Citation: David M. Freire-Lista, Rafael Fort. Historical Quarries, Decay and Petrophysical Properties of Carbonate Stones Used in the Historical Center of Madrid (Spain)[J]. AIMS Geosciences, 2017, 3(2): 284-303. doi: 10.3934/geosci.2017.2.284
[1] | Bednarik M, Moshammer B, Heinrich M, et al. (2014) Engineering geological properties of Leitha Limestone from historical quarries in Burgenland and Styria, Austria. Eng Geol 176: 66-78. doi: 10.1016/j.enggeo.2014.04.005 |
[2] | Fort R, Alvarez de Buergo M, Pérez-Monserrat E.M, et al. (2013) Evolution in the use of natural building stone in Madrid, Spain. Q J Eng Geol Hydrogeol 46: 421-429. doi: 10.1144/qjegh2012-041 |
[3] | Cardell C, Benavente D, Rodríguez-Gordillo J (2008) Weathering of limestone building material by mixed sulfate solutions. Characterization of stone microstructure, reaction products and decay forms. Mater Charact 59: 1371-1385. |
[4] | Sajid M, Coggan J, Arif M, et al. (2016) Petrographic features as an effective indicator for the variation in strength of granites. Eng Geol 202: 44-54. doi: 10.1016/j.enggeo.2016.01.001 |
[5] | Yavuz H, Altindag R, Sarac S, et al. (2006) Estimating the index properties of deteriorated carbonate rocks due to freeze-thaw and thermal shock weathering. Int J Rock Mech Min Sci 43: 767-775. doi: 10.1016/j.ijrmms.2005.12.004 |
[6] | Sajid M, Arif M (2015) Reliance of physico–mechanical properties on petrographic characteristics: consequences from the study of Utla granites, north–west Pakistan. Bull Eng Geol Environ 74: 1321-1330. doi: 10.1007/s10064-014-0690-9 |
[7] | Vasconcelos G, Lourenҫo PB, Alves CAS, et al. (2008) Ultrasonic evaluation of the physical and mechanical properties of granites. Ultrasonics 48: 453-466. doi: 10.1016/j.ultras.2008.03.008 |
[8] | Martínez-Martínez J, Benavente D, García-del-Cura MA., (2011) Spatial attenuation: The most sensitive ultrasonic parameter for detecting petrographic features and decay processes in carbonate rocks. Eng Geol 119: 84-95. doi: 10.1016/j.enggeo.2011.02.002 |
[9] | Vázquez P, Alonso FJ, Carrizo L, et al. (2013) Evaluation of the petrophysical properties of sedimentary building stones in order to establish quality criteria. Constr Build Mater 41: 868-878. doi: 10.1016/j.conbuildmat.2012.12.026 |
[10] | Ordoñez S, Fort R, del Cura MA. (1997) Pore size distribution and the durability of a porous limestone. Q J Eng Geol 30: 221-230. doi: 10.1144/GSL.QJEG.1997.030.P3.04 |
[11] | Benavente D, García del Cura MA, Fort R, et al. (2004) Durability estimation of porous building stones from pore structure and strength. Eng Geol 74: 113-127. doi: 10.1016/j.enggeo.2004.03.005 |
[12] | Guydader J, Denis A (1986) Propagation des ondes dans les roches anisotropes sous contrainté evaluation de la qualité des schistes ardoisiers. Bull Eng Geol Environ 33: 49-55. |
[13] | Russel SA (1927) Stone preservation committee report (Appendix I). H.M. Stationary Office, London. |
[14] | Rodríguez C, Sebastián E (1994) Técnicas de análisis del sistema poroso de materiales pétreos ornamentales: usos y limitaciones. Ing Civ 96: 130-142. |
[15] | Sassoni E, Naidu S, Scherer GW (2015) The use of hydroxyapatite as a new inorganic consolidant for damaged carbonate stones. J C Herit 12: 346-355. |
[16] | García O, Malaga K (2012) Definition of the procedure to determine the suitability and durability of an anti-graffiti product for application on cultural heritage porous materials. J C Herit 13: 77-82. doi: 10.1016/j.culher.2011.07.004 |
[17] | Anders MH, Laubach SE, Scholz CH. (2014) Microfractures: A review. J Struct Geol 69: 377-394. doi: 10.1016/j.jsg.2014.05.011 |
[18] | Fort R, Varas-Muriel MJ, Alvarez de Buergo M, et al. (2015) Colmenar Limestone, Madrid, Spain: considerations for its nomination as a Global Heritage Stone Resource due to its long term durability. Geological Society, London, Special Publications 407: 121-135. doi: 10.1144/SP407.8 |
[19] | Fort R, Fernandez-Revuelta B, Varas MJ, et al. (2008) Effect of anisotropy on Madrid-region Cretaceous dolostone durability in salt crystallization processes. Mater Constr 58: 161-177. doi: 10.3989/mc.2008.v58.i289-290.74 |
[20] | Cámara B, De los Ríos A, Urizal M, et al. (2011) Characterizing the microbial colonization of a dolostone quarry: implications for stone biodecay and response to biocide treatments. Microb Ecol 62: 299-313. |
[21] | Varas-Muriel MJ, Pérez-Monserrat EM, Vázquez-Calvo C, et al. (2015) Effect of conservation treatments on heritage stone. Characterisation of decay processes in a case study. Constr Build Mater 95: 611-622. |
[22] | Jamshidi A, Reza-Nikudel M, Khamehchiyan M. (2013) Predicting the longterm durability of building stones against freeze–thaw using a decay function model. Cold Reg Sci Technol 92: 29-36. doi: 10.1016/j.coldregions.2013.03.007 |
[23] | Cassar J (2016) The Historic and Archaeological Heritage: Pollution and Non-Urban Sites. In: Urban Pollution and Changes to Materials and Building Surfaces, 255-290, P. Brimblecombe (ed). Imperial College Press. |
[24] | Silva B, Aira N, Martínez-Cortizas A, et al. (2009). Chemical composition and origin of black patinas on granite. Sci Total Environ 408: 130-137. doi: 10.1016/j.scitotenv.2009.09.020 |
[25] | Liu C, Huang S, Kang Y, et al (2015) A prediction model for uniaxial compressive strength of deteriorated rocks due to freeze–thaw. Cold Reg Sci Technol 120: 96-107. doi: 10.1016/j.coldregions.2015.09.013 |
[26] | Freire-Lista DM, Fort R., Varas-Muriel MJ (2015) Freeze-thaw fracturing in building granites. Cold Reg Sci Technol 113: 40-51. doi: 10.1016/j.coldregions.2015.01.008 |
[27] | Moses C, Robinson D, Barlow J. (2014) Methods for measuring rock surface weathering and erosion: A critical review. Earth–Sci Rev 135: 141-161. |
[28] | Goodchild MF, Ford DC (1971) Analysis of scallop patterns by simulation under controlled conditions. J Geol 79: 52-62. doi: 10.1086/627586 |
[29] | Urosevic M, Sebastian E, Cardell C. (2013) An experimental study on the influence of surface finishing on the weathering of a building low-porous limestone in coastal environments. Eng Geol 154: 131-141. doi: 10.1016/j.enggeo.2012.12.013 |
[30] | Garcia-del-Cura MA, Benavente D, Martinez-Martinez J, et al. (2012) Sedimentary structures and physical properties of travertine and carbonate tufa building stone. Constr Build Mater 28: 456-467. doi: 10.1016/j.conbuildmat.2011.08.042 |
[31] | Compitello MA (2003) Designing Madrid, 1985–1997. Cities 20: 403-411. doi: 10.1016/j.cities.2003.08.006 |
[32] | Whitehand J.W.R, Gu K. (2010) Conserving urban landscape heritage: A geographical approach. Proced-Soc Behav Sci 2: 6948-6953. doi: 10.1016/j.sbspro.2010.05.047 |
[33] | Freire-Lista D.M, Fort R. (2017) Stone provenance and conservation of the Trinitarias Descalzas and San Ildefonso convent, Madrid (Spain). Geo-Conservación (In press). |
[34] | Rukavina M (2015) Archaeological heritage and urban planning in Mérida (Spain), In: Obad Šćitaroci, M. Author, Heritage urbanism: Urban and Spatial Models for Revival and Enhancement of Cultural Heritage. Zagreb: 496-501. ISBN 978-953-8042-10-2. |
[35] | Kronlund D, Lindén M, Smått J.H (2016) A polydimethylsiloxane coating to minimize weathering effects on granite. Constr Build Mater 124: 1051-1058. doi: 10.1016/j.conbuildmat.2016.08.146 |
[36] | Casal Porto M, Silva Hermo BM, Delgado Rodrigues J (1991) Agents and forms of weathering in granitic rocks used in monuments Science, Technology and European. Cult Herit 439-442. |
[37] | Pérez-Monserrat E, Varas-Muriel MJ, Fort R, et al. (2011) Cleaning methods assessment for the limestone's façades of formerly workers Hospital of Madrid, Spain. Stud Conserv 56: 297-312. |
[38] | Pozo-Antonio JS, Rivas T, Fiorucci MP, et al. (2016). Effectiveness and harmfulness evaluation of graffiti cleaning by mechanical, chemical and laser procedures on granite. Microchem J 125: 1-9. doi: 10.1016/j.microc.2015.10.040 |