Processing math: 100%
Review

Cardiac biomarkers in dialysis

  • Received: 12 October 2016 Accepted: 19 December 2016 Published: 26 December 2016
  • Cardiovascular disease is the major cause of death, accounting for approximately 40 percent of all-cause mortality in patients receiving either hemodialysis or peritoneal dialysis. Cardiovascular risk stratification is an important aspect of managing dialysis patients as it enables early identification of high-risk patients, so therapeutic interventions can be optimized to lower cardiovascular morbidity and mortality. Biomarkers can detect early stages of cardiac injury so timely intervention can be provided. The B-type natriuretic peptides (Brain Natriuretic peptide [BNP] and N-terminal pro-B-type natriuretic peptide [NT-proBNP]) and troponins have been shown to predict mortality in dialysis patients. Suppression of tumorigenicity 2 (ST2) and galectin-3 are new emerging biomarkers in the field of heart failure in both the general and dialysis populations. This article aims to discuss the current evidence regarding cardiac biomarker use to diagnose myocardial injury and monitor the risk of major adverse cardiovascular events in patients undergoing dialysis.

    Citation: Usman Mahmood, David W Johnson, Magid A Fahim. Cardiac biomarkers in dialysis[J]. AIMS Genetics, 2017, 4(1): 1-20. doi: 10.3934/genet.2017.1.1

    Related Papers:

    [1] Kandhasamy Tamilvanan, Jung Rye Lee, Choonkil Park . Ulam stability of a functional equation deriving from quadratic and additive mappings in random normed spaces. AIMS Mathematics, 2021, 6(1): 908-924. doi: 10.3934/math.2021054
    [2] Sizhao Li, Xinyu Han, Dapeng Lang, Songsong Dai . On the stability of two functional equations for (S,N)-implications. AIMS Mathematics, 2021, 6(2): 1822-1832. doi: 10.3934/math.2021110
    [3] Murali Ramdoss, Divyakumari Pachaiyappan, Inho Hwang, Choonkil Park . Stability of an n-variable mixed type functional equation in probabilistic modular spaces. AIMS Mathematics, 2020, 5(6): 5903-5915. doi: 10.3934/math.2020378
    [4] K. Tamilvanan, Jung Rye Lee, Choonkil Park . Hyers-Ulam stability of a finite variable mixed type quadratic-additive functional equation in quasi-Banach spaces. AIMS Mathematics, 2020, 5(6): 5993-6005. doi: 10.3934/math.2020383
    [5] Zhihua Wang, Choonkil Park, Dong Yun Shin . Additive ρ-functional inequalities in non-Archimedean 2-normed spaces. AIMS Mathematics, 2021, 6(2): 1905-1919. doi: 10.3934/math.2021116
    [6] Lingxiao Lu, Jianrong Wu . Hyers-Ulam-Rassias stability of cubic functional equations in fuzzy normed spaces. AIMS Mathematics, 2022, 7(5): 8574-8587. doi: 10.3934/math.2022478
    [7] Abasalt Bodaghi, Choonkil Park, Sungsik Yun . Almost multi-quadratic mappings in non-Archimedean spaces. AIMS Mathematics, 2020, 5(5): 5230-5239. doi: 10.3934/math.2020336
    [8] Nazek Alessa, K. Tamilvanan, G. Balasubramanian, K. Loganathan . Stability results of the functional equation deriving from quadratic function in random normed spaces. AIMS Mathematics, 2021, 6(3): 2385-2397. doi: 10.3934/math.2021145
    [9] Zhihua Wang . Stability of a mixed type additive-quadratic functional equation with a parameter in matrix intuitionistic fuzzy normed spaces. AIMS Mathematics, 2023, 8(11): 25422-25442. doi: 10.3934/math.20231297
    [10] Debao Yan . Quantitative analysis and stability results in β-normed space for sequential differential equations with variable coefficients involving two fractional derivatives. AIMS Mathematics, 2024, 9(12): 35626-35644. doi: 10.3934/math.20241690
  • Cardiovascular disease is the major cause of death, accounting for approximately 40 percent of all-cause mortality in patients receiving either hemodialysis or peritoneal dialysis. Cardiovascular risk stratification is an important aspect of managing dialysis patients as it enables early identification of high-risk patients, so therapeutic interventions can be optimized to lower cardiovascular morbidity and mortality. Biomarkers can detect early stages of cardiac injury so timely intervention can be provided. The B-type natriuretic peptides (Brain Natriuretic peptide [BNP] and N-terminal pro-B-type natriuretic peptide [NT-proBNP]) and troponins have been shown to predict mortality in dialysis patients. Suppression of tumorigenicity 2 (ST2) and galectin-3 are new emerging biomarkers in the field of heart failure in both the general and dialysis populations. This article aims to discuss the current evidence regarding cardiac biomarker use to diagnose myocardial injury and monitor the risk of major adverse cardiovascular events in patients undergoing dialysis.


    The stability problem of functional equations originated from a question of Ulam [43] concerning the stability of group homomorphisms and it was affirmatively answered for Banach spaces by Hyers [17]. Hyers' theorem was generalized by Aoki [1] for approximate additive mappings and by Rassias [37] for approximate linear mappings by considering an unbounded Cauchy difference. Furthermore, a generalization of the Rassias' theorem was obtained by Găvruţă [12] by replacing the unbounded Cauchy difference by a general control function. The stability problems of several functional equations have been extensively investigated by a number of authors and there are many interesting results concerning this problem (see [2,3,4,8,18,20,21,38,41] and references therein). The stability problems in non-Archimedean Banach spaces were studied in [13,14,28,30,31,32].

    The functional equation

    f(x+y)+f(xy)=2f(x)+2f(y) (1.1)

    is called quadratic functional equation. In particular, every solution of the quadratic functional equation is said to be a quadratic mapping. The Hyers-Ulam stability problem for the quadratic functional Eq (1.1) was proved by Skof [42] for mappings from a normed space to a Banach space. Cholewa [5] noticed that Skof's theorem remains true if the domain is replaced by an Abelian group. In 1992, Czerwik [7] gave a generalization of the Skof–Cholewa's result. Later, Lee et al. [26] proved Hyers-Ulam-Rassias stability of quadratic functional Eq (1.1) in fuzzy Banach spaces.

    In 2008, Ravi et al. [39] introduced the following quadratic functional equation

    f(x+y)+f(xy)=2f(x+y)+2f(xy)+4f(x)2f(y) (1.2)

    and solved the generalized Hyers-Ulam stability of this Eq (1.2). Jun and Kim [19] considered the following functional equation

    f(2x+y)+f(2xy)=2f(x+y)+2f(xy)+12f(x) (1.3)

    and they established the general solution and the generalized Hyers-Ulam stability of the functional Eq (1.3) in Banach spaces. The functional Eq (1.3) and its pexiderized version

    f1(2x+y)+f2(2xy)=f3(x+y)+f4(xy)+f5(x)

    were studied by Sahoo [40] on commutative groups using an elementary method quite different from Jun and Kim [19]. The function f(x)=cx3 satisfies the functional Eq (1.3), which is thus called a cubic functional equation and every solution of the cubic functional equation is said to be a cubic function.

    In 2010, Wang and Liu [44] considered the following mixed type functional equation

    2f(2x+y)+2f(2xy)=4f(x+y)+4f(xy)+4f(2x)+f(2y)8f(x)8f(y). (1.4)

    It is easy to show that the function f(x)=ax2+bx3 is a solution of the functional Eq (1.4), where a,b are arbitrary constants. They established the general solution of the functional Eq (1.4), and then proved the generalized Hyers-Ulam stability of the Eq (1.4) in quasi-β-normed spaces.

    In 2011, Park [34] investigated the approximate additive mappings, approximate Jensen mappings and approximate quadratic mappings in 2-Banach spaces. This is the first result for the stability problem of functional equations in 2-Banach spaces. Later, the stability problems of additive functional inequalities, approximate multi-Jensen and multi-quadratic mappings in 2-Banach spaces were also studied [6,36], respectively. In 2012, Xu and Rassias [48] determined the generalized Hyers-Ulam stability of the mixed additive-cubic functional equation in n-Banach spaces. In 2013, Xu [47] investigated approximate multi-Jensen, multi-Euler-Lagrange additive and quadratic mappings in n-Banach spaces.

    Kim and Park [24] proved the generalized Hyers-Ulam stability of additive functional inequalities in non-Archimedean 2-normed spaces. Park et al. [35] proved the generalized Hyers-Ulam stability of the system of additive-cubic-quartic functional equations with constant coefficients in non-Archimedean 2-normed spaces. In 2015, Yang et al. [49] proved the generalized Hyers-Ulam stability of the Cauchy functional equation and the Jensen functional equation in non-Archimedean (n,β)-normed spaces and that of the Pexiderized Cauchy functional equation in (n,β)-normed spaces.

    The main purpose of this paper is to establish the generalized Hyers-Ulam stability of the mixed type quadratic-cubic functional Eq (1.4) in non-Archimedean (n,β)-normed spaces.

    Throughout this paper, let N denote the set of positive integers and i,j,m,nN, and let n2 be fixed.

    The concept of 2-normed spaces was initially developed by Gähler [9,10] in the middle of the 1960s. Then the concept of 2-Banach spaces was introduced by Gähler [11] and White [45,46]. A systematic development of linear n-normed spaces is due to Kim and Cho [25], Malceski [27], Misiak [29] and Gunawan and Mashadi [15]. Following [48,49], we recall some basic facts concerning (n,β)-normed space and some preliminary results.

    Definition 2.1. (cf. [49]) Let nN, and let X be a real linear space with dimXn and 0<β1, let ,,β:XnR be a function satisfying the following properties:

    (N1) x1,x2,,xnβ=0 if and only if x1,x2,,xn are linearly dependent;

    (N2) x1,x2,,xnβ is invariant under permutation of x1,x2,,xn;

    (N3) αx1,x2,,xnβ=|α|βx1,x2,,xnβ;

    (N4) x+y,x2,,xnβx,x2,,xnβ+y,x2,,xnβ for all x,y,x1,x2,,xnX and αR.

    Then the function ,,β is called an (n,β)-norm on X and the pair (X,,,β) is called a linear (n,β)-normed space or an (n,β)-normed space.

    Note that the concept of an (n,β)-normed space is a generalization of an n-normed space (β=1) and of a β-normed space (n=1). For some examples of n-normed space, we can refer to [48,49].

    Definition 2.2. (cf. [49]) A sequence {xk} in an (n,β)-normed space X is called a convergent sequence if there exists xX such that

    limkxkx,y2,,ynβ=0

    for all y2,,ynX. In this case, we call that {xk} converges to x or that x is the limit of {xk}, write xkx as k or limkxk=x.

    Definition 2.3. (cf. [49]) A sequence {xk} in an (n,β)-normed space X is called a Cauchy sequence if

    limk,mxkxm,y2,,ynβ=0

    for all y2,,ynX. A linear (n,β)-normed space in which every Cauchy sequence is convergent is called a complete (n,β)-normed space.

    Remark 2.1. (cf. [49]) Let (X,,,β) be a linear (n,β)-normed space, 0<β1. One can show that conditions (N2) and (N4) in Definition 2.1 imply that

    |x,y2,,ynβy,y2,,ynβ|xy,y2,,ynβ

    for all x,y,y2,,ynX.

    Lemma 2.1. (cf. [49]). Let (X,,,β) be a linear (n,β)-normed space, n2, 0<β1. If xX and x,y2,,ynβ=0 for all y2,,ynX, then x=0.

    Lemma 2.2. (cf. [48,49]). Let (X,,,β) be a linear (n,β)-normed space, n2, 0<β1. For a convergent sequence {xk} in a linear (n,β)-normed space X,

    limkxk,y2,,ynβ=limkxk,y2,,ynβ

    for all y2,,ynX.

    In 1897, Hensel [16] has introduced a normed space which does not have the Archimedean property. It turned out that non-Archimedean spaces have many nice applications [22,23,33].

    Definition 2.4. (cf. [30]) By a non-Archimedean field we mean a field K equipped with a function (valuation) ||:K[0,) such that for r,sK, the following conditions hold:

    (1) |r|=0 if and only if r=0;

    (2) |rs|=|r||s|;

    (3) |r+s|max{|r|,|s|}.

    Clearly |1|=|1|=1 and |n|1 for all nN. By the trivial valuation we mean the function || taking everything but 0 into 1 and |0|=0 (i.e., the function || is called the trivial valuation if |r|=1,rK,r0, and |0|=0).

    Definition 2.5. (cf. [30]) Let X be a vector space over a scalar field K with a non-Archimedean non-trivial valuation ||. A function :XR is called a non-Archimedean norm (valuation) if it satisfies the following conditions:

    (ⅰ) x=0 if and only if x=0;

    (ⅱ) For any rK and xX, rx=|r|x;

    (ⅲ) For all x,yX, x+ymax{x,y} (the strong triangle inequality).

    Then (X,) is called a non-Archimedean normed space.

    Now, we give the definition of a non-Archimedean (n,β)-normed space which has been introduced in [49].

    Definition 2.6. (cf. [49]) Let X be a real vector space with dimXn over a scalar field K with a non-Archimedean non-trivial valuation ||, where n is a positive integer and β is a constant with 0<β1. A real-valued function ,,β:XnR is called a non-Archimedean (n,β)-norm on X if the following conditions hold:

    (N1) x1,x2,,xnβ=0 if and only if x1,x2,,xn are linearly dependent;

    (N2) x1,x2,,xnβ is invariant under permutation of x1,x2,,xn;

    (N3) αx1,x2,,xnβ=|α|βx1,x2,,xnβ;

    (N4) x+y,x2,,xnβmax{x,x2,,xnβ,y,x2,,xnβ} for all x,y,x1,x2,,xnX and αK. Then (X,,,β) is called a non-Archimedean (n,β)-normed space.

    It follows from the preceding definition that the non-Archimedean (n,β)-normed space is a non-Archimedean n-normed space if β=1, and a non-Archimedean β-normed space if n=1, respectively.

    Remark 2.2. (cf. [49]) A sequence {xk} in a non-Archimedean (n,β)-normed space X is a Cauchy sequence if and only if {xk+1xk} converges to zero.

    In this section, we will assume that X is an n-normed space vector space and Y is a complete non-Archimedean (n,β)-normed space, where n2 and 0<β1. We prove the generalized Hyers-Ulam stability of the mixed type quadratic-cubic functional Eq (1.4) in non-Archimedean (n,β)-normed spaces. For the sake of convenience, given mapping f:XY, we define the difference operator Df(x,y):XY of the functional Eq (1.4) by

    Df(x,y)=2f(2x+y)+2f(2xy)4f(x+y)4f(xy)4f(2x)f(2y)+8f(x)+8f(y)

    for all x,yX.

    Before proceeding to the proof of the main results, we first introduce the following lemmas which will be used in this paper.

    Lemma 3.1. (cf. [44]). Let V and W be real vector spaces. If an even mapping f:VW satisfies (1.4), then f is quadratic.

    Lemma 3.2. (cf. [44]). Let V and W be real vector spaces. If an odd mapping f:VW satisfies (1.4), then f is cubic.

    Theorem 3.1. Let φ:Xn+1[0,) be a function such that

    limmφ(2mx,2my,u2,,un)|4|mβ=0 (3.1)

    for all x,y,u2,,unX. The limit

    limmmax{|4|jβφ(0,2jx,u2,,un):0j<m} (3.2)

    denoted by ˜φQ(x,u2,,un), exists for all x,u2,,unX. Suppose that f:XY is an even function satisfying f(0)=0 and

    Df(x,y),u2,,unβφ(x,y,u2,,un) (3.3)

    for all x,y,u2,,unX. Then there exists a quadratic function Q:XY such that

    f(x)Q(x),u2,,unβ1|4|β˜φQ(x,u2,,un) (3.4)

    for all x,u2,,unX, and if, in addition,

    limilimmmax{|4|jβφ(0,2jx,u2,,un):ij<m+i}=0

    then Q is the unique quadratic function satisfying (3.4).

    Proof. Putting x=0 in (3.3), and by the evenness of f, we get

    f(2y)4f(y),u2,,unβφ(0,y,u2,,un) (3.5)

    for all y,u2,,unX. If we replace y by x in (3.5) and divide both sides of (3.5) by |4|β, then we have

    f(2x)4f(x),u2,,unβ|4|βφ(0,x,u2,,un) (3.6)

    for all x,u2,,unX. Replacing x by 2mx in (3.6) and dividing both sides of (3.6) by |4|mβ, we obtain

    f(2m+1x)4m+1f(2mx)4m,u2,,unβ|4|mβ|4|βφ(0,2mx,u2,,un) (3.7)

    for all x,u2,,unX and mN. Taking the limit as m and using (3.1), we have

    limmf(2m+1x)4m+1f(2mx)4m,u2,,unβ=0 (3.8)

    for all x,u2,,unX. By Remark 2, we know that the sequence {f(2mx)4m} is Cauchy. Since Y is a complete space, we conclude that {f(2mx)4m} is convergent. So we can define the function Q:XY by

    Q(x)=limmf(2mx)4m

    for all xX. It follows from (3.1) and (3.3) that

    DQ(x,y),u2,,unβ=limm1|4|mβDf(2mx,2my),u2,,unβlimmφ(2mx,2my,u2,,un)|4|mβ=0

    for all x,y,u2,,unX. By Lemma 2.1, we get DQ(x,y)=0 for all x,yX. Therefore the function Q:XY satisfies (1.4). Since f is an even function, Q is an even function. By Lemma 3.1 (see also [44, Corollary 2.2]), Q is quadratic. Then Q satisfies

    Q(2x+y)+Q(2xy)=2Q(x+y)+2Q(xy)+4Q(x)2Q(y) (3.9)

    for all x,yX. Letting x=0 in (3.9), and by the evenness of Q, we get Q(2x)=4Q(x), so Q(2mx)=4mQ(x).

    Replacing x by 2x in (3.6) and dividing both sides by |4|β, we obtain

    f(22x)42f(2x)4,u2,,unβ|4|2βφ(0,2x,u2,,un) (3.10)

    for all x,u2,,unX. It follows from (3.6) and (3.10) that

    f(x)f(22x)42,u2,,unβmax{|4|βφ(0,x,u2,,un),|4|2βφ(0,2x,u2,,un)}

    for all x,u2,,unX.

    By induction on m, we get

    f(x)f(2mx)4m,u2,,unβmax{φ(0,2ix,u2,,un)|4|(i+1)β:0i<m} (3.11)

    for all x,u2,,unX. Replacing x by 2x in (3.11) and dividing both sides by |4|β, we get

    f(2x)4f(2m+1x)4m+1,u2,,unβmax{φ(0,2i+1x,u2,,un)|4|(i+2)β:0i<m} (3.12)

    for all x,u2,,unX. By (3.6) and (3.12), we obtain

    f(x)f(2m+1x)4m+1,u2,,unβmax{φ(0,x,u2,,un)|4|β,φ(0,2i+1x,u2,,un)|4|(i+2)β:0i<m}=max{φ(0,2ix,u2,,un)|4|(i+1)β:0i<m+1}

    for all x,u2,,unX and mN. This completes the proof of (3.11). By taking the limit as m in (3.11) and using (3.2), one obtains (3.4).

    Now we proceed to prove the uniqueness property of Q. Let Q be another quadratic function satisfying (3.4). Since

    limi˜φQ(2ix,u2,,un)|4|iβ=limilimm1|4|iβmax{φ(0,2i+jx,u2,,un)|4|jβ:0j<m}=limilimmmax{φ(0,2jx,u2,,un)|4|jβ:ij<m+i} (3.13)

    for all x,u2,,unX. So we have

    Q(x)Q(x),u2,,unβ=limi|4|iβQ(2ix)Q(2ix),u2,,unβlimi|4|iβmax{Q(2ix)f(2ix),u2,,unβ,f(2ix)Q(2ix),u2,,unβ}1|4|βlimi|4|iβ˜φQ(2ix,u2,,un)=0

    for all x,u2,,unX. If

    limilimmmax{|4|jβφ(0,2jx,u2,,un):ij<m+i}=0,

    then Q(x)Q(x),u2,,unβ=0. By Lemma 2.1, Q=Q, and the proof is complete.

    Corollary 3.1. Let ρ:[0,)[0,) be a function satisfying

    (ⅰ) ρ(|2|t)ρ(|2|)ρ(t) for all t0,

    (ⅱ) ρ(|2|)|2|rβ, where r is a fixed real number in r[2,).

    Let δ>0, X be an n-normed space with norm ,,, let f:XY be an even function with f(0)=0 and satisfying the inequality

    Df(x,y),u2,,unβδ[ρ(x,u2,,un)+ρ(y,u2,,un)] (3.14)

    for all x,y,u2,,unX. Then there exists a unique quadratic function Q:XY such that

    f(x)Q(x),u2,,unβδ|4|βρ(x,u2,,un) (3.15)

    for all x,u2,,unX.

    Proof. Define φ:Xn+1[0,) by

    φ(x,y,u2,,un):=δ[ρ(x,u2,,un)+ρ(y,u2,,un)].

    Since |4|βρ(|2|)<|2|(r2)β1, we have

    limmφ(2mx,2my,u2,,un)|4|mβlimm(ρ(|2|)|4|β)mφ(x,y,u2,,un)=0

    for all x,y,u2,,unX. Also

    ˜φQ(x,u2,,un)=limmmax{φ(0,2jx,u2,,un)|4|jβ:0j<m}=φ(0,x,u2,,un)

    and

    limilimmmax{φ(0,2jx,u2,,un)|4|jβ:ij<m+i}=limiφ(0,2ix,u2,,un)|4|iβ=0

    for all x,u2,,unX. Hence the result follows by Theorem 3.1.

    Theorem 3.2. Let φ:Xn+1[0,) be a function such that

    limmφ(2mx,2my,u2,,un)|8|mβ=0 (3.16)

    for all x,y,u2,,unX. The limit

    limmmax{|8|jβφ(0,2jx,u2,,un):0j<m} (3.17)

    denoted by ˜φC(x,u2,,un), exists for all x,u2,,unX. Suppose that f:XY is an odd function satisfying

    Df(x,y),u2,,unβφ(x,y,u2,,un) (3.18)

    for all x,y,u2,,unX. Then there exists a cubic function C:XY such that

    f(x)C(x),u2,,unβ1|8|β˜φC(x,u2,,un) (3.19)

    for all x,u2,,unX. And if, in addition,

    limilimmmax{|8|jβφ(0,2jx,u2,,un):ij<m+i}=0

    then C is the unique cubic function satisfying (3.19).

    Proof. Putting x=0 in (3.18), and by the oddness of f, we get

    f(2y)8f(y),u2,,unβφ(0,y,u2,,un) (3.20)

    for all y,u2,,unX. If we replace y by x in (3.20) and divide both sides of (3.20) by |8|β, then we have

    f(2x)8f(x),u2,,unβ|8|βφ(0,x,u2,,un) (3.21)

    for all x,u2,,unX. Replacing x by 2jx in (3.21) and dividing both sides of (3.21) by |8|mβ, we obtain

    f(2m+1x)8m+1f(2mx)8m,u2,,unβ|8|mβ|8|βφ(0,2mx,u2,,un) (3.22)

    for all x,u2,,unX and mN. Taking the limit as m and using (3.16), we have

    limmf(2m+1x)8m+1f(2mx)8m,u2,,unβ=0 (3.23)

    for all x,u2,,unX. By Remark 2, we know that the sequence {f(2mx)8m} is Cauchy. Since Y is a complete space, we conclude that {f(2mx)8m} is convergent. So we can define the function C:XY by

    C(x)=limmf(2mx)8m

    for all xX.

    Similar to the proof of Theorem 3.1, using induction one can show that

    f(x)f(2mx)8m,u2,,unβmax{φ(0,2ix,u2,,un)|8|(i+1)β:0i<m} (3.24)

    for all x,u2,,unX and mN. By taking m to approach infinity in (3.24) and using (3.17), one obtains (3.19). It follows from (3.16) and (3.18) that

    DC(x,y),u2,,unβ=limm1|8|mβDf(2mx,2my),u2,,unβlimmφ(2mx,2my,u2,,un)|8|mβ=0

    for all x,y,u2,,unX. By Lemma 2.1, we get DC(x,y)=0 for all x,yX. Therefore the function C:XY satisfies (1.4). Since f is an odd function, C is an odd function. By Lemma 3.2 (see also [44, Corollary 2.2]), C is cubic. Then C satisfies

    C(2x+y)+C(2xy)=2C(x+y)+2C(xy)+12C(x) (3.25)

    for all x,yX. Letting x=0 in (3.25), and by the oddness of C, we get C(2x)=8C(x), so C(2mx)=8mC(x). Let

    limilimmmax{|8|jβφ(0,2jx,u2,,un):ij<m+i}=0,

    for all x,u2,,unX and let C be another cubic function satisfying (3.19). Then

    C(x)C(x),u2,,unβ=limi|8|iβC(2ix)C(2ix),u2,,unβlimi|8|iβmax{C(2ix)f(2ix),u2,,unβ,f(2ix)C(2ix),u2,,unβ}1|8|βlimilimmmax{φ(0,2jx,u2,,un)|8|jβ:ij<m+i}=0

    for all x,u2,,unX. Therefore C(x)C(x),u2,,unβ=0. By Lemma 2.1, we have C=C. This completes the proof of the uniqueness of C.

    Corollary 3.2. Let ρ:[0,)[0,) be a function satisfying

    (ⅰ) ρ(|2|t)ρ(|2|)ρ(t) for all t0,

    (ⅱ) ρ(|2|)|2|λβ, where λ a fixed real number in λ[3,).

    Let δ>0, X be an n-normed space with norm ,,, let f:XY be an odd function satisfying the inequality

    Df(x,y),u2,,unβδ[ρ(x,u2,,un)+ρ(y,u2,,un)] (3.26)

    for all x,y,u2,,unX. Then there exists a unique cubic function C:XY such that

    f(x)C(x),u2,,unβδ|8|βρ(x,u2,,un) (3.27)

    for all x,u2,,unX.

    Proof. The proof is similar to the proof of Corollary 3.1 and the result follows from Theorem 3.2.

    Combining Theorems 3.1 and 3.2, we obtain the following theorem.

    Theorem 3.3. Let φ:Xn+1[0,) be a function such that

    limmφ(2mx,2my,u2,,un)|4|mβ=limmφ(2mx,2my,u2,,un)|8|mβ=0 (3.28)

    for all x,y,u2,,unX. The limit

    limmmax{φ(0,2jx,u2,,un)|4|jβ:0j<m} (3.29)

    denoted by ˜φQ(x,u2,,un), and

    limmmax{φ(0,2jx,u2,,un)|8|jβ:0j<m} (3.30)

    denoted by ˜φC(x,u2,,un), exists for all x,u2,,unX. Suppose that f:XY is a function satisfying f(0)=0 and

    Df(x,y),u2,,unβφ(x,y,u2,,un) (3.31)

    for all x,y,u2,,unX. Then there exist a quadratic function Q:XY and a cubic function C:XY such that

    f(x)Q(x)C(x),u2,,unβ1|8|βmax{max{˜φQ(x,u2,,un),˜φQ(x,u2,,un)},1|2|βmax{˜φC(x,u2,,un),˜φC(x,u2,,un)}} (3.32)

    for all x,u2,,unX, and if, in addition,

    limilimmmax{φ(0,2jx,u2,,un)|4|jβ:ij<m+i}=limilimmmax{φ(0,2jx,u2,,un)|8|jβ:ij<m+i}=0

    then Q is the unique quadratic function and C is the unique cubic function.

    Proof. Let fe(x)=12[f(x)+f(x)] for all xX. Then fe(0)=0, fe(x)=fe(x) for all xX, and

    Dfe(x,y),u2,,unβ1|2|βmax{φ(x,y,u2,,un),φ(x,y,u2,,un)}

    for all x,y,u2,,unX. By Theorem 3.1, then there exists a unique quadratic function Q:XY satisfying

    fe(x)Q(x),u2,,unβ1|23|βmax{˜φQ(x,u2,,un),˜φQ(x,u2,,un)} (3.33)

    for all x,u2,,unX.

    Let fo(x)=12[f(x)f(x)] for all xX. Then fo(0)=0, fo(x)=fo(x), and

    Dfo(x,y),u2,,unβ1|2|βmax{φ(x,y,u2,,un),φ(x,y,u2,,un)}

    for all x,y,u2,,unX. By Theorem 3.2, then there exists a unique cubic function C:XY satisfying

    fo(x)C(x),u2,,unβ1|24|βmax{˜φC(x,u2,,un),˜φC(x,u2,,un)} (3.34)

    for all x,u2,,unX. Hence, (3.32) follows from (3.33) and (3.34). This completes the proof of the theorem.

    From now on, assume that |2|1, X is a non-Archimedean (n,β1)-normed space and Y is a complete non-Archimedean (n,β)-normed space, where n2 and 0<β,β11. We can formulate our results as follows.

    Theorem 3.4. Let θ[0,), p,q(0,) with (p+q)β1>2β. Suppose that f:XY is an even function satisfying f(0)=0 and

    Df(x,y),u2,,unβθ(x,u2,,unpβ1y,u2,,unqβ1+x,u2,,unp+qβ1+y,u2,,unp+qβ1) (3.35)

    for all x,y,u2,,unX. Then there exists a unique quadratic function Q:XY such that

    f(x)Q(x),u2,,unβθ|4|βx,u2,,unp+qβ1 (3.36)

    for all x,u2,,unX.

    Proof. Putting x=0 in (3.35), and by the evenness of f, we get

    f(2y)4f(y),u2,,unβθy,u2,,unp+qβ1 (3.37)

    for all y,u2,,unX. If we replace y by x in (3.37) and divide both sides of (3.37) by |4|β, then we have

    f(2x)4f(x),u2,,unβθ|4|βx,u2,,unp+qβ1 (3.38)

    for all x,u2,,unX. Replacing x by 2mx in (3.38) and dividing both sides of (3.38) by |4|mβ, we obtain

    f(2m+1x)4m+1f(2mx)4m,u2,,unβθ|4|mβ|4|β|2m(p+q)β1|x,u2,,unp+qβ1=θ|4|β|2(p+q)β12β|mx,u2,,unp+qβ1 (3.39)

    for all x,u2,,unX and mN. Since (p+q)β1>2β and |2|1, we have

    limmf(2m+1x)4m+1f(2mx)4m,u2,,unβ=0 (3.40)

    for all x,u2,,unX. By Remark 2, we know that the sequence {f(2mx)4m} is Cauchy. Since Y is a complete space, we conclude that {f(2mx)4m} is convergent. So we can define the function Q:XY by

    Q(x)=limmf(2mx)4m

    for all xX. Similar to the proof of Theorem 3.2, using induction one can show that

    f(x)f(2mx)4m,u2,,unβθ|4|βx,u2,,unp+qβ1 (3.41)

    for all x,u2,,unX and mN. By taking the limit as m in (3.41), we obtain (3.36).

    It follows from (3.35) and Lemma 2.2 that

    DQ(x,y),u2,,unβ=limm1|4|mβDf(2mx,2my),u2,,unβlimmθ|4|mβ(2mx,u2,,unpβ12my,u2,,unqβ1+2mx,u2,,unp+qβ1+2my,u2,,unp+qβ1)=limmθ|2(p+q)β12β|m(x,u2,,unpβ1y,u2,,unqβ1+x,u2,,unp+qβ1+y,u2,,unp+qβ1)

    for all x,y,u2,,unX. Since (p+q)β1>2β and |2|1, we get

    DQ(x,y),u2,,unβ=0

    for all x,y,u2,,unX. By Lemma 2.1, we get DQ(x,y)=0 for all x,yX. Therefore the function Q:XY satisfies (1.4). Since f is an even function, Q is an even function. By Lemma 3.1 (see also [44, Corollary 2.2]), Q is quadratic. Then, we get Q(2x)=4Q(x) and Q(2mx)=4mQ(x).

    To prove the uniqueness property of Q. Let Q be another quadratic function satisfying (3.36). Then

    Q(x)Q(x),u2,,unβ=limm|4|mβQ(2mx)Q(2mx),u2,,unβlimm|4|mβmax{Q(2mx)f(2mx),u2,,unβ,f(2mx)Q(2mx),u2,,unβ}θ|4|βlimm|2(p+q)β12β|mx,u2,,unp+qβ1=0

    for all x,u2,,unX. By Lemma 2.1, we get Q=Q for all xX. So Q is the unique quadratic function satisfying (3.36).

    Theorem 3.5. Let θ[0,), p,q(0,) with (p+q)β1>3β. Suppose that f:XY is an odd function satisfying

    Df(x,y),u2,,unβθ(x,u2,,unpβ1y,u2,,unqβ1+x,u2,,unp+qβ1+y,u2,,unp+qβ1)

    for all x,y,u2,,unX. Then there exists a unique cubic function C:XY such that

    f(x)C(x),u2,,unβθ|8|βx,u2,,unp+qβ1

    for all x,u2,,unX.

    Proof. The proof is similar to the proof of Theorem 3.4.

    Next, combining Theorems 3.4 and 3.5, we obtain the following result.

    Theorem 3.6. Let θ[0,), p,q(0,) with (p+q)β1>3β. Suppose that f:XY is a function satisfying f(0)=0 and

    Df(x,y),u2,,unβθ(x,u2,,unpβ1y,u2,,unqβ1+x,u2,,unp+qβ1+y,u2,,unp+qβ1)

    for all x,y,u2,,unX. Then there exist a unique quadratic function Q:XY and a unique cubic function C:XY such that

    f(x)Q(x)C(x),u2,,unβθ|8|βx,u2,,unp+qβ1

    for all x,u2,,unX.

    Proof. The proof is similar to the proof of Theorem 3.3 and the result follows from Theorems 3.4 and 3.5.

    The author is grateful to the referees for their helpful comments and suggestions that help to improve the quality of the manuscript.

    The author declares no conflict of interest in this paper.

    [1] Cheung AK, Sarnak MJ, Yan G, et al. (2004) Cardiac diseases in maintenance hemodialysis patients: results of the HEMO Study. Kidney Int 65: 2380-2389. doi: 10.1111/j.1523-1755.2004.00657.x
    [2] Foley RN, Parfrey PS, Harnett JD, et al. (1995) Clinical and echocardiographic disease in patients starting end-stage renal disease therapy. Kidney Int 47: 186-192. doi: 10.1038/ki.1995.22
    [3] ANZDATA Registry. 38th Report, Chapter 3: Mortality in End Stage Kidney Disease. Australia and New Zealand Dialysis and Transplant Registry, Adelaide, Australia. 2016.
    [4] Foley RN, Parfrey PS, Sarnak MJ (1998) Clinical epidemiology of cardiovascular disease in chronic renal disease. Am J Kidney Dis 32: S112-119. doi: 10.1053/ajkd.1998.v32.pm9820470
    [5] Longenecker JC, Coresh J, Powe NR, et al. (2002) Traditional cardiovascular disease risk factors in dialysis patients compared with the general population: the CHOICE Study. J Am Soc Nephrol 13: 1918-1927. doi: 10.1097/01.ASN.0000019641.41496.1E
    [6] Ruilope LM, van Veldhuisen DJ, Ritz E, et al. (2001) Renal function: the Cinderella of cardiovascular risk profile. J Am Coll Cardiol 38: 1782-1787. doi: 10.1016/S0735-1097(01)01627-8
    [7] Agarwal R (2005) Hypertension in chronic kidney disease and dialysis: pathophysiology and management. Cardiol Clin 23: 237-248. doi: 10.1016/j.ccl.2005.03.003
    [8] Neumann J, Ligtenberg G, Klein II, et al. (2004) Sympathetic hyperactivity in chronic kidney disease: pathogenesis, clinical relevance, and treatment. Kidney Int 65: 1568-1576. doi: 10.1111/j.1523-1755.2004.00552.x
    [9] Covic A, Kothawala P, Bernal M, et al. (2009) Systematic review of the evidence underlying the association between mineral metabolism disturbances and risk of all-cause mortality, cardiovascular mortality and cardiovascular events in chronic kidney disease. Nephrol Dial Transplant 24: 1506-1523. doi: 10.1093/ndt/gfn613
    [10] Kaysen GA, Eiserich JP (2004) The role of oxidative stress-altered lipoprotein structure and function and microinflammation on cardiovascular risk in patients with minor renal dysfunction. J Am Soc Nephrol 15: 538-548. doi: 10.1097/01.ASN.0000111744.00916.E6
    [11] Wang AY, Lam CW, Chan IH, et al. (2010) Sudden cardiac death in end-stage renal disease patients: a 5-year prospective analysis. Hypertension 56: 210-216. doi: 10.1161/HYPERTENSIONAHA.110.151167
    [12] Martinez-Rumayor A, Richards AM, Burnett JC, et al. (2008) Biology of the natriuretic peptides. Am J Cardiol 101: 3-8.
    [13] Mukoyama M, Nakao K, Hosoda K, et al. (1991) Brain natriuretic peptide as a novel cardiac hormone in humans. Evidence for an exquisite dual natriuretic peptide system, atrial natriuretic peptide and brain natriuretic peptide. J Clin Invest 87: 1402-1412.
    [14] Yasue H, Yoshimura M, Sumida H, et al. (1994) Localization and mechanism of secretion of B-type natriuretic peptide in comparison with those of A-type natriuretic peptide in normal subjects and patients with heart failure. Circulation 90: 195-203. doi: 10.1161/01.CIR.90.1.195
    [15] Gerbes AL, Dagnino L, Nguyen T, et al. (1994) Transcription of brain natriuretic peptide and atrial natriuretic peptide genes in human tissues. J Clin Endocrinol Metab 78: 1307-1311.
    [16] Kinnunen P, Vuolteenaho O, Ruskoaho H (1993) Mechanisms of atrial and brain natriuretic peptide release from rat ventricular myocardium: effect of stretching. Endocrinology 132: 1961-1970.
    [17] Bruneau BG, Piazza LA, de Bold AJ (1997) BNP gene expression is specifically modulated by stretch and ET-1 in a new model of isolated rat atria. Am J Physiol 273: H2678-2686.
    [18] Liang F, Gardner DG (1999) Mechanical strain activates BNP gene transcription through a p38/NF-kappaB-dependent mechanism. J Clin Invest 104: 1603-1612. doi: 10.1172/JCI7362
    [19] Bibbins-Domingo K, Ansari M, Schiller NB, et al. (2003) B-type natriuretic peptide and ischemia in patients with stable coronary disease: data from the Heart and Soul study. Circulation 108: 2987-2992. doi: 10.1161/01.CIR.0000103681.04726.9C
    [20] de Bold AJ (2009) Cardiac natriuretic peptides gene expression and secretion in inflammation. J Investig Med 57: 29-32. doi: 10.2310/JIM.0b013e3181948b37
    [21] Bruneau BG, Piazza LA, de Bold AJ (1996) Alpha 1-adrenergic stimulation of isolated rat atria results in discoordinate increases in natriuretic peptide secretion and gene expression and enhances Egr-1 and c-Myc expression. Endocrinology 137: 137-143.
    [22] Wiese S, Breyer T, Dragu A, et al. (2000) Gene expression of brain natriuretic peptide in isolated atrial and ventricular human myocardium: influence of angiotensin II and diastolic fiber length. Circulation 102: 3074-3079. doi: 10.1161/01.CIR.102.25.3074
    [23] Maisel AS, Krishnaswamy P, Nowak RM, et al. (2002) Rapid measurement of B-type natriuretic peptide in the emergency diagnosis of heart failure. N Engl J Med 347: 161-167. doi: 10.1056/NEJMoa020233
    [24] McCullough PA, Nowak RM, McCord J, et al. (2002) B-type natriuretic peptide and clinical judgment in emergency diagnosis of heart failure: analysis from Breathing Not Properly (BNP) Multinational Study. Circulation 106: 416-422. doi: 10.1161/01.CIR.0000025242.79963.4C
    [25] Doust JA, Pietrzak E, Dobson A, et al. (2005) How well does B-type natriuretic peptide predict death and cardiac events in patients with heart failure: systematic review. Bmj 330: 625. doi: 10.1136/bmj.330.7492.625
    [26] Troughton RW, Frampton CM, Yandle TG, et al. (2000) Treatment of heart failure guided by plasma aminoterminal brain natriuretic peptide (N-BNP) concentrations. Lancet 355: 1126-1130. doi: 10.1016/S0140-6736(00)02060-2
    [27] Pfisterer M, Buser P, Rickli H, et al. (2009) BNP-guided vs symptom-guided heart failure therapy: the Trial of Intensified vs Standard Medical Therapy in Elderly Patients With Congestive Heart Failure (TIME-CHF) randomized trial. Jama 301: 383-392. doi: 10.1001/jama.2009.2
    [28] Berger R, Moertl D, Peter S, et al. (2010) N-terminal pro-B-type natriuretic peptide-guided, intensive patient management in addition to multidisciplinary care in chronic heart failure a 3-arm, prospective, randomized pilot study. J Am Coll Cardiol 55: 645-653. doi: 10.1016/j.jacc.2009.08.078
    [29] Eurlings LW, van Pol PE, Kok WE, et al. (2010) Management of chronic heart failure guided by individual N-terminal pro-B-type natriuretic peptide targets: results of the PRIMA (Can PRo-brain-natriuretic peptide guided therapy of chronic heart failure IMprove heart fAilure morbidity and mortality?) study. J Am Coll Cardiol 56: 2090-2100. doi: 10.1016/j.jacc.2010.07.030
    [30] Persson H, Erntell H, Eriksson B, et al. (2010) Improved pharmacological therapy of chronic heart failure in primary care: a randomized Study of NT-proBNP Guided Management of Heart Failure--SIGNAL-HF (Swedish Intervention study—Guidelines and NT-proBNP AnaLysis in Heart Failure). Eur J Heart Fail 12: 1300-1308. doi: 10.1093/eurjhf/hfq169
    [31] Lainchbury JG, Troughton RW, Strangman KM, et al. (2009) N-terminal pro-B-type natriuretic peptide-guided treatment for chronic heart failure: results from the BATTLESCARRED (NT-proBNP-Assisted Treatment To Lessen Serial Cardiac Readmissions and Death) trial. J Am Coll Cardiol 55: 53-60. doi: 10.1016/j.jacc.2009.02.095
    [32] Shah MR, Califf RM, Nohria A, et al. (2011) The STARBRITE trial: a randomized, pilot study of B-type natriuretic peptide-guided therapy in patients with advanced heart failure. J Card Fail 17: 613-621. doi: 10.1016/j.cardfail.2011.04.012
    [33] Karlstrom P, Alehagen U, Boman K, et al. (2011) Brain natriuretic peptide-guided treatment does not improve morbidity and mortality in extensively treated patients with chronic heart failure: responders to treatment have a significantly better outcome. Eur J Heart Fail 13: 1096-1103. doi: 10.1093/eurjhf/hfr078
    [34] Januzzi JL, Jr., Rehman SU, Mohammed AA, et al. (2011) Use of amino-terminal pro-B-type natriuretic peptide to guide outpatient therapy of patients with chronic left ventricular systolic dysfunction. J Am Coll Cardiol 58: 1881-1889. doi: 10.1016/j.jacc.2011.03.072
    [35] Jourdain P, Jondeau G, Funck F, et al. (2007) Plasma brain natriuretic peptide-guided therapy to improve outcome in heart failure: the STARS-BNP Multicenter Study. J Am Coll Cardiol 49: 1733-1739. doi: 10.1016/j.jacc.2006.10.081
    [36] Anguita M, Esteban F, Castillo JC, et al. (2010) [Usefulness of brain natriuretic peptide levels, as compared with usual clinical control, for the treatment monitoring of patients with heart failure]. Med Clin (Barc) 135: 435-440. doi: 10.1016/j.medcli.2009.11.048
    [37] Troughton RW, Frampton CM, Brunner-La Rocca HP, et al. (2014) Effect of B-type natriuretic peptide-guided treatment of chronic heart failure on total mortality and hospitalization: an individual patient meta-analysis. Eur Heart J 35: 1559-1567. doi: 10.1093/eurheartj/ehu090
    [38] Mant J, Al-Mohammad A, Swain S, et al. (2011) Management of chronic heart failure in adults: synopsis of the National Institute For Health and clinical excellence guideline. Ann Intern Med 155: 252-259. doi: 10.7326/0003-4819-155-4-201108160-00009
    [39] van Kimmenade RR, Januzzi JL, Jr., Bakker JA, et al. (2009) Renal clearance of B-type natriuretic peptide and amino terminal pro-B-type natriuretic peptide a mechanistic study in hypertensive subjects. J Am Coll Cardiol 53: 884-890. doi: 10.1016/j.jacc.2008.11.032
    [40] Tsai SH, Lin YY, Chu SJ, et al. (2010) Interpretation and use of natriuretic peptides in non-congestive heart failure settings. Yonsei Med J 51: 151-163. doi: 10.3349/ymj.2010.51.2.151
    [41] Januzzi JL, van Kimmenade R, Lainchbury J, et al. (2006) NT-proBNP testing for diagnosis and short-term prognosis in acute destabilized heart failure: an international pooled analysis of 1256 patients: the International Collaborative of NT-proBNP Study. Eur Heart J 27: 330-337.
    [42] Gutierrez OM, Tamez H, Bhan I, et al. (2008) N-terminal pro-B-type natriuretic peptide (NT-proBNP) concentrations in hemodialysis patients: prognostic value of baseline and follow-up measurements. Clin Chem 54: 1339-1348. doi: 10.1373/clinchem.2007.101691
    [43] Wang AY, Lam CW, Yu CM, et al. (2007) N-terminal pro-brain natriuretic peptide: an independent risk predictor of cardiovascular congestion, mortality, and adverse cardiovascular outcomes in chronic peritoneal dialysis patients. J Am Soc Nephrol 18: 321-330. doi: 10.1681/ASN.2005121299
    [44] Satyan S, Light RP, Agarwal R (2007) Relationships of N-terminal pro-B-natriuretic peptide and cardiac troponin T to left ventricular mass and function and mortality in asymptomatic hemodialysis patients. Am J Kidney Dis 50: 1009-1019. doi: 10.1053/j.ajkd.2007.08.017
    [45] Paniagua R, Amato D, Mujais S, et al. (2008) Predictive value of brain natriuretic peptides in patients on peritoneal dialysis: results from the ADEMEX trial. Clin J Am Soc Nephrol 3: 407-415. doi: 10.2215/CJN.03820907
    [46] David S, Kumpers P, Seidler V, et al. (2008) Diagnostic value of N-terminal pro-B-type natriuretic peptide (NT-proBNP) for left ventricular dysfunction in patients with chronic kidney disease stage 5 on haemodialysis. Nephrol Dial Transplant 23: 1370-1377.
    [47] Parfrey PS (2000) Cardiac disease in dialysis patients: diagnosis, burden of disease, prognosis, risk factors and management. Nephrol Dial Transplant 15 Suppl 5: 58-68.
    [48] Fahim MA, Hayen A, Horvath AR, et al. (2015) N-terminal pro-B-type natriuretic peptide variability in stable dialysis patients. Clin J Am Soc Nephrol 10: 620-629. doi: 10.2215/CJN.09060914
    [49] Lippi G, Tessitore N, Luca Salvagno G, et al. (2007) Influence of haemodialysis on the NT-proBNP plasma concentration. Clin Chem Lab Med 45: 1414-1415.
    [50] Wahl HG, Graf S, Renz H, et al. (2004) Elimination of the cardiac natriuretic peptides B-type natriuretic peptide (BNP) and N-terminal proBNP by hemodialysis. Clin Chem 50: 1071-1074. doi: 10.1373/clinchem.2003.030692
    [51] Clerico A, Caprioli R, Del Ry S, et al. (2001) Clinical relevance of cardiac natriuretic peptides measured by means of competitive and non-competitive immunoassay methods in patients with renal failure on chronic hemodialysis. J Endocrinol Invest 24: 24-30. doi: 10.1007/BF03343804
    [52] Racek J, Kralova H, Trefil L, et al. (2006) Brain natriuretic peptide and N-terminal proBNP in chronic haemodialysis patients. Nephron Clin Pract 103: c162-172. doi: 10.1159/000092914
    [53] Dautin G, Boudjeltia S, Soltani Z, et al. (2007) The changes in NT-proBNP plasma concentrations during dialysis are highly dependent of the dialysis membrane ultrafiltration coefficient. Clin Chim Acta 376: 237-239. doi: 10.1016/j.cca.2006.08.004
    [54] Bargnoux AS, Klouche K, Fareh J, et al. (2008) Prohormone brain natriuretic peptide (proBNP), BNP and N-terminal-proBNP circulating levels in chronic hemodialysis patients. Correlation with ventricular function, fluid removal and effect of hemodiafiltration. Clin Chem Lab Med 46: 1019-1024.
    [55] Sheen V, Bhalla V, Tulua-Tata A, et al. (2007) The use of B-type natriuretic peptide to assess volume status in patients with end-stage renal disease. Am Heart J 153: 244.e241-245.
    [56] Flemmer M, Rajab H, Mathena T, et al. (2008) Blood B-type natriuretic peptide and dialysis: present assessment and future analyses. South Med J 101: 1094-1100. doi: 10.1097/SMJ.0b013e318189aa56
    [57] Chiarelli G, Beaulieu M, Taylor P, et al. (2011) Elimination of BNP by peritoneal dialysis: investigation of analytical issues. Perit Dial Int 31: 199-202.
    [58] Obineche EN, Pathan JY, Fisher S, et al. (2006) Natriuretic peptide and adrenomedullin levels in chronic renal failure and effects of peritoneal dialysis. Kidney Int 69: 152-156. doi: 10.1038/sj.ki.5000009
    [59] Granja CA, Tailor PT, Gorban-Brennan N, et al. (2007) Brain natriuretic peptide and impedance cardiography to assess volume status in peritoneal dialysis patients. Adv Perit Dial 23: 155-160.
    [60] Lee JA, Kim DH, Yoo SJ, et al. (2006) Association between serum n-terminal pro-brain natriuretic peptide concentration and left ventricular dysfunction and extracellular water in continuous ambulatory peritoneal dialysis patients. Perit Dial Int 26: 360-365.
    [61] Booth J, Pinney J, Davenport A (2010) N-terminal proBNP--marker of cardiac dysfunction, fluid overload, or malnutrition in hemodialysis patients? Clin J Am Soc Nephrol 5: 1036-1040. doi: 10.2215/CJN.09001209
    [62] Gangji AS, Helal BA, Churchill DN, et al. (2008) Association between N-terminal propeptide B-type natriuretic peptide and markers of hypervolemia. Perit Dial Int 28: 308-311.
    [63] Jacobs LH, van de Kerkhof JJ, Mingels AM, et al. (2010) Inflammation, overhydration and cardiac biomarkers in haemodialysis patients: a longitudinal study. Nephrol Dial Transplant 25: 243-248. doi: 10.1093/ndt/gfp417
    [64] Lee SW, Song JH, Kim GA, et al. (2003) Plasma brain natriuretic peptide concentration on assessment of hydration status in hemodialysis patient. Am J Kidney Dis 41: 1257-1266. doi: 10.1016/S0272-6386(03)00358-5
    [65] Fagugli RM, Palumbo B, Ricciardi D, et al. (2003) Association between brain natriuretic peptide and extracellular water in hemodialysis patients. Nephron Clin Pract 95: c60-66.
    [66] Sommerer C, Beimler J, Schwenger V, et al. (2007) Cardiac biomarkers and survival in haemodialysis patients. Eur J Clin Invest 37: 350-356. doi: 10.1111/j.1365-2362.2007.01785.x
    [67] Bavbek N, Akay H, Altay M, et al. (2007) Serum BNP concentration and left ventricular mass in CAPD and automated peritoneal dialysis patients. Perit Dial Int 27: 663-668.
    [68] Zoccali C, Mallamaci F, Benedetto FA, et al. (2001) Cardiac natriuretic peptides are related to left ventricular mass and function and predict mortality in dialysis patients. J Am Soc Nephrol 12: 1508-1515.
    [69] Foley RN, Curtis BM, Randell EW, et al. (2010) Left ventricular hypertrophy in new hemodialysis patients without symptomatic cardiac disease. Clin J Am Soc Nephrol 5: 805-813. doi: 10.2215/CJN.07761109
    [70] Mallamaci F, Zoccali C, Tripepi G, et al. (2001) Diagnostic potential of cardiac natriuretic peptides in dialysis patients. Kidney Int 59: 1559-1566. doi: 10.1046/j.1523-1755.2001.0590041559.x
    [71] Choi SY, Lee JE, Jang EH, et al. (2008) Association between changes in N-terminal pro-brain natriuretic peptide levels and changes in left ventricular mass index in stable hemodialysis patients. Nephron Clin Pract 110: c93-100. doi: 10.1159/000157622
    [72] Takase H, Dohi Y, Toriyama T, et al. (2011) B-type natriuretic peptide levels and cardiovascular risk in patients with diastolic dysfunction on chronic haemodialysis: cross-sectional and observational studies. Nephrol Dial Transplant 26: 683-690. doi: 10.1093/ndt/gfq408
    [73] Goto T, Takase H, Toriyama T, et al. (2002) Increased circulating levels of natriuretic peptides predict future cardiac event in patients with chronic hemodialysis. Nephron 92: 610-615. doi: 10.1159/000064100
    [74] Tripepi G, Mattace-Raso F, Mallamaci F, et al. (2009) Biomarkers of left atrial volume: a longitudinal study in patients with end stage renal disease. Hypertension 54: 818-824. doi: 10.1161/HYPERTENSIONAHA.109.136804
    [75] Wang AY, Wang M, Lam CW, et al. (2011) Heart failure in long-term peritoneal dialysis patients: a 4-year prospective analysis. Clin J Am Soc Nephrol 6: 805-812. doi: 10.2215/CJN.07130810
    [76] Winkler K, Wanner C, Drechsler C, et al. (2008) Change in N-terminal-pro-B-type-natriuretic-peptide and the risk of sudden death, stroke, myocardial infarction, and all-cause mortality in diabetic dialysis patients. Eur Heart J 29: 2092-2099. doi: 10.1093/eurheartj/ehn278
    [77] Breidthardt T, Kalbermatter S, Socrates T, et al. (2011) Increasing B-type natriuretic peptide levels predict mortality in unselected haemodialysis patients. Eur J Heart Fail 13: 860-867. doi: 10.1093/eurjhf/hfr057
    [78] Doust J (2010) Qualification versus validation of biomarkers. Scand J Clin Lab Invest Suppl 242: 40-43.
    [79] Katus HA, Remppis A, Scheffold T, et al. (1991) Intracellular compartmentation of cardiac troponin T and its release kinetics in patients with reperfused and nonreperfused myocardial infarction. Am J Cardiol 67: 1360-1367. doi: 10.1016/0002-9149(91)90466-X
    [80] Turer AT, Addo TA, Martin JL, et al. (2011) Myocardial ischemia induced by rapid atrial pacing causes troponin T release detectable by a highly sensitive assay: insights from a coronary sinus sampling study. J Am Coll Cardiol 57: 2398-2405. doi: 10.1016/j.jacc.2010.11.066
    [81] Hessel MH, Atsma DE, van der Valk EJ, et al. (2008) Release of cardiac troponin I from viable cardiomyocytes is mediated by integrin stimulation. Pflugers Arch 455: 979-986. doi: 10.1007/s00424-007-0354-8
    [82] Thygesen K, Alpert JS, Jaffe AS, et al. (2012) Third universal definition of myocardial infarction. Circulation 126: 2020-2035. doi: 10.1161/CIR.0b013e31826e1058
    [83] Keddis MT, El-Zoghby ZM, El Ters M, et al. (2013) Cardiac troponin T before and after kidney transplantation: determinants and implications for posttransplant survival. Am J Transplant 13: 406-414. doi: 10.1111/j.1600-6143.2012.04317.x
    [84] Wu AH, Feng YJ, Roper L, et al. (1997) Cardiac troponins T and I before and after renal transplantation. Clin Chem 43: 411-412.
    [85] Fredericks S, Chang R, Gregson H, et al. (2001) Circulating cardiac troponin-T in patients before and after renal transplantation. Clin Chim Acta 310: 199-203. doi: 10.1016/S0009-8981(01)00547-2
    [86] Bozbas H, Korkmaz ME, Atar I, et al. (2004) Serum levels of cardiac enzymes before and after renal transplantation. Clin Cardiol 27: 559-562. doi: 10.1002/clc.4960271007
    [87] Ellis K, Dreisbach AW, Lertora JL (2001) Plasma elimination of cardiac troponin I in end-stage renal disease. South Med J 94: 993-996. doi: 10.1097/00007611-200194100-00011
    [88] Fahie-Wilson MN, Carmichael DJ, Delaney MP, et al. (2006) Cardiac troponin T circulates in the free, intact form in patients with kidney failure. Clin Chem 52: 414-420. doi: 10.1373/clinchem.2005.062307
    [89] Jacobs LH, van de Kerkhof J, Mingels AM, et al. (2009) Haemodialysis patients longitudinally assessed by highly sensitive cardiac troponin T and commercial cardiac troponin T and cardiac troponin I assays. Ann Clin Biochem 46: 283-290. doi: 10.1258/acb.2009.008197
    [90] Kumar N, Michelis MF, DeVita MV, et al. (2011) Troponin I levels in asymptomatic patients on haemodialysis using a high-sensitivity assay. Nephrol Dial Transplant 26: 665-670. doi: 10.1093/ndt/gfq442
    [91] Wolley M, Stewart R, Curry E, et al. (2013) Variation in and prognostic importance of troponin T measured using a high-sensitivity assay in clinically stable haemodialysis patients. Clin Kidney J 6: 402-409. doi: 10.1093/ckj/sfs122
    [92] Hill SA, Cleve R, Carlisle E, et al. (2009) Intra-individual variability in troponin T concentration in dialysis patients. Clin Biochem 42: 991-995. doi: 10.1016/j.clinbiochem.2009.03.027
    [93] Pianta TJ, Horvath AR, Ellis VM, et al. (2012) Cardiac high-sensitivity troponin T measurement: a layer of complexity in managing haemodialysis patients. Nephrology (Carlton) 17: 636-641. doi: 10.1111/j.1440-1797.2012.01625.x
    [94] Katus HA, Haller C, Muller-Bardorff M, et al. (1995) Cardiac troponin T in end-stage renal disease patients undergoing chronic maintenance hemodialysis. Clin Chem 41: 1201-1203.
    [95] Collinson PO, Stubbs PJ, Rosalki SB (1995) Cardiac troponin T in renal disease. Clin Chem 41: 1671-1673.
    [96] Li D, Jialal I, Keffer J (1996) Greater frequency of increased cardiac troponin T than increased cardiac troponin I in patients with chronic renal failure. Clin Chem 42: 114-115.
    [97] Hickman PE, McGill D, Potter JM, et al. (2015) Multiple biomarkers including cardiac troponins T and I measured by high-sensitivity assays, as predictors of long-term mortality in patients with chronic renal failure who underwent dialysis. Am J Cardiol 115: 1601-1606. doi: 10.1016/j.amjcard.2015.02.066
    [98] Lippi G, Tessitore N, Montagnana M, et al. (2008) Influence of sampling time and ultrafiltration coefficient of the dialysis membrane on cardiac troponin I and T. Arch Pathol Lab Med 132: 72-76.
    [99] Gaze DC, Collinson PO (2014) Cardiac troponin I but not cardiac troponin T adheres to polysulfone dialyser membranes in an in vitro haemodialysis model: explanation for lower serum cTnI concentrations following dialysis. Open Heart 1: e000108. doi: 10.1136/openhrt-2014-000108
    [100] Nunes JP, Sampaio S, Cerqueira A, et al. (2015) Anti-troponin I antibodies in renal transplant patients. Rev Port Cardiol 34: 85-89.
    [101] Sacchetti A, Harris R, Patel K, et al. (1991) Emergency department presentation of renal dialysis patients: indications for EMS transport directly to dialysis centers. J Emerg Med 9: 141-144. doi: 10.1016/0736-4679(91)90320-F
    [102] McDonald SP, Tong B (2011) Morbidity burden of end-stage kidney disease in Australia: hospital separation rates among people receiving kidney replacement therapy. Nephrology (Carlton) 16: 758-766. doi: 10.1111/j.1440-1797.2011.01486.x
    [103] Herzog CA, Littrell K, Arko C, et al. (2007) Clinical characteristics of dialysis patients with acute myocardial infarction in the United States: a collaborative project of the United States Renal Data System and the National Registry of Myocardial Infarction. Circulation 116: 1465-1472. doi: 10.1161/CIRCULATIONAHA.107.696765
    [104] Sosnov J, Lessard D, Goldberg RJ, et al. (2006) Differential symptoms of acute myocardial infarction in patients with kidney disease: a community-wide perspective. Am J Kidney Dis 47: 378-384. doi: 10.1053/j.ajkd.2005.11.017
    [105] Jaffe AS, Apple FS (2012) The third Universal Definition of Myocardial Infarction--moving forward. Clin Chem 58: 1727-1728. doi: 10.1373/clinchem.2012.196832
    [106] Wu AH, Jaffe AS, Apple FS, et al. (2007) National Academy of Clinical Biochemistry laboratory medicine practice guidelines: use of cardiac troponin and B-type natriuretic peptide or N-terminal proB-type natriuretic peptide for etiologies other than acute coronary syndromes and heart failure. Clin Chem 53: 2086-2096. doi: 10.1373/clinchem.2007.095679
    [107] Fahim MA, Hayen AD, Horvath AR, et al. (2015) Biological variation of high sensitivity cardiac troponin-T in stable dialysis patients: implications for clinical practice. Clin Chem Lab Med 53: 715-722.
    [108] Michos ED, Wilson LM, Yeh HC, et al. (2014) Prognostic value of cardiac troponin in patients with chronic kidney disease without suspected acute coronary syndrome: a systematic review and meta-analysis. Ann Intern Med 161: 491-501. doi: 10.7326/M14-0743
    [109] (2005) K/DOQI clinical practice guidelines for cardiovascular disease in dialysis patients. Am J Kidney Dis 45: S1-153.
    [110] Yancy CW, Jessup M, Bozkurt B, et al. (2013) 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol 62: e147-239. doi: 10.1016/j.jacc.2013.05.019
    [111] Mueller T, Leitner I, Egger M, et al. (2015) Association of the biomarkers soluble ST2, galectin-3 and growth-differentiation factor-15 with heart failure and other non-cardiac diseases. Clin Chim Acta 445: 155-160. doi: 10.1016/j.cca.2015.03.033
    [112] Mueller T, Dieplinger B (2013) The Presage((R)) ST2 Assay: analytical considerations and clinical applications for a high-sensitivity assay for measurement of soluble ST2. Expert Rev Mol Diagn 13: 13-30. doi: 10.1586/erm.12.128
    [113] Lippi G, Cervellin G (2014) Risk assessment of post-infarction heart failure. Systematic review on the role of emerging biomarkers. Crit Rev Clin Lab Sci 51: 13-29.
    [114] Weinberg EO, Shimpo M, De Keulenaer GW, et al. (2002) Expression and regulation of ST2, an interleukin-1 receptor family member, in cardiomyocytes and myocardial infarction. Circulation 106: 2961-2966. doi: 10.1161/01.CIR.0000038705.69871.D9
    [115] Demyanets S, Speidl WS, Tentzeris I, et al. (2014) Soluble ST2 and interleukin-33 levels in coronary artery disease: relation to disease activity and adverse outcome. PLoS One 9: e95055. doi: 10.1371/journal.pone.0095055
    [116] Dieplinger B, Egger M, Haltmayer M, et al. (2014) Increased soluble ST2 predicts long-term mortality in patients with stable coronary artery disease: results from the Ludwigshafen risk and cardiovascular health study. Clin Chem 60: 530-540. doi: 10.1373/clinchem.2013.209858
    [117] Bayes-Genis A, de Antonio M, Galan A, et al. (2012) Combined use of high-sensitivity ST2 and NTproBNP to improve the prediction of death in heart failure. Eur J Heart Fail 14: 32-38. doi: 10.1093/eurjhf/hfr156
    [118] Lippi G, Salvagno GL, Robuschi F, et al. (2014) Influence of dipyridamole stress echocardiography on galectin-3, amino-terminal B-type natriuretic peptide (NT-proBNP) and high-sensitivity troponin T. Acta Cardiol 69: 377-383.
    [119] Krzeslak A, Lipinska A (2004) Galectin-3 as a multifunctional protein. Cell Mol Biol Lett 9: 305-328.
    [120] Sharma UC, Pokharel S, van Brakel TJ, et al. (2004) Galectin-3 marks activated macrophages in failure-prone hypertrophied hearts and contributes to cardiac dysfunction. Circulation 110: 3121-3128. doi: 10.1161/01.CIR.0000147181.65298.4D
    [121] Suarez G, Meyerrose G (2014) Heart failure and galectin 3. Ann Transl Med 2: 86.
    [122] Chen A, Hou W, Zhang Y, et al. (2015) Prognostic value of serum galectin-3 in patients with heart failure: a meta-analysis. Int J Cardiol 182: 168-170. doi: 10.1016/j.ijcard.2014.12.137
    [123] Winter MP, Wiesbauer F, Alimohammadi A, et al. (2016) Soluble galectin-3 is associated with premature myocardial infarction. Eur J Clin Invest 46: 386-391. doi: 10.1111/eci.12605
    [124] Yancy CW, Jessup M, Bozkurt B, et al. (2013) 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on practice guidelines. Circulation 128: e240-327. doi: 10.1161/CIR.0b013e31829e8776
    [125] Hogas S, Schiller A, Voroneanu L, et al. (2016) Predictive Value for Galectin 3 and Cardiotrophin 1 in Hemodialysis Patients. Angiology 67: 854-859. doi: 10.1177/0003319715623397
    [126] Gurel OM, Yilmaz H, Celik TH, et al. (2015) Galectin-3 as a new biomarker of diastolic dysfunction in hemodialysis patients. Herz 40: 788-794. doi: 10.1007/s00059-015-4303-6
    [127] de Boer RA, van der Velde AR, Mueller C, et al. (2014) Galectin-3: a modifiable risk factor in heart failure. Cardiovasc Drugs Ther 28: 237-246. doi: 10.1007/s10557-014-6520-2
    [128] Hagstrom E, James SK, Bertilsson M, et al. (2016) Growth differentiation factor-15 level predicts major bleeding and cardiovascular events in patients with acute coronary syndromes: results from the PLATO study. Eur Heart J 37: 1325-1333. doi: 10.1093/eurheartj/ehv491
    [129] Jougasaki M, Rodeheffer RJ, Redfield MM, et al. (1996) Cardiac secretion of adrenomedullin in human heart failure. J Clin Invest 97: 2370-2376. doi: 10.1172/JCI118680
    [130] Nishikimi T, Saito Y, Kitamura K, et al. (1995) Increased plasma levels of adrenomedullin in patients with heart failure. J Am Coll Cardiol 26: 1424-1431. doi: 10.1016/0735-1097(95)00338-X
    [131] Maisel A, Mueller C, Nowak R, et al. (2010) Mid-region pro-hormone markers for diagnosis and prognosis in acute dyspnea: results from the BACH (Biomarkers in Acute Heart Failure) trial. J Am Coll Cardiol 55: 2062-2076. doi: 10.1016/j.jacc.2010.02.025
    [132] Giannopoulos G, Deftereos S, Panagopoulou V, et al. (2013) Copeptin as a biomarker in cardiac disease. Curr Top Med Chem 13: 231-240. doi: 10.2174/15680266113139990088
    [133] Reid P, Holen I (2009) Pathophysiological roles of osteoprotegerin (OPG). Eur J Cell Biol 88: 1-17.
    [134] Nybo M, Rasmussen LM (2008) The capability of plasma osteoprotegerin as a predictor of cardiovascular disease: a systematic literature review. Eur J Endocrinol 159: 603-608. doi: 10.1530/EJE-08-0554
    [135] Rosenberg M, Zugck C, Nelles M, et al. (2008) Osteopontin, a new prognostic biomarker in patients with chronic heart failure. Circ Heart Fail 1: 43-49. doi: 10.1161/CIRCHEARTFAILURE.107.746172
    [136] Rabin KR, Kamari Y, Avni I, et al. (2005) Adiponectin: linking the metabolic syndrome to its cardiovascular consequences. Expert Rev Cardiovasc Ther 3: 465-471. doi: 10.1586/14779072.3.3.465
    [137] Zoccali C, Mallamaci F, Panuccio V, et al. (2003) Adiponectin is markedly increased in patients with nephrotic syndrome and is related to metabolic risk factors. Kidney Int Suppl: S98-102.
    [138] Zoccali C, Mallamaci F, Tripepi G, et al. (2002) Adiponectin, metabolic risk factors, and cardiovascular events among patients with end-stage renal disease. J Am Soc Nephrol 13: 134-141.
    [139] Yan AT, Yan RT, Spinale FG, et al. (2006) Plasma matrix metalloproteinase-9 level is correlated with left ventricular volumes and ejection fraction in patients with heart failure. J Card Fail 12: 514-519. doi: 10.1016/j.cardfail.2006.05.012
    [140] Kecebas M, Gullulu S, Sag S, et al. (2014) Serum fetuin-A levels in patients with systolic heart failure. Acta Cardiol 69: 399-405.
    [141] Morrow DA, Cannon CP, Rifai N, et al. (2001) Ability of minor elevations of troponins I and T to predict benefit from an early invasive strategy in patients with unstable angina and non-ST elevation myocardial infarction: results from a randomized trial. Jama 286: 2405-2412. doi: 10.1001/jama.286.19.2405
    [142] Sandoval Y, Herzog CA, Love SA, et al. (2016) Prognostic Value of Serial Changes in High-Sensitivity Cardiac Troponin I and T over 3 Months Using Reference Change Values in Hemodialysis Patients. Clin Chem 62: 631-638. doi: 10.1373/clinchem.2015.251835
  • This article has been cited by:

    1. Mohammad Amin Tareeghee, Abbas Najati, Batool Noori, Choonkil Park, Asymptotic behavior of a generalized functional equation, 2022, 7, 2473-6988, 7001, 10.3934/math.2022389
    2. Araya Kheawborisut, Siriluk Paokanta, Jedsada Senasukh, Choonkil Park, Ulam stability of hom-ders in fuzzy Banach algebras, 2022, 7, 2473-6988, 16556, 10.3934/math.2022907
    3. S. Deepa, S. Bowmiya, A. Ganesh, Vediyappan Govindan, Choonkil Park, Jung Rye Lee, Mahgoub transform and Hyers-Ulam stability of nth order linear differential equations, 2022, 7, 2473-6988, 4992, 10.3934/math.2022278
    4. Yamin Sayyari, Mehdi Dehghanian, Choonkil Park, Jung Rye Lee, Stability of hyper homomorphisms and hyper derivations in complex Banach algebras, 2022, 7, 2473-6988, 10700, 10.3934/math.2022597
    5. Ramakrishnan Kalaichelvan, Uma Jayaraman, Gunaseelan Mani, Sabri T.M. Thabet, Imed Kedim, Thabet Abdeljawad, Stability of generalized cubic- and quartic-type functional equations in the setting of non-Archimedean spaces, 2025, 19, 1658-3655, 10.1080/16583655.2025.2474846
  • Reader Comments
  • © 2017 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(6130) PDF downloads(1481) Cited by(11)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog