37E-07
    z4 8 25 0.008643 1.95E-09 6 18 0.009114 1.52E-07
    z5 6 19 0.010119 8.43E-09 7 21 0.013185 1.10E-09
    z6 9 28 0.009592 1.04E-09 7 21 0.014685 1.74E-08
    z7 44 169 0.043234 9.47E-07 69 261 0.22456 6.30E-07
    5000 z1 6 20 0.062266 2.97E-07 4 12 0.012773 1.75E-07
    z2 6 20 0.031005 4.05E-07 5 15 0.019072 6.27E-10
    z3 6 19 0.022469 9.12E-10 5 15 0.03412 1.42E-07
    z4 7 23 0.048441 3.74E-07 6 18 0.040398 3.94E-08
    z5 6 19 0.032782 1.42E-09 6 18 0.030696 4.05E-07
    z6 7 22 0.038421 7.12E-09 7 21 0.02232 2.36E-09
    z7 45 169 0.32315 1.74E-07 75 290 0.68505 9.20E-07
    10000 z1 5 16 0.065175 9.23E-09 4 12 0.05281 1.21E-07
    z2 6 21 0.072794 3.06E-07 5 15 0.055137 2.79E-10
    z3 6 19 0.036537 4.32E-10 5 15 0.038347 9.73E-08
    z4 7 24 0.054625 2.82E-07 6 18 0.057504 2.56E-08
    z5 6 20 0.09281 7.38E-10 6 18 0.053546 2.93E-07
    z6 7 22 0.098951 4.21E-09 7 21 0.05207 1.24E-09
    z7 34 133 0.35652 8.45E-07 75 286 1.1715 8.81E-07
    50000 z1 7 26 1.0892 1.84E-07 4 12 0.072347 6.32E-08
    z2 9 34 0.57121 3.87E-07 5 16 0.17135 6.75E-11
    z3 6 21 0.17777 5.88E-07 5 15 0.30908 4.87E-08
    z4 10 37 0.79714 3.60E-07 6 18 0.30538 1.11E-08
    z5 7 25 0.14544 1.16E-07 6 18 0.17986 1.84E-07
    z6 8 28 0.24313 7.93E-07 7 21 0.11731 4.01E-10
    z7 36 141 1.1389 1.07E-07 87 326 3.3093 3.83E-07
    100000 z1 7 26 0.35609 2.56E-07 4 12 0.23409 5.40E-08
    z2 9 34 0.43666 5.47E-07 5 16 0.3152 4.27E-11
    z3 6 21 0.31721 7.65E-07 5 15 0.28597 4.05E-08
    z4 10 37 0.53074 5.09E-07 6 18 0.23003 8.15E-09
    z5 7 25 0.27827 1.55E-07 6 18 0.45582 1.80E-07
    z6 9 32 0.5333 1.09E-07 7 22 0.2709 2.71E-10
    z7 31 121 1.7511 5.10E-07 81 306 6.1345 9.16E-07

     | Show Table
    DownLoad: CSV
    Table 4.  Numerical result for Problem 3.
    Algo.1 Algo.2
    dim inp nit nfv tim norm nit nfv tim norm
    1000 z1 2 6 0.007199 0 2 6 0.026849 0
    z2 2 6 0.00552 0 2 6 0.003173 0
    z3 2 6 0.006377 0 2 6 0.006714 0
    z4 3 11 0.017561 0.00E+00 2 6 0.005403 0
    z5 3 11 0.007556 0.00E+00 2 6 0.009761 0
    z6 3 11 0.008376 0 2 6 0.003285 0
    z7 16 49 0.043387 2.91E-07 2 6 0.005238 0
    5000 z1 2 6 0.024798 0 2 6 0.037672 0
    z2 2 6 0.017882 0 2 6 0.016857 0
    z3 2 6 0.014761 0 2 6 0.016971 0
    z4 3 11 0.021926 0.00E+00 2 6 0.024599 0
    z5 3 11 0.019501 0.00E+00 2 6 0.12878 0
    z6 3 11 0.099645 0 2 6 0.016172 0
    z7 21 65 0.26663 8.91E-07 2 6 0.068901 0
    10000 z1 2 6 0.053329 0 2 6 0.039629 0
    z2 2 6 0.036889 0 2 6 0.029941 0
    z3 2 6 0.02419 0 2 6 0.022097 0
    z4 3 11 0.046062 0.00E+00 2 6 0.015668 0
    z5 3 11 0.17699 0.00E+00 2 6 0.1442 0
    z6 3 11 0.056058 0 2 6 0.080865 0
    z7 19 58 0.42057 1.22E-07 2 6 0.052839 0
    50000 z1 2 6 0.11901 0 2 6 0.27419 0
    z2 2 6 0.10804 0 2 6 0.228 0
    z3 2 6 0.15799 0 2 6 0.083129 0
    z4 3 11 0.27797 0.00E+00 2 6 0.09131 0
    z5 3 11 0.21594 0.00E+00 2 6 0.047357 0
    z6 3 11 0.16137 0 2 6 0.049002 0
    z7 21 64 1.156 3.21E-07 2 6 0.12806 0
    100000 z1 2 6 0.21976 0 2 6 0.15418 0
    z2 2 6 0.19397 0 2 6 0.44568 0
    z3 2 6 0.17969 0 2 6 0.79033 0
    z4 3 11 0.30701 0.00E+00 2 6 0.20222 0
    z5 3 11 0.72994 0.00E+00 2 6 0.20959 0
    z6 3 11 0.36806 0 2 6 0.26684 0
    z7 22 67 1.8809 2.86E-07 2 6 0.23472 0

     | Show Table
    DownLoad: CSV
    Table 5.  Numerical result for Problem 4.
    Algo.1 Algo.2
    dim inp nit nfv tim norm nit nfv tim norm
    1000 z1 2 7 0.007686 0 8 31 0.025113 1.65E-07
    z2 2 7 0.004973 0 7 28 0.007628 2.32E-07
    z3 2 7 0.004693 0.00E+00 8 32 0.009827 7.42E-07
    z4 2 7 0.005652 0.00E+00 9 35 0.012267 1.62E-07
    z5 2 7 0.007206 0.00E+00 7 28 0.012782 3.92E-07
    z6 2 7 0.005871 0.00E+00 8 32 0.016455 3.68E-07
    z7 22 87 0.030189 0.00E+00 71 284 0.045157 1.91E-07
    5000 z1 2 7 0.01789 0 8 31 0.035804 3.68E-07
    z2 2 7 0.083644 0 7 28 0.056219 5.20E-07
    z3 2 7 0.019787 0.00E+00 9 36 0.028182 1.66E-07
    z4 2 7 0.02077 0 9 35 0.028652 3.61E-07
    z5 2 7 0.023139 0 7 28 0.09901 8.76E-07
    z6 2 7 0.045152 0 8 32 0.046074 8.22E-07
    z7 77 308 0.88375 2.85E-07 51 204 0.12808 9.55E-07
    10000 z1 2 7 0.025792 0 8 32 0.043945 5.20E-07
    z2 2 7 0.020051 0 7 27 0.050306 7.35E-07
    z3 2 7 0.025936 0.00E+00 9 36 0.039643 2.35E-07
    z4 2 7 0.03822 0 9 35 0.041378 5.11E-07
    z5 2 7 0.03849 0 8 32 0.13231 1.24E-07
    z6 2 7 0.031354 0.00E+00 NaN NaN NaN NaN
    z7 101 404 3.4918 4.06E-09 NaN NaN NaN NaN
    50000 z1 2 7 0.091176 0 9 34 0.23565 0
    z2 2 7 0.090561 0 NaN NaN NaN NaN
    z3 2 7 0.13857 0.00E+00 9 35 0.12604 5.25E-07
    z4 2 7 0.10731 0.00E+00 10 38 0.426 0
    z5 2 7 0.14284 0.00E+00 8 31 0.47179 2.77E-07
    z6 2 7 0.29418 0.00E+00 9 35 0.21126 2.60E-07
    z7 110 439 8.6871 0 44 176 1.2526 3.55E-07
    100000 z1 2 7 0.20371 0 9 36 0.2659 1.65E-07
    z2 2 7 0.26727 0 8 30 0.48604 0
    z3 2 7 0.1588 0.00E+00 9 35 0.35032 7.42E-07
    z4 2 7 0.20624 0.00E+00 10 39 0.34301 1.62E-07
    z5 2 7 0.19404 0.00E+00 NaN NaN NaN NaN
    z6 2 7 0.21718 0.00E+00 9 35 0.31142 3.68E-07
    z7 111 444 18.0039 6.11E-08 NaN NaN NaN NaN

     | Show Table
    DownLoad: CSV
    Table 6.  Numerical result for Problem 5.
    Algo.1 Algo.2
    dim inp nit nfv tim norm nit nfv tim norm
    1000 z1 34 127 0.026467 1.62E-07 71 263 0.16103 3.21E-07
    z2 36 140 0.026972 7.43E-07 62 235 0.052281 1.13E-07
    z3 52 205 0.16096 2.58E-07 50 194 0.088863 3.72E-07
    z4 96 378 0.55079 4.35E-07 NaN NaN NaN NaN
    z5 123 492 0.48012 3.96E-07 NaN NaN NaN NaN
    z6 196 784 1.0967 6.21E-07 NaN NaN NaN NaN
    z7 115 459 0.34961 2.89E-07 NaN NaN NaN NaN
    5000 z1 59 232 0.68163 2.32E-07 63 231 0.30231 3.90E-07
    z2 50 188 0.29441 6.42E-07 72 282 0.18091 7.31E-07
    z3 179 709 2.2218 2.91E-07 60 232 0.14861 1.47E-07
    z4 171 684 2.9204 2.99E-07 NaN NaN NaN NaN
    z5 297 1187 5.9983 3.31E-07 NaN NaN NaN NaN
    z6 420 1680 9.6236 1.67E-07 NaN NaN NaN NaN
    z7 187 744 3.4767 8.43E-07 NaN NaN NaN NaN
    10000 z1 77 300 1.3784 1.39E-07 75 283 0.27114 2.35E-07
    z2 74 283 1.5399 1.34E-07 55 208 0.20873 3.12E-07
    z3 214 843 5.0625 9.68E-07 67 259 0.65684 2.52E-07
    z4 253 1012 8.4598 5.48E-07 NaN NaN NaN NaN
    z5 383 1531 15.2491 1.45E-07 NaN NaN NaN NaN
    z6 575 2300 24.956 4.27E-07 NaN NaN NaN NaN
    z7 323 1291 9.6152 2.90E-07 NaN NaN NaN NaN
    50000 z1 135 534 12.3192 9.85E-07 65 253 1.9331 1.74E-07
    z2 342 1357 46.7469 1.53E-07 94 369 4.3154 4.77E-07
    z3 326 1294 39.8986 4.97E-07 NaN NaN NaN NaN
    z4 504 2016 82.9841 3.45E-07 NaN NaN NaN NaN
    z5 NaN NaN NaN NaN NaN NaN NaN NaN
    z6 NaN NaN NaN NaN NaN NaN NaN NaN
    z7 602 2403 97.0953 6.65E-07 NaN NaN NaN NaN
    100000 z1 164 645 25.8558 1.87E-07 NaN NaN NaN NaN
    z2 NaN NaN NaN NaN NaN NaN NaN NaN
    z3 400 1590 126.0758 7.38E-07 NaN NaN NaN NaN
    z4 636 2544 240.5206 3.57E-07 NaN NaN NaN NaN
    z5 NaN NaN NaN NaN NaN NaN NaN NaN
    z6 NaN NaN NaN NaN NaN NaN NaN NaN
    z7 NaN NaN NaN NaN NaN NaN NaN NaN

     | Show Table
    DownLoad: CSV
    Table 7.  Numerical result for Problem 6.
    Algo.1 Algo.2
    dim inp nit nfv tim norm nit nfv tim norm
    1000 z1 9 36 0.17935 8.25E-07 9 36 0.0153 8.24E-07
    z2 9 36 0.03051 7.93E-07 9 36 0.048509 7.93E-07
    z3 9 36 0.027967 6.99E-07 9 36 0.017521 6.98E-07
    z4 9 36 0.015472 4.79E-07 9 36 0.014811 4.78E-07
    z5 9 36 0.007122 3.84E-07 9 36 0.016431 3.83E-07
    z6 9 36 0.010164 2.27E-07 9 36 0.009737 2.26E-07
    z7 9 36 0.020191 7.23E-07 9 36 0.017515 7.06E-07
    5000 z1 10 40 0.048118 1.85E-07 10 40 0.082844 1.85E-07
    z2 10 40 0.097072 1.78E-07 10 40 0.050343 1.78E-07
    z3 10 40 0.032297 1.57E-07 10 40 0.10792 1.57E-07
    z4 10 40 0.043942 1.07E-07 10 40 0.076199 1.07E-07
    z5 9 36 0.043841 8.61E-07 9 36 0.037916 8.61E-07
    z6 9 36 0.033263 5.08E-07 9 36 0.069375 5.08E-07
    z7 10 40 0.037194 1.58E-07 10 40 0.047672 1.58E-07
    10000 z1 10 40 0.082406 2.62E-07 10 40 0.076648 2.62E-07
    z2 10 40 0.068947 2.52E-07 10 40 0.15678 2.52E-07
    z3 10 40 0.058721 2.22E-07 10 40 0.13597 2.22E-07
    z4 10 40 0.078257 1.52E-07 10 40 0.08399 1.52E-07
    z5 10 40 0.062069 1.22E-07 10 40 0.07822 1.22E-07
    z6 9 36 0.053275 7.18E-07 9 36 0.1205 7.18E-07
    z7 10 40 0.057688 2.24E-07 10 40 0.080168 2.23E-07
    50000 z1 10 40 0.22352 5.85E-07 10 39 0.38243 5.85E-07
    z2 10 40 0.27436 5.63E-07 10 39 0.41361 5.63E-07
    z3 10 40 0.23122 4.96E-07 10 39 0.30721 4.96E-07
    z4 10 40 0.21192 3.40E-07 10 39 0.43086 3.40E-07
    z5 10 40 0.23892 2.72E-07 10 38 0.29829 1.26E-15
    z6 10 40 0.29017 1.61E-07 10 38 0.51415 6.28E-16
    z7 10 40 0.25616 5.01E-07 10 39 0.29756 5.00E-07
    100000 z1 10 40 0.82944 8.28E-07 10 39 1.1183 8.28E-07
    z2 10 40 0.47168 7.96E-07 10 38 0.6117 6.28E-16
    z3 10 40 0.49749 7.01E-07 10 38 0.81145 6.28E-16
    z4 10 40 0.52125 4.80E-07 10 38 0.79886 0
    z5 10 40 0.69499 3.85E-07 10 38 0.60219 0
    z6 10 40 0.47656 2.27E-07 10 38 0.72864 0
    z7 10 40 0.49578 7.07E-07 10 39 0.80741 7.07E-07

     | Show Table
    DownLoad: CSV
    Table 8.  Numerical result for Problem 7.
    Algo.1 Algo.2
    dim inp nit nfv tim norm nit nfv tim norm
    1000 z1 5 20 0.046544 3.24E-07 5 20 0.008647 3.24E-07
    z2 5 20 0.009418 1.43E-07 5 20 0.013849 1.43E-07
    z3 5 20 0.038932 1.68E-08 4 16 0.015388 5.81E-08
    z4 6 24 0.01166 9.16E-09 6 24 0.010967 3.39E-08
    z5 6 24 0.010929 1.23E-08 6 24 0.0107 4.99E-08
    z6 6 23 0.01937 1.04E-07 6 23 0.014025 6.55E-08
    z7 26 104 0.032336 8.36E-09 36 144 0.12555 5.34E-08
    5000 z1 5 20 0.029586 7.25E-07 5 20 0.041107 7.25E-07
    z2 5 20 0.027892 3.20E-07 5 20 0.038182 3.20E-07
    z3 5 20 0.035333 3.75E-08 4 16 0.12123 1.30E-07
    z4 6 24 0.032225 2.05E-08 6 24 0.05211 7.58E-08
    z5 6 24 0.026546 2.75E-08 6 24 0.038675 1.12E-07
    z6 6 23 0.032529 2.32E-07 6 23 0.081384 1.46E-07
    z7 34 136 0.24122 3.59E-08 41 164 0.29917 1.14E-07
    10000 z1 6 24 0.043879 5.12E-09 6 24 0.079589 5.12E-09
    z2 5 20 0.036531 4.52E-07 5 20 0.1417 4.52E-07
    z3 5 20 0.050902 5.31E-08 4 16 0.045901 1.84E-07
    z4 6 24 0.054078 2.90E-08 6 24 0.059807 1.07E-07
    z5 6 24 0.052048 3.89E-08 6 24 0.099213 1.58E-07
    z6 6 23 0.04894 3.28E-07 6 23 0.054029 2.07E-07
    z7 41 164 0.30793 3.45E-08 45 180 0.92444 3.64E-07
    50000 z1 6 24 0.14 1.15E-08 6 24 0.26027 1.15E-08
    z2 6 24 0.14343 5.06E-09 6 24 0.60276 5.06E-09
    z3 5 20 0.15201 1.19E-07 4 16 0.17247 4.11E-07
    z4 6 24 0.34794 6.48E-08 6 24 0.22999 2.40E-07
    z5 6 24 0.15433 8.70E-08 6 24 0.38048 3.53E-07
    z6 6 23 0.1425 7.35E-07 6 23 0.2271 4.63E-07
    z7 29 116 1.295 9.41E-09 44 176 2.2436 7.06E-07
    100000 z1 6 24 0.39791 1.62E-08 6 24 0.94834 1.62E-08
    z2 6 24 0.47548 7.15E-09 6 24 0.43453 7.15E-09
    z3 5 20 0.48174 1.68E-07 4 16 0.29517 5.81E-07
    z4 6 24 0.26721 9.16E-08 6 24 0.55119 3.39E-07
    z5 6 24 0.28512 1.23E-07 6 24 0.61073 4.99E-07
    z6 7 27 0.5385 5.19E-09 6 23 0.42035 6.55E-07
    z7 29 116 1.6021 1.19E-08 41 164 3.9953 9.23E-07

     | Show Table
    DownLoad: CSV
    Table 9.  Numerical result for Problem 8.
    Algo.1 Algo.2
    dim inp nit nfv tim norm nit nfv tim norm
    1000 z1 66 264 0.934 3.48E-07 NaN NaN NaN NaN
    z2 101 404 0.99428 4.28E-07 41 164 0.75214 4.29E-07
    z3 40 160 0.40127 3.33E-07 NaN NaN NaN NaN
    z4 39 156 0.5071 5.07E-07 39 156 0.71207 3.83E-07
    z5 36 144 0.61923 4.69E-07 35 140 1.4123 4.07E-07
    z6 4 14 0.071864 NaN 4 14 0.059454 NaN
    z7 23 89 0.48051 NaN NaN NaN NaN NaN
    5000 z1 52 208 2.7649 2.91E-07 NaN NaN NaN NaN
    z2 44 176 2.1027 3.54E-07 NaN NaN NaN NaN
    z3 42 168 2.1325 2.95E-07 NaN NaN NaN NaN
    z4 37 148 2.0738 3.41E-07 NaN NaN NaN NaN
    z5 16 60 0.64982 NaN NaN NaN NaN NaN
    z6 20 76 0.98188 NaN NaN NaN NaN NaN
    z7 301 1202 18.7543 4.37E-07 NaN NaN NaN NaN
    10000 z1 77 303 9.6495 3.64E-07 NaN NaN NaN NaN
    z2 71 284 8.0859 3.74E-07 NaN NaN NaN NaN
    z3 62 248 7.1755 3.27E-07 NaN NaN NaN NaN
    z4 48 192 4.1575 4.42E-07 NaN NaN NaN NaN
    z5 15 55 0.93456 NaN NaN NaN NaN NaN
    z6 123 490 12.4072 3.88E-07 NaN NaN NaN NaN
    z7 307 1226 35.579 3.46E-07 NaN NaN NaN NaN
    50000 z1 24 89 8.5017 NaN NaN NaN NaN NaN
    z2 89 355 45.0395 4.34E-07 NaN NaN NaN NaN
    z3 65 260 28.4752 3.57E-07 NaN NaN NaN NaN
    z4 431 1718 135.7493 3.88E-07 NaN NaN NaN NaN
    z5 6 21 2.1067 NaN NaN NaN NaN NaN
    z6 6 21 1.8349 NaN NaN NaN NaN NaN
    z7 7 24 1.8872 NaN NaN NaN NaN NaN
    100000 z1 34 130 31.5135 NaN NaN NaN NaN NaN
    z2 5 17 1.9076 NaN NaN NaN NaN NaN
    z3 87 332 64.5816 3.00E-07 NaN NaN NaN NaN
    z4 76 303 68.3533 4.49E-07 NaN NaN NaN NaN
    z5 5 17 2.2305 NaN NaN NaN NaN NaN
    z6 5 17 2.5293 NaN NaN NaN NaN NaN
    z7 6 21 3.1078 NaN NaN NaN NaN NaN

     | Show Table
    DownLoad: CSV
    Table 10.  Numerical result for Problem 9.
    Algo.1 Algo.2
    dim inp nit nfv tim norm nit nfv tim norm
    1000 z1 10 34 0.032445 1.06E-07 10 34 0.005932 1.06E-07
    z2 10 34 0.008239 1.06E-07 10 34 0.010335 1.06E-07
    z3 10 34 0.0073 1.06E-07 10 34 0.008407 1.06E-07
    z4 10 34 0.008495 1.06E-07 10 34 0.010614 1.06E-07
    z5 10 34 0.00772 1.06E-07 10 34 0.00775 1.06E-07
    z6 10 34 0.011383 1.06E-07 10 35 0.009311 1.06E-07
    z7 67 213 0.024778 9.71E-07 10 34 0.008864 1.06E-07
    5000 z1 7 25 0.022534 6.89E-08 7 25 0.027033 6.89E-08
    z2 7 25 0.032305 6.89E-08 7 25 0.02838 6.89E-08
    z3 7 25 0.026468 6.89E-08 7 25 0.068469 6.89E-08
    z4 7 25 0.034453 6.89E-08 7 26 0.037886 6.89E-08
    z5 7 25 0.021703 6.89E-08 7 26 0.037186 6.89E-08
    z6 7 25 0.027352 6.89E-08 7 26 0.077955 6.89E-08
    z7 20 66 0.061189 9.72E-07 7 25 0.037992 6.89E-08
    10000 z1 6 22 0.07498 8.13E-08 6 22 0.054682 8.13E-08
    z2 6 22 0.047478 8.13E-08 6 22 0.21797 8.13E-08
    z3 6 22 0.052347 8.13E-08 6 22 0.081579 8.13E-08
    z4 6 22 0.047644 8.13E-08 6 23 0.085064 8.13E-08
    z5 6 22 0.068304 8.13E-08 6 23 0.19028 8.13E-08
    z6 6 22 0.042771 8.13E-08 6 23 0.15365 8.13E-08
    z7 12 41 0.074071 9.08E-07 6 22 0.056989 8.13E-08
    50000 z1 5 19 0.22112 1.41E-07 5 19 0.60662 1.41E-07
    z2 5 19 0.21638 1.41E-07 5 19 0.33244 1.41E-07
    z3 5 19 0.22186 1.41E-07 5 20 0.8389 1.41E-07
    z4 5 19 0.37207 1.41E-07 5 20 0.63139 1.41E-07
    z5 5 19 0.36107 1.41E-07 5 20 1.046 1.41E-07
    z6 5 19 0.27063 1.41E-07 5 20 1.4673 1.41E-07
    z7 59 235 2.7862 4.11E-07 5 19 0.57234 1.41E-07
    100000 z1 6 23 0.93893 2.10E-07 6 23 1.3525 2.10E-07
    z2 6 23 0.60445 2.10E-07 6 24 1.5313 2.10E-07
    z3 6 23 0.71683 2.10E-07 6 24 1.6022 2.10E-07
    z4 6 23 0.57114 2.10E-07 6 24 1.7882 2.10E-07
    z5 6 23 0.57099 2.10E-07 6 24 1.878 2.10E-07
    z6 6 23 0.69104 2.10E-07 6 24 1.9634 2.10E-07
    z7 34 135 4.3899 4.52E-07 6 23 1.4688 2.10E-07

     | Show Table
    DownLoad: CSV


    [1] Ren Q, He C, Huang Q, et al. (2022) Impacts of urban expansion on natural habitats in global drylands. Nat Sustain 5: 869–878. https://doi.org/10.1038/s41893-022-00930-8 doi: 10.1038/s41893-022-00930-8
    [2] Basu T, Das A (2021) Systematic review of how eco-environmental transformation due to urbanization can be investigated in the sustainable development of Indian cities. Environ Challenges 4: 100099. https://doi.org/10.1016/j.envc.2021.100099 doi: 10.1016/j.envc.2021.100099
    [3] Semeraro T, Scarano A, Buccolieri R, et al. (2021) Planning of Urban Green Spaces : An Ecological Perspective on Human Benefits. Land 10: 105. https://doi.org/10.3390/land10020105 doi: 10.3390/land10020105
    [4] Siddiqui A, Siddiqui A, Maithani S, et al. (2018) Urban growth dynamics of an Indian metropolitan using CA Markov and Logistic Regression. Egypt J Remote Sens 21: 229–236. https://doi.org/10.1016/j.ejrs.2017.11.006 doi: 10.1016/j.ejrs.2017.11.006
    [5] Busca F, Revelli R (2022) Green Areas and Climate Change Adaptation in a Urban Environment : The Case Study of "Le Vallere" Park (Turin, Italy). Sustainability 14: 8091. https://doi.org/10.3390/su14138091 doi: 10.3390/su14138091
    [6] Scott M, Lennon M, Haase D, et al. (2016) Nature-based solutions for the contemporary city/Re-naturing the city/Reflections on urban landscapes, ecosystems services and nature-based solutions in cities/Multifunctional green infrastructure and climate change adaptation: brownfield greening as an adaptation strategy for vulnerable communities?/Delivering green infrastructure through planning: insights from practice in Fingal, Ireland/Planning for biophilic cities: from theory to practice. Plan Theory Pract 17: 267–300. https://doi.org/10.1080/14649357.2016.1158907 doi: 10.1080/14649357.2016.1158907
    [7] Norton BA, Coutts AM, Livesley SJ, et al. (2015) Planning for cooler cities: A framework to prioritise green infrastructure to mitigate high temperatures in urban landscapes. Landscape Urban Plan 134: 127–138. https://doi.org/10.1016/j.landurbplan.2014.10.018 doi: 10.1016/j.landurbplan.2014.10.018
    [8] Wamsler C, Brink E, Rivera C (2013) Planning for climate change in urban areas: From theory to practice, Journal of Cleaner Production. J Cleaner Prod 50: 68–81. https://doi.org/10.1016/j.jclepro.2012.12.008 doi: 10.1016/j.jclepro.2012.12.008
    [9] Masnavi MR (2007) Measuring Urban Sustainability : Developing a Conceptual Framework for Bridging the Gap Between theoretical Levels and the Operational Levels. Int J Environ Res 1: 188–197.
    [10] Russo A, Cirella GT (2020) Urban Sustainability: Integrating Ecology in City Design and Planning, In: Cirella G, eds., Sustainable Human–Nature Relations. Advances in 21st Century Human Settlements, Springer, Singapore. https://doi.org/10.1007/978-981-15-3049-4_10
    [11] Itani M, Al Zein M, Nasralla N, et al. (2020) Biodiversity conservation in cities: Defining habitat analogues for plant species of conservation interest. PLoS One 15: e0220355. https://doi.org/10.1371/journal.pone.0220355 doi: 10.1371/journal.pone.0220355
    [12] Croci S, Butet A, Georges A, et al. (2008) Small urban woodlands as biodiversity conservation hot-spot : a multi-taxon approach Related papers. Landscape Ecol 23: 1171–1186. https://doi.org/10.1007/s10980-008-9257-0 doi: 10.1007/s10980-008-9257-0
    [13] Goddard MA, Dougill AJ, Benton TG (2009) conservation in urban environments CO CO. Trends Ecol Evol 25: 90–98. https://doi.org/10.1016/j.tree.2009.07.016 doi: 10.1016/j.tree.2009.07.016
    [14] Falolou LF, Orekan V, Houssou CS, et al. (2020) Caractérisation des Ilots de Chaleur dans la Commune de Porto-Novo et ses Alentours. Int J Prog Sci Technol 20: 442–456.
    [15] Lanmandjèkpogni MP, Codo FDP, Yao BK (2019) Urban growth evaluation by coupling descriptive analysis and Zipf's rank-size model in Parakou (Benin). Urban Reg Plan 4: 1–8. https://doi.org/10.11648/j.urp.20190401.11 doi: 10.11648/j.urp.20190401.11
    [16] Teka O, Togbe CE, Djikpo R, et al. (2017) Effects of Urban Forestry on the Local Climate in Cotonou, Benin Republic. Agric For Fish 6: 123–129. https://doi.org/10.11648/j.aff.20170604.13 doi: 10.11648/j.aff.20170604.13
    [17] Osseni AA, Mouhamadou T, Tohoain BAC, et al. (2015) SIG et gestion des espaces verts dans la ville de Porto-Novo au Benin. Tropicultura 332: 146–156.
    [18] Lohnert B (2017) Migration and the Rural-Urban Transition in Sub-Saharan Africa. Centre for Rural Development. Available from: https://edoc.hu-berlin.de/bitstream/handle/18452/19070/SLEDP-2017-05-Migration and the Rural-Urban.pdf?sequence = 1.
    [19] Neuenschwander P, Sinsin B, Goergen G (2011) Nature Conservation in West Africa: Red List for Benin, Ibadan, Nigeria: International Institute of Tropical Agriculture, Ibadan, Nigeria. 365. Available from: www.iita.org.
    [20] Miassi Y, Dossa F (2018) Influence of the Types of Fertilizers on the Economic Performance of the Market Garden Production in Parakou Town, Northern Benin. Agri Res Tech 15: 555944. https://doi.org/10.19080/ARTOAJ.2018.15.555944 doi: 10.19080/ARTOAJ.2018.15.555944
    [21] Department of Economic and Social Affairs Population Division (UN-DESA), Parakou, Benin Metro Area Population 1950–2024. World Population Prospects. United Nations. 2022. Available from: https://population.un.org/wpp/.
    [22] Akakpo BA, Okhimamhe AA, Orekan VAO (2023) People's perception and involvement in improving urban greenery in Benin (West Africa). Discov Sustain 4: 1–12. https://doi.org/10.1007/s43621-023-00121-1 doi: 10.1007/s43621-023-00121-1
    [23] Duku E, Adjei C, Iddrisu M (2023) Changes in urban green spaces in coastal cities and human well-being : The case of Cape Coast Metropolis, Ghana. Geo Geogr Environ 10: 0–18. https://doi.org/10.1002/geo2.119 doi: 10.1002/geo2.119
    [24] Stoyan D (1994) Caution with "fractal" point patterns! Statistics 25: 267–270. https://doi.org/10.1080/02331889408802450 doi: 10.1080/02331889408802450
    [25] Law R, Illian J, David F, et al. (2009) Ecological information from spatial patterns of plants : insights from point process theory. J Ecol 97: 616–628. https://doi.org/10.1111/j.1365-2745.2009.01510.x doi: 10.1111/j.1365-2745.2009.01510.x
    [26] Ripley BD (1981) Spatial Statistics, Wley. New York: Wiley.
    [27] Atidehou MML, Azihou AF, Dassou GH, et al. (2022) Management and protection of large old tree species in farmlands : Case of Milicia excelsa in southern Benin (West Africa). Trees Forests People 10: 100336. https://doi.org/10.1016/j.tfp.2022.100336 doi: 10.1016/j.tfp.2022.100336
    [28] Qian Y, Li Z, Zhou W, et al. (2019) Quantifying spatial pattern of urban greenspace from a gradient perspective of built-up age. Phys Chem Earth 111: 78–85. https://doi.org/10.1016/j.pce.2019.05.001 doi: 10.1016/j.pce.2019.05.001
    [29] Gashu K, Egziabher TG (2018) Spatiotemporal trends of urban land use/land cover and green infrastructure change in two Ethiopian cities : Bahir Dar and Hawassa. Environ Syst Res 7: 8. https://doi.org/10.1186/s40068-018-0111-3 doi: 10.1186/s40068-018-0111-3
    [30] Mandal J, Ghosh N, Mukhopadhyay A (2019) Urban Growth Dynamics and Changing Land-Use Land-Cover of Megacity Kolkata and Its Environs. J Indian Soc Remote Sens 47: 1707–1725. https://doi.org/10.1007/s12524-019-01020-7 doi: 10.1007/s12524-019-01020-7
    [31] Natta AK, Dicko A, Natta Y (2023) Perception des populations sur le verdissement en milieux urbain et péri- urbain et stratégies d' aménagement de Parakou (Bénin). Int J Biol Chem Sci 17: 583–599. https://doi.org/10.4314/ijbcs.v17i2.24 doi: 10.4314/ijbcs.v17i2.24
    [32] Essel B (2017) Depletion of Urban Green Space and Its Adverse Effect: A Case of Kumasi, the Former Garden City of West- Africa. J Environ Ecol 8: 1. https://doi.org/10.5296/jee.v8i2.11823 doi: 10.5296/jee.v8i2.11823
    [33] Namwinbown T, Imoro ZA, Weobong CAA, et al. (2024) Patterns of green space change and fragmentation in a rapidly expanding city of northern Ghana, West Africa. City Environ Interact 21: 100136. https://doi.org/10.1016/j.cacint.2023.100136 doi: 10.1016/j.cacint.2023.100136
    [34] Sharma S, Nahid S, Sharma M, et al. (2020) A long-term and comprehensive assessment of urbanization-induced impacts on ecosystem services in the capital city of India. City Environ Interact 7:100047. https://doi.org/10.1016/j.cacint.2020.100047 doi: 10.1016/j.cacint.2020.100047
    [35] Thaiutsa B, Puangchit L, Kjelgren R, et al. (2008) Urban green space, street tree and heritage large tree assessment in Bangkok, Thailand. Urban For Urban Gree 7: 219–229. https://doi.org/10.1016/j.ufug.2008.03.002 doi: 10.1016/j.ufug.2008.03.002
    [36] Sikuzani UY, Kouagou RS, Marechal J, et al. (2018) Changes in the Spatial Pattern and Ecological Functionalities of Green Spaces in Lubumbashi (the Democratic Republic of Congo) in Relation With the Degree of Urbanization. Trop Conserv Sci 11: 1–17. https://doi.org/10.1177/1940082918771325 doi: 10.1177/1940082918771325
    [37] Pristeri G, Peroni F, Pappalardo SE, et al. (2021) Whose Urban Green? Mapping and Classifying Public and Private Green Spaces in Padua for Spatial Planning Policies. ISPRS Int J Geo-Inf Artic 10: 538. https://doi.org/10.3390/ijgi10080538 doi: 10.3390/ijgi10080538
    [38] Twumasi YA, Merem EC, Namwamba JB, et al. (2020) Degradation of Urban Green Spaces in Lagos, Nigeria : Evidence from Satellite and Demographic Data. Adv Remote Sens 9: 33–52.
    [39] Zakka SD, Permana AS, Majid MR, et al. (2017) Urban Greenery a pathway to Environmental Sustainability in Sub Saharan Africa: A Case of Northern Nigeria Cities. Int J Built Environ Sustain 4: 180–189. https://doi.org/10.11113/ijbes.v4.n3.211 doi: 10.11113/ijbes.v4.n3.211
    [40] Fu J, Dupre K, Tavares S, et al. (2022) Optimized greenery configuration to mitigate urban heat : A decade systematic review. Front Archit Res 11: 466–491. https://doi.org/10.1016/j.foar.2021.12.005 doi: 10.1016/j.foar.2021.12.005
    [41] Alam R, Shirazi SA, Zia SM (2014) Spatial distribution of urban green spaces in Lahore, Pakistan: A case study of Gulberg Town. Pak J Sci 66: 277–281.
    [42] Liang H, Chen D, Zhang Q (2017) Assessing Urban Green Space distribution in a compact megacity by landscape metrics. J Environ Eng Landsc 25: 64–74. https://doi.org/10.3846/16486897.2016.1210157 doi: 10.3846/16486897.2016.1210157
    [43] Fangnon B (2021) Public green spaces and management constraints in the Municipality of Seme-Podji South East of Benin. J Geogr Reg Plann 14: 113–122. https://doi.org/10.5897/JGRP2021.0819 doi: 10.5897/JGRP2021.0819
    [44] PDU. Plan Directeur d'urbanisation de La Ville de Parakou et de Porto-Novo. 2020.
    [45] Dobbs C, Nitschke C, Kendal D (2017) Assessing the drivers shaping global patterns of urban vegetation landscape structure. Sci Total Environ 592: 171–177. https://doi.org/10.1016/j.scitotenv.2017.03.058 doi: 10.1016/j.scitotenv.2017.03.058
    [46] Kim M, Rupprecht CDD, Furuya K (2020) Typology and perception of informal green space in urban interstices: A case study of Ichikawa city, Japan. Int Rev Spat Plann Sustainable Dev 8: 4–20. https://doi.org/10.14246/IRSPSD.8.1_4 doi: 10.14246/IRSPSD.8.1_4
    [47] Kim M, Rupprecht CDD (2021) Getting to Know Urban Wasteland—A Look at Vacant Lands as Urban Green Space in Japan, In: Di Pietro F, Robert A, eds., Cities and Nature, Cham. Springer. https://doi.org/10.1007/978-3-030-74882-1_9
    [48] Unt A, Bell S (2014) Urban Forestry & Urban Greening The impact of small-scale design interventions on the behaviour patterns of the users of an urban wasteland. Urban For Urban Green 13: 121–135. https://doi.org/10.1016/j.ufug.2013.10.008 doi: 10.1016/j.ufug.2013.10.008
    [49] Behera DK, Saxena MR, Shankar GR (2017) Decadal land use and landcover change dynamics in east coast of India - Case study on Chilika Lake. Indian Geogr J 92: 73–82.
    [50] Sinxadi L, Campbell M (2020) Factors In fluencing Urban Open Space Encroachment : The Case of Bloemfontein, South Africa. In: Roggema R, Roggema A, eds., Smart and Sustainable Cities and Buildings, Springer Nature Switzerland. 285–295. https://doi.org/10.1007/978-3-030-37635-2_19
  • geosci-10-03-029-s001.pdf
  • This article has been cited by:

    1. Xin Du, Quansheng Liu, Yuanhong Bi, Bifurcation analysis of a two–dimensional p53 gene regulatory network without and with time delay, 2023, 32, 2688-1594, 293, 10.3934/era.2024014
    2. Huazhou Mo, Yuanfu Shao, Stability and bifurcation analysis of a delayed stage-structured predator–prey model with fear, additional food, and cooperative behavior in both species, 2025, 2025, 2731-4235, 10.1186/s13662-025-03879-y
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1279) PDF downloads(42) Cited by(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog