Loading [MathJax]/jax/output/SVG/jax.js
Research article Special Issues

L1 local stability to a nonlinear shallow water wave model

  • Received: 03 June 2024 Revised: 31 August 2024 Accepted: 06 September 2024 Published: 26 September 2024
  • A nonlinear shallow water wave equation containing the famous DegasperisProcesi and FornbergWhitham models is investigated. The novel derivation is that we establish the L2 bounds of solutions from the equation if its initial value belongs to space L2(R). The L bound of the solution is derived. The techniques of doubling the space variable are employed to set up the L1 local stability of short time solutions.

    Citation: Jun Meng, Shaoyong Lai. L1 local stability to a nonlinear shallow water wave model[J]. Electronic Research Archive, 2024, 32(9): 5409-5423. doi: 10.3934/era.2024251

    Related Papers:

    [1] M. Hafiz Uddin, M. Ali Akbar, Md. Ashrafuzzaman Khan, Md. Abdul Haque . New exact solitary wave solutions to the space-time fractional differential equations with conformable derivative. AIMS Mathematics, 2019, 4(2): 199-214. doi: 10.3934/math.2019.2.199
    [2] Weiping Gao, Yanxia Hu . The exact traveling wave solutions of a class of generalized Black-Scholes equation. AIMS Mathematics, 2017, 2(3): 385-399. doi: 10.3934/Math.2017.3.385
    [3] Huaji Cheng, Yanxia Hu . Exact solutions of the generalized (2+1)-dimensional BKP equation by the G'/G-expansion method and the first integral method. AIMS Mathematics, 2017, 2(3): 562-579. doi: 10.3934/Math.2017.2.562
    [4] M. Mossa Al-Sawalha, Rasool Shah, Kamsing Nonlaopon, Imran Khan, Osama Y. Ababneh . Fractional evaluation of Kaup-Kupershmidt equation with the exponential-decay kernel. AIMS Mathematics, 2023, 8(2): 3730-3746. doi: 10.3934/math.2023186
    [5] Yunmei Zhao, Yinghui He, Huizhang Yang . The two variable (φ/φ, 1/φ)-expansion method for solving the time-fractional partial differential equations. AIMS Mathematics, 2020, 5(5): 4121-4135. doi: 10.3934/math.2020264
    [6] M. Ali Akbar, Norhashidah Hj. Mohd. Ali, M. Tarikul Islam . Multiple closed form solutions to some fractional order nonlinear evolution equations in physics and plasma physics. AIMS Mathematics, 2019, 4(3): 397-411. doi: 10.3934/math.2019.3.397
    [7] Guowei Zhang, Jianming Qi, Qinghao Zhu . On the study of solutions of Bogoyavlenskii equation via improved $ G'/G^2 $ method and simplified $ \tan(\phi(\xi)/2) $ method. AIMS Mathematics, 2022, 7(11): 19649-19663. doi: 10.3934/math.20221078
    [8] Harivan R. Nabi, Hajar F. Ismael, Nehad Ali Shah, Wajaree Weera . W-shaped soliton solutions to the modified Zakharov-Kuznetsov equation of ion-acoustic waves in (3+1)-dimensions arise in a magnetized plasma. AIMS Mathematics, 2023, 8(2): 4467-4486. doi: 10.3934/math.2023222
    [9] Jalil Manafian, Onur Alp Ilhan, Sizar Abid Mohammed . Forming localized waves of the nonlinearity of the DNA dynamics arising in oscillator-chain of Peyrard-Bishop model. AIMS Mathematics, 2020, 5(3): 2461-2483. doi: 10.3934/math.2020163
    [10] M. TarikulIslam, M. AliAkbar, M. Abul Kalam Azad . Traveling wave solutions in closed form for some nonlinear fractional evolution equations related to conformable fractional derivative. AIMS Mathematics, 2018, 3(4): 625-646. doi: 10.3934/Math.2018.4.625
  • A nonlinear shallow water wave equation containing the famous DegasperisProcesi and FornbergWhitham models is investigated. The novel derivation is that we establish the L2 bounds of solutions from the equation if its initial value belongs to space L2(R). The L bound of the solution is derived. The techniques of doubling the space variable are employed to set up the L1 local stability of short time solutions.



    Nonlinear evolution equations (NLEEs) model many complex phenomena in physics including plasma, solid state, chemical and optical fibers, nonlinear optics, fluid mechanics, etc. Exploring exact traveling wave solutions plays a significant role in nonlinear physics. For this purpose, a number of techniques were developed including method of modified Khater [1,2], first integral [3,4], functional variable [5], expansions [6,7] of new generalized (G/G) [8,9,10], new Φ6-model [11], Jacobi elliptic function [12,13], sine-Gordon [14], bifurcation [15,16], exp-function [17,18], new auxiliary equation [19], exp(-ϕ(ξ))-expansion [20,21], fan sub-equation [22,23], inverse scattering [24], generalized Kudryshov [25,26,27], Hirota's bilinear [28,29], extended direct algebraic [30], Lie group [31].

    Consider the (2+1)-dimensional KK equations [32]

    9ut+u5x+15uuxxx+752uxuxx+45u2ux+5σuxxy5σ1xuyy+15σuuy+15σux1xuy=0. (1.1)

    where σ2=1,1x=dx. This equation has been widely applied in many branches of physics like plasma physics, fluid dynamics, nonlinear optics, and so forth. If we take u(x,y,t)=u(x,t), Eq (1.1) becomes the (1+1)-dimensional KK equation [32]

    9ut+u5x+15uuxxx+752uxuxx+45u2ux=0, (1.2)

    In [33], method of exp-function was applied to Eq (1.2). In [32], symmetric method was applied to the nonlinear (2+1)-KK equation.

    The method of the present paper, a candid, succinct and efficient technique, considered as a generalization of (G/G)-expansion technique [34,35,36,37] was developed in [38,39,40,41,42,43,44,45]. Main purpose of this paper is to investigate the applicability of the method to (1+1)-dimensional KK equation which was not considered in the history of research so far.

    We shortly overview the method in such a fashion that maintains four remarks and five basic postulates:

    Remark I. If we set up

    ϕ=G/G,ψ=1/G, (2.1)

    in

    G(ξ)+λG(ξ)=β, (2.2)

    then we must have the relations

    ϕ=ϕ2+βψλ,φ=φψ, (2.3)

    wherein λ and β are parameters.

    Remark II. If λ is negative, general solution of (2.2) is:

    G(ξ)=D1sinh(ξλ)+D2cosh(ξλ)+βλ. (2.4)

    and we receive the following relation

    ψ2=λλ2α1+β2(φ22βψ+λ), (2.5)

    wherein D1 and D2 are arbitrary constants and α1=D21D22.

    Remark III. If λ is positive, general solution of (2.2) is:

    G(ξ)=D1sin(ξλ)+D2cos(ξλ)+βλ, (2.6)

    consequently, we obtain

    ψ2=λλ2α2β2(φ22βψ+λ), (2.7)

    wherein α2=D21+D22.

    Remark IV. If λ=0, the general solution of (2.2),

    G(ξ)=β2ξ2+D1ξ+D2, (2.8)

    and therefore we get,

    ψ2=φ22βψD212βD2. (2.9)

    Now let us consider:

    R(u,ut,ux,uy,utt,uxx,uyy,uxt,)=0, (2.10)

    wherein R is a polynomial function in u and ut=ut, ux=ux, uy=uy, uxx=2ux2, uyy=2uy2, uxy=2uxy and so on.

    Postulate 1. Consider:

    u(x,y,t)=u(ξ),andξ=ηx+ωy+ct, (2.11)

    wherein η, ω and c are parameters. By traveling wave transformations (2.11), the Eq.(2.10) can be reduced to:

    T(u,cu,ηu,ωu,c2u,η2u,ω2u,ηωu,cηu,)=0, (2.12)

    wherein T is a polynomial.

    Postulate 2. Let us assume that the following relation is the general solution expressed by a polynomial:

    u(ξ)=a0+Ni=1(aiφi(ξ)+biφi1(ξ)ψ(ξ)), (2.13)

    wherein a0, ai and bi(i=1,2,3,...,N) are the constant coefficients such that a2N+b2N0.

    Postulate 3. By homogeneous balance, we determine N in Eq (2.13).

    Postulate 4. To convert the left-hand-side of Eq (2.12) into a polynomial function in ψ and ϕ, we write Eq (2.13) into Eq (2.12) with Eq (2.3) and Eq (2.5). By solving polynomial, we obtain the system: in a0, ai, bi(i=1,2,3,...,N), λ(<0), β, η, ω, c, D1 and D2. We solve this system with Mathematica. Setting values of above algebraic constants in Eq (2.13), solutions by hyperbolic functions in Eq (2.12) are obtained.

    Postulate 5. Similar to Postulate 4, substituting Eq (2.13) into Eq (2.12), using Eq (2.3) and Eq (2.5) (or Eq (2.3) and Eq (2.7)), we obtain the exact traveling wave solutions of Eq (2.12) demonstrated by trigonometric functions.

    Let us consider transformation:

    u(x,t)=u(ξ),ξ=x+ct, (3.1)

    wherein c is a parameter, which reduces Eq (1.2) to:

    9cu+u(5)+15uu+752uu+45u2u=0. (3.2)

    According to postulate 2, the positive number N=2 is obtained by balancing between u(5) and u2u, thus general solutions of Eq (3.2) is:

    u(ξ)=a0+a1φ(ξ)+a2φ2(ξ)+b1ψ(ξ)+b2φ(ξ)ψ(ξ), (3.3)

    whereina0, ai and bi(i=1,2) are constant coefficients such thata2N+b2N0(N=1,2), ϕ(ξ) and ψ(ξ) are satisfied by the Eq (2.3). Now, there are three categories of solutions of Eq (3.2):

    Category 1: When λ<0 (solutions by hyperbolic functions):

    Writing Eq (3.3) with Eq (2.3) and Eq (2.5) into Eq (3.2), Eq (3.2) forms a polynomial in ψ(ξ) and ϕ(ξ). Solving this polynomial, we obtain a system: a0, a1, a2, b1, b2, λ(<0), β, c and α1. Solving this system with Mathematica, we obtain the values of a0 a1, a2, b1, b2, β and c as:

    Result 1:

    a0=10λ3,a1=0,a2=4,b1=4β,b2=±4β2+λ2α1λ,c=11λ29,β=β. (3.4)

    Writing these constants from Eq (3.4) into (3.3) and by Eq (2.1) and Eq (2.4), we obtain explicit solutions of Eq (1.2):

    u(ξ)=10λ3+4λ{D1cosh(ξλ)D2sinh(ξλ)}2{D1sinh(ξλ+D2cosh(ξλ)+βλ}2+4β{D1sinh(ξλ+D2cosh(ξλ)+βλ}±4β2+λ2α1λ{D1cosh(ξλ)D2sinh(ξλ)}2{D1sinh(ξλ+D2cosh(ξλ)+βλ}2 (3.5)

    wherein ξ=x11λ2t9 and α1=D21D22.

    In particular, if we choose D10, D2=0 and β=0 in Eq (3.5), we get:

    u(x,t)=10λ3+4λcoth(λ(x11λ2t9)){coth(λ(x11λ2t9))±csch(λ(x11λ2t9))}. (3.6)

    Similarly, if we choose D20, D1=0 and β=0 in Eq (3.5), we get:

    u(x,t)=10λ3+4λtanh(λ(x11λ2t9)){tanh(λ(x11λ2t9))±isech(λ(x11λ2t9))}, (3.7)
    Figure 1.  3D, contour and 2D surfaces of absolute Eq (3.7) when λ=1.

    wherein i=1.

    Result 2:

    a0=5λ12,a1=0,a2=12, b1=β2,b2=±β2+λ2α12λ,c=λ2144,β=β. (3.8)

    Explicit solutions of Eq (1.2) are given by:

    u(ξ)=5λ12+λ{D1cosh(ξλ)+D2sinh(ξλ)}22{D1sinh(ξλ)+D2cosh(ξλ)+βλ}2+β2{D1sinh(ξλ)+D2cosh(ξλ)+βλ}±β2+λ2α1{D1cosh(ξλ)+D2sinh(ξλ)}2{D1sinh(ξλ)+D2cosh(ξλ)+βλ}2, (3.9)

    wherein ξ=xλ2t144 and α1=D21D22.

    In particular, if we choose D10, D2=0 and β=0 in Eq (3.9), we get:

    u(x,t)=5λ12+λ2coth(λ(xλ2t144)){coth(λ(xλ2t144))±csch(λ(xλ2t144))}. (3.10)

    Similarly, if we choose D20, D1=0 and β=0 in Eq (3.9), we get:

    u(x,t)=5λ12+λ2tanh(λ(xλ2t144)){tanh(λ(xλ2t144))±isech(λ(xλ2t144))}, (3.11)

    wherein i=1.

    Result3:

    a0=11λβ2+8λ3α112(β2+λ2α1),a1=0,a2=1,b1=β,b2=0,c=λ2(β428λ2β2α1+16λ4α21)144(β2+λ2α1)2,β=β. (3.12)

    wherein β2+λ2α10.

    We get explicit solutions of Eq (1.2) as:

    u(ξ)=11λβ2+8λ3α112(β2+λ2α1)+λ{D1cosh(ξλ)+D2sinh(ξλ)}2{D1sinh(ξλ)+D2cosh(ξλ)+βλ}2+β{D1sinh(ξλ)+D2cosh(ξλ)+βλ}, (3.13)

    wherein ξ=xλ2t(β428λ2β2α1+16λ4α21)144(β2+λ2α1)2 and α1=D21D22.

    In particular, if we choose D10, D2=0 and β=0 in Eq (3.13), we get:

    u(x,t)=2λ3+λcoth2(λ(xλ2t9)). (3.14)
    Figure 2.  3D, contour and 2D surfaces of absolute Eq (3.14) when λ=5..

    Similarly, if we choose D20, D1=0 and β=0 in Eq (3.14), we get:

    u(x,t)=2λ3+λtanh2(λ(xλ2t9)). (3.15)

    Category 2: For λ>0, (i.e. trigonometric functions),

    According to Postulate 5, if we execute as the category 1, we attain the values of a0, a1, a2, b1, b2, β and c as the following results:

    Result 1:

    a0=10λ3,a1=0,a2=4,b1=4β,b2=±4β2+λ2α1λ,c=11λ29,β=β. (3.16)

    Writing constants in Eq (3.16) into Eq (3.3) and by Eq (2.1) and Eq (2.6), we get explicit solutions of Eq (1.2):

    u(ξ)=10λ34λ{D1cos(ξλ)D2sin(ξλ)}2{D1sin(ξλ)+D2cos(ξλ)+βλ}2+4βD1sin(ξλ)+D2cos(ξλ)+βλ±4β2+λ2α2{D1cos(ξλ)D2sin(ξλ)}{D1sin(ξλ)+D2cos(ξλ)+βλ}2, (3.17)

    wherein ξ=x11λ2t9 and α2=D21+D22.

    Result 2:

    a0=5λ12,a1=0,a2=12,b1=β2,b2=±β2+λ2α12λ,c=λ2144,β=β. (3.18)

    We get explicit solutions of Eq (1.2) as:

    u(ξ)=5λ12λ{D1cos(ξλ)D2sin(ξλ)}22{D1sin(ξλ)+D2cos(ξλ)+βλ}2+β2{D1sin(ξλ)+D2cos(ξλ)+βλ}±β2+λ2α2{D1cos(ξλ)D2sin(ξλ)}2{D1sin(ξλ)+D2cos(ξλ)+βλ}2,. (3.19)

    wherein ξ=xλ2t144 and α2=D21+D22.

    Result 3:

    a0=11λβ28λ3α212(β2+λ2α2),a1=0,a2=1,b1=β,b2=0,c=λ2(β4+28λ2β2α2+16λ4α22)144(β2+λ2α2)2,β=β. (3.20)

    wherein β2+λ2α20.

    We get explicit solutions of Eq (1.2) as:

    u(ξ)=11λβ28λ3α212(β2+λ2α2)λ{D1cos(ξλ)D2sin(ξλ)}2{D1sin(ξλ)+D2cos(ξλ)+βλ}2+β{D1sin(ξλ)+D2cos(ξλ)+βλ}, (3.21)
    Figure 3.  3D, contour and 2D surfaces of Eq (3.21) when λ=3,D1=0.8,D2=0.5,β=3.

    wherein ξ=xλ2t(β4+28λ2β2α2+16λ4α22)144(β2+λ2α2)2 and α2=D21+D22.

    Category 3: For λ=0, (i.e.rational functions),

    According to Postulate 5, if we execute as the category 1, we attain the values of a0, a1, a2, b1, b2, β and c as the following results:

    a0=β24(D21+2βD2),a1=0,a2=1,b1=β,b2=0,c=5β416(D21+2βD)2,β=β. (3.22)

    We get explicit solutions of Eq (1.2) as:

    u(ξ)=β24(D21+2βD2)(βξ+D1)2(β2ξ2+D1ξ+D2)2+β(β2ξ2+D1ξ+D2), (3.23)

    wherein ξ=x5β4t16(D21+2βD)2 and D21+2βD0.

    If we set up the particular values of the arbitrary constants if we choose D1, D2 and βin the above Eq (3.17), Eq (3.19), Eq (3.21) and Eq (3.23), we attain abundant new explicit wave solutions of KK equation which are unexposed for minimalism of length of the paper.

    We obtained new explicit solutions for the (1+1)-dimensional KK equation. We achieved solitary wave solutions for analogous traveling wave solutions of Eq (1.2). These affluent solutions including bell and anti-bell solitons, kink and anti-kink solitons, periodic and rational functions of KK equation indicate that double (G/G,1/G)-expansion technique is more powerful than the method of (G/G,1/G)-expansion. Comparing the solutions with the ones in [33], we presume that all the solutions are renewed which are un-indicted elsewhere. Our mentioned method is more powerful and also an offering method to demonstrate many higher order nonlinear PDEs. We will investigate the applicability of the method to (2+1)-dimensional KK equation in a future extension of the present work.

    The work was supported by the Natural Science Foundation of China (Grant Nos. 61673169, 11301127, 11701176, 11626101, 11601485).

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.



    [1] A. Constantin, D. Lannes, The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi equations, Arch. Rational Mech. Anal., 192 (2009), 165–186. http://doi.org/10.1007/s00205-008-0128-2 doi: 10.1007/s00205-008-0128-2
    [2] G. Fornberg, G. Whitham, A numberical and theoretical study of certain nonlinear ave phenomena, Philos. Trans. R. Soc. London, Ser. A, 289 (1978), 373–404. http://doi.org/10.1098/rsta.1978.0064 doi: 10.1098/rsta.1978.0064
    [3] G. Whitham, Variational methods and applications to water waves, Proc. R. Soc. A, 299 (1967), 6–25. http://doi.org/10.1098/rspa.1967.0119 doi: 10.1098/rspa.1967.0119
    [4] S. Haziot, Wave breaking for the Fornberg-Whitham equation, J. Differ. Equations, 263 (2017), 8178–8185. http://doi.org/10.1016/j.jde.2017.08.037 doi: 10.1016/j.jde.2017.08.037
    [5] G. H¨ormann, Solution concepts, well-posedness, and wave breaking for the Fornberg-Whitham equation, Monatsh. Math., 195 (2021), 421–449. http://doi.org/10.1007/s00605-020-01504-6 doi: 10.1007/s00605-020-01504-6
    [6] G. H¨ormann, Discontinuous traveling waves as weak solutions to the Fornberg-Whitham equation, J. Differ. Equations, 265 (2018), 2825–2841. http://doi.org/10.1016/j.jde.2018.04.056 doi: 10.1016/j.jde.2018.04.056
    [7] J. Holmes, R. Thompson, Well-posedness and continuity properties of the Fornberg-Whitham equation, J. Differ. Equations, 263 (2017), 4355–4381. http://doi.org/10.1016/j.jde.2017.05.019 doi: 10.1016/j.jde.2017.05.019
    [8] J. Holmes, Well-posedness of the Fornberg-Whitham equation on the circle, J. Differ. Equations, 260 (2016), 8530–8549. http://doi.org/10.1016/j.jde.2016.02.030 doi: 10.1016/j.jde.2016.02.030
    [9] F. Ma, L. Yue, C. Qu, Wave-breaking phenomena for the nonlocal Whitham-type equations, J. Differ. Equations, 261 (2016), 6029–6054. http://doi.org/10.1016/j.jde.2016.08.027 doi: 10.1016/j.jde.2016.08.027
    [10] X. L. Wu, Z. Zhang, On the blow-up of solutions for the Fornberg-Whitham equation, Nonlinear Anal. Real World Appl., 44 (2018), 573–588. http://doi.org/10.1016/j.nonrwa.2018.06.004 doi: 10.1016/j.nonrwa.2018.06.004
    [11] L. Wei, New wave-breaking criteria for the Fornberg-Whitham equation, J. Differ. Equations, 280 (2021), 571–589. http://doi.org/10.1016/j.jde.2021.01.041 doi: 10.1016/j.jde.2021.01.041
    [12] A. Degasperis, M. Procesi, Asymptotic integrability, in Symmetry and Perturbation Theory, World Scientific, (1999), 23–37.
    [13] A. Degasperis, D. Holm, A. Hone, A new integral equation with peakon solution, Theor. Math. Phys., 133 (2002), 1463–1474. http://doi.org/10.1023/a:1021186408422 doi: 10.1023/a:1021186408422
    [14] J. Escher, Y. Liu, Z. Yin, Global weak solutions and blow-up structure for the Degasperis-Procesi equation, J. Funct. Anal., 241 (2006), 457–485. http://doi.org/10.1016/j.jfa.2006.03.022 doi: 10.1016/j.jfa.2006.03.022
    [15] Y. Liu, Z. Yin, Global existence and blow-up phenomena for the Degasperis-Procesi equation, Commun. Math. Phys., 267 (2006), 801–820. http://doi.org/10.1007/s00220-006-0082-5 doi: 10.1007/s00220-006-0082-5
    [16] Z. Yin, On the Cauchy problem for the periodic generalized Degasperis-Procesi equation, Illinois J. Math., 47 (2003), 649–666. http://doi.org/ 10.1215/ijm/1258138186 doi: 10.1215/ijm/1258138186
    [17] G. M. Coclite, K. H. Karlsen, Periodic solutions of the Degasperis-Procesi equation, J. Funct. Anal., 268 (2015), 1053–1077. http://doi.org/10.1016/j.jfa.2014.11.008 doi: 10.1016/j.jfa.2014.11.008
    [18] H. Lundmark, J. Szmigielski, Multi-peakon solutions of the Degasperis-Procesi equation, Inverse Probl., 19 (2003), 1241–1245. http://doi.org/10.1088/0266-5611/19/6/001 doi: 10.1088/0266-5611/19/6/001
    [19] J. Lenells, Traveling wave solutions of the Degasperis-Procesi equation, J. Math. Anal. Appl., 306 (2005), 72–82. http://doi.org/10.1016/j.jmaa.2004.11.038 doi: 10.1016/j.jmaa.2004.11.038
    [20] V. O. Vakhnenko, E. J. Parkes, Periodic and solitary-wave solutions of the Degasperis-Procesi equation, Chaos, Solitons Fractals, 20 (2004), 1059–1073. http://doi.org/10.1016/j.chaos.2003.09.043 doi: 10.1016/j.chaos.2003.09.043
    [21] S. Lai, Y. Wu, A model containing both the Camassa-Holm and Degasperis-Procesi equations, J. Math. Anal. Appl., 374 (2011), 458–469. http://doi.org/10.1016/j.jmaa.2010.09.012 doi: 10.1016/j.jmaa.2010.09.012
    [22] D. Henry, Infinite propagation speed for the Degasperis-Procesi equation, J. Math. Anal. Appl., 311 (2005), 755–759. http://doi.org/10.1016/j.jmaa.2005.03.001 doi: 10.1016/j.jmaa.2005.03.001
    [23] A. Constantin, R. Ivanov, Dressing method for the Degasperis-Procesi equation, Stud. Appl. Math., 138 (2017), 205–226. http://doi.org/10.1111/sapm.12149 doi: 10.1111/sapm.12149
    [24] A. Constantin, J. Escher, Wave breaking for nonlinear nonlocal shallow water equations, Acta Math., 181 (1998), 229–243. http://doi.org/10.1007/bf02392586 doi: 10.1007/bf02392586
    [25] I. Freire, Global conservative solutions of the Camassa-Holm equation, Commun. Math., 29 (2021), 115–130. http://doi.org/10.2478/cm-2021-0006 doi: 10.2478/cm-2021-0006
    [26] I. L. Freire, Conserved quantities, continuation and compactly supported solutions of some shallow water models, J. Phys. A: Math. Theor., 54 (2021), 015207. http://doi.org/10.1088/1751-8121/abc9a2 doi: 10.1088/1751-8121/abc9a2
    [27] Z. Guo, X. Li, C. Yu, Some properties of solutions to the Camassa-Holm type equation with higher order nonlinearities, J. Nonlinear Sci., 28 (2018), 1901–1914. http://doi.org/10.1007/s00332-018-9469-7 doi: 10.1007/s00332-018-9469-7
    [28] Y. Zhou, Blow-up of solutions to the DGH equations, J. Funct. Anal., 250 (2007), 227–248. http://doi.org/10.1016/j.jfa.2007.04.019 doi: 10.1016/j.jfa.2007.04.019
    [29] J. Li, Y. L. Cheng, Barycentric rational interpolation method for solving KPP equation, Electron. Res. Arch., 31 (2023), 3014–3029. http://doi.org/10.3934/era.2023152 doi: 10.3934/era.2023152
    [30] M. Z. Wei, Existence of traveling waves in a delayed convecting shallow water fluid model, Electron. Res. Arch., 31 (2023), 6803–6819. http://doi.org/10.3934/era.2023343 doi: 10.3934/era.2023343
    [31] S. N. Kruˇzkov, First order quasi-linear equations in several independent variables, Math. USSR-Sb., 10 (1970), 217–243. http://doi.org/10.1070/sm1970v010n02abeh002156 doi: 10.1070/sm1970v010n02abeh002156
  • This article has been cited by:

    1. M. Akher Chowdhury, M. Mamun Miah, H.M. Shahadat Ali, Yu-Ming Chu, M.S. Osman, An investigation to the nonlinear (2 + 1)-dimensional soliton equation for discovering explicit and periodic wave solutions, 2021, 23, 22113797, 104013, 10.1016/j.rinp.2021.104013
    2. Behzad Ghanbari, Abundant exact solutions to a generalized nonlinear Schrödinger equation with local fractional derivative, 2021, 0170-4214, 10.1002/mma.7302
    3. Nehad Ali Shah, Mustafa Inc, An Analytical View of Fractional-Order Fisher’s Type Equations within Caputo Operator, 2021, 2021, 1563-5147, 1, 10.1155/2021/5516392
    4. Behzad Ghanbari, Chun-Ku Kuo, Abundant wave solutions to two novel KP-like equations using an effective integration method, 2021, 96, 0031-8949, 045203, 10.1088/1402-4896/abde5a
    5. Mostafa M. A. Khater, Behzad Ghanbari, On the solitary wave solutions and physical characterization of gas diffusion in a homogeneous medium via some efficient techniques, 2021, 136, 2190-5444, 10.1140/epjp/s13360-021-01457-1
    6. H.M. Shahadat Ali, M.A. Habib, Md. Mamun Miah, M. Mamun Miah, M. Ali Akbar, Diverse solitary wave solutions of fractional order Hirota-Satsuma coupled KdV system using two expansion methods, 2023, 66, 11100168, 1001, 10.1016/j.aej.2022.12.021
    7. Lanre Akinyemi, Mohammad Mirzazadeh, Seyed Amin Badri, Kamyar Hosseini, Dynamical solitons for the perturbated Biswas–Milovic equation with Kudryashov's law of refractive index using the first integral method, 2022, 69, 0950-0340, 172, 10.1080/09500340.2021.2012286
    8. SHAO-WEN YAO, A RIGID PENDULUM IN A MICROGRAVITY: SOME SPECIAL PROPERTIES AND A TWO-SCALE FRACTAL MODEL, 2021, 29, 0218-348X, 2150127, 10.1142/S0218348X21501279
    9. Lanre Akinyemi, Hadi Rezazadeh, Qiu-Hong Shi, Mustafa Inc, Mostafa M.A. Khater, Hijaz Ahmad, Adil Jhangeer, M. Ali Akbar, New optical solitons of perturbed nonlinear Schrödinger–Hirota equation with spatio-temporal dispersion, 2021, 29, 22113797, 104656, 10.1016/j.rinp.2021.104656
    10. Arzu Akbulut, Mir Sajjad Hashemi, Hadi Rezazadeh, New conservation laws and exact solutions of coupled Burgers' equation, 2021, 1745-5030, 1, 10.1080/17455030.2021.1979691
    11. Lanre Akinyemi, Udoh Akpan, Pundikala Veeresha, Hadi Rezazadeh, Mustafa Inc, Computational techniques to study the dynamics of generalized unstable nonlinear Schrödinger equation, 2022, 24680133, 10.1016/j.joes.2022.02.011
    12. Lanre Akinyemi, Mehmet Şenol, Emad Az-Zo’bi, P. Veeresha, Udoh Akpan, Novel soliton solutions of four sets of generalized (2+1)-dimensional Boussinesq–Kadomtsev–Petviashvili-like equations, 2022, 36, 0217-9849, 10.1142/S0217984921505308
    13. H.I. Abdel-Gawad, M. Tantawy, M.S. Mani Rajan, Similariton regularized waves solutions of the (1+2)-dimensional non-autonomous BBME in shallow water and stability, 2022, 7, 24680133, 321, 10.1016/j.joes.2021.09.002
    14. Guoan Xu, Jibin Li, Yi Zhang, Exact Solutions and Dynamical Behaviors of the Raman Soliton Model with Anti-Cubic Nonlinearity, 2022, 21, 1575-5460, 10.1007/s12346-022-00642-6
    15. Fan Sun, Propagation of solitons in optical fibers with generalized Kudryashov’s refractive index, 2021, 28, 22113797, 104644, 10.1016/j.rinp.2021.104644
    16. Hira Tariq, Maasoomah Sadaf, Ghazala Akram, Hadi Rezazadeh, Jamel Baili, Yu-Pei Lv, Hijaz Ahmad, Computational study for the conformable nonlinear Schrödinger equation with cubic–quintic–septic nonlinearities, 2021, 30, 22113797, 104839, 10.1016/j.rinp.2021.104839
    17. Adivi Sri Venkata Ravi Kanth, Kirubanandam Aruna, Kondooru Raghavendar, Natural transform decomposition method for the numerical treatment of the time fractional Burgers–Huxley equation , 2022, 0749-159X, 10.1002/num.22983
    18. Shahram Rezapour, Muhammad Imran Liaqat, Sina Etemad, Kolade M. Owolabi, An Effective New Iterative Method to Solve Conformable Cauchy Reaction-Diffusion Equation via the Shehu Transform, 2022, 2022, 2314-4785, 1, 10.1155/2022/4172218
    19. Md Ashik Iqbal, Ye Wang, Md Mamun Miah, Mohamed S. Osman, Study on Date–Jimbo–Kashiwara–Miwa Equation with Conformable Derivative Dependent on Time Parameter to Find the Exact Dynamic Wave Solutions, 2021, 6, 2504-3110, 4, 10.3390/fractalfract6010004
    20. Lanre Akinyemi, Two improved techniques for the perturbed nonlinear Biswas–Milovic equation and its optical solitons, 2021, 243, 00304026, 167477, 10.1016/j.ijleo.2021.167477
    21. Siyuan Liu, S. Rezaei, S.A. Najati, Mohamed S. Mohamed, Novel wave solutions to a generalized third-order nonlinear Schrödinger’s equation, 2022, 37, 22113797, 105457, 10.1016/j.rinp.2022.105457
    22. Shao-Wen Yao, Lanre Akinyemi, Mohammad Mirzazadeh, Mustafa Inc, Kamyar Hosseini, Mehmet Şenol, Dynamics of optical solitons in higher-order Sasa–Satsuma equation, 2021, 30, 22113797, 104825, 10.1016/j.rinp.2021.104825
    23. Erdogan Mehmet Ozkan, New Exact Solutions of Some Important Nonlinear Fractional Partial Differential Equations with Beta Derivative, 2022, 6, 2504-3110, 173, 10.3390/fractalfract6030173
    24. Behzad Ghanbari, Employing Hirota’s bilinear form to find novel lump waves solutions to an important nonlinear model in fluid mechanics, 2021, 29, 22113797, 104689, 10.1016/j.rinp.2021.104689
    25. Fei Long, Shami A.M. Alsallami, S. Rezaei, Kamsing Nonlaopon, E.M. Khalil, New interaction solutions to the (2+1)-dimensional Hirota–Satsuma–Ito equation, 2022, 37, 22113797, 105475, 10.1016/j.rinp.2022.105475
    26. Mostafa M. A. Khater, Adil Jhangeer, Hadi Rezazadeh, Lanre Akinyemi, M. Ali Akbar, Mustafa Inc, Hijaz Ahmad, New kinds of analytical solitary wave solutions for ionic currents on microtubules equation via two different techniques, 2021, 53, 0306-8919, 10.1007/s11082-021-03267-2
    27. F. Samsami Khodadad, S. M. Mirhosseini-Alizamini, B. Günay, Lanre Akinyemi, Hadi Rezazadeh, Mustafa Inc, Abundant optical solitons to the Sasa-Satsuma higher-order nonlinear Schrödinger equation, 2021, 53, 0306-8919, 10.1007/s11082-021-03338-4
    28. M. Mamun Miah, 2022, Chapter 94, 978-3-030-99791-5, 1113, 10.1007/978-3-030-99792-2_94
    29. Abdul Hamid Ganie, Lamiaa H. Sadek, M.M. Tharwat, M. Ashik Iqbal, M. Mamun Miah, Md Mamunur Rasid, Nasser S. Elazab, M.S. Osman, New investigation of the analytical behaviors for some nonlinear PDEs in mathematical physics and modern engineering, 2024, 9, 26668181, 100608, 10.1016/j.padiff.2023.100608
    30. Mohammed Shaaf Alharthi, Extracting solitary solutions of the nonlinear Kaup–Kupershmidt (KK) equation by analytical method, 2023, 21, 2391-5471, 10.1515/phys-2023-0134
    31. M. Ashik Iqbal, M. Mamun Miah, Md Mamunur Rasid, Hashim M. Alshehri, M. S. Osman, An investigation of two integro-differential KP hierarchy equations to find out closed form solitons in mathematical physics, 2023, 30, 2576-5299, 535, 10.1080/25765299.2023.2256049
    32. M. Mamun Miah, 2023, 2931, 0094-243X, 030002, 10.1063/5.0178567
    33. Zahra Eidinejad, Reza Saadati, Chenkuan Li, Mustafa Inc, Javad Vahidi, The multiple exp-function method to obtain soliton solutions of the conformable Date–Jimbo–Kashiwara–Miwa equations, 2024, 38, 0217-9792, 10.1142/S0217979224500437
    34. M. Mamun Miah, Faisal Alsharif, Md. Ashik Iqbal, J. R. M. Borhan, Mohammad Kanan, Chaotic Phenomena, Sensitivity Analysis, Bifurcation Analysis, and New Abundant Solitary Wave Structures of The Two Nonlinear Dynamical Models in Industrial Optimization, 2024, 12, 2227-7390, 1959, 10.3390/math12131959
    35. U. Akram, Z. Tang, S. Althobaiti, A. Althobaiti, Dynamics of optical dromions in concatenation model, 2024, 112, 0924-090X, 14321, 10.1007/s11071-024-09810-6
    36. Syed T. R. Rizvi, Aly R. Seadawy, Sarfaraz Ahmed, Farrah Ashraf, Novel rational solitons and generalized breathers for (1+1)-dimensional longitudinal wave equation, 2023, 37, 0217-9792, 10.1142/S0217979223502697
    37. Tongshuai Liu, Tiecheng Xia, Darboux transformation and explicit solutions for the Kaup-Kupershmidt equation, 2023, 98, 0031-8949, 105244, 10.1088/1402-4896/acfa41
    38. M Mamun Miah, M Ashik Iqbal, M S Osman, A study on stochastic longitudinal wave equation in a magneto-electro-elastic annular bar to find the analytical solutions, 2023, 75, 0253-6102, 085008, 10.1088/1572-9494/ace155
    39. Abdul S. Awan, Sultan Hussain, Differential–anti-differential equations and their solutions, 2023, 1016-2526, 313, 10.52280/pujm.2023.55(7-8)04
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(885) PDF downloads(36) Cited by(0)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog