This paper was concerned with the Cauchy problem of the 3D magnetohydrodynamic (MHD) system. We first proved that this system was local well-posed with initial data in the Besov space ˙Bsp,q(R3), in the critical Besov space ˙B−1+3pp,q(R3), and in Lp(R3) with p∈]3,6[, respectively. We also obtained a new growth rate estimates for the analyticity radius.
Citation: Wenjuan Liu, Jialing Peng. Analyticity estimates for the 3D magnetohydrodynamic equations[J]. Electronic Research Archive, 2024, 32(6): 3819-3842. doi: 10.3934/era.2024173
[1] | Xiaolei Dong . Well-posedness of the MHD boundary layer equations with small initial data in Sobolev space. Electronic Research Archive, 2024, 32(12): 6618-6640. doi: 10.3934/era.2024309 |
[2] | José Luiz Boldrini, Jonathan Bravo-Olivares, Eduardo Notte-Cuello, Marko A. Rojas-Medar . Asymptotic behavior of weak and strong solutions of the magnetohydrodynamic equations. Electronic Research Archive, 2021, 29(1): 1783-1801. doi: 10.3934/era.2020091 |
[3] | Kun Cheng, Yong Zeng . On regularity criteria for MHD system in anisotropic Lebesgue spaces. Electronic Research Archive, 2023, 31(8): 4669-4682. doi: 10.3934/era.2023239 |
[4] | Xun Wang, Qunyi Bie . Energy equality for the multi-dimensional nonhomogeneous incompressible Hall-MHD equations in a bounded domain. Electronic Research Archive, 2023, 31(1): 17-36. doi: 10.3934/era.2023002 |
[5] | Víctor León, Bruno Scárdua . A geometric-analytic study of linear differential equations of order two. Electronic Research Archive, 2021, 29(2): 2101-2127. doi: 10.3934/era.2020107 |
[6] | Dandan Song, Xiaokui Zhao . Large time behavior of strong solution to the magnetohydrodynamics system with temperature-dependent viscosity, heat-conductivity, and resistivity. Electronic Research Archive, 2025, 33(2): 938-972. doi: 10.3934/era.2025043 |
[7] | Chengchun Hao, Tao Luo . Some results on free boundary problems of incompressible ideal magnetohydrodynamics equations. Electronic Research Archive, 2022, 30(2): 404-424. doi: 10.3934/era.2022021 |
[8] | Sahar Albosaily, Wael Mohammed, Mahmoud El-Morshedy . The exact solutions of the fractional-stochastic Fokas-Lenells equation in optical fiber communication. Electronic Research Archive, 2023, 31(6): 3552-3567. doi: 10.3934/era.2023180 |
[9] | Yadan Shi, Yongqin Xie, Ke Li, Zhipiao Tang . Attractors for the nonclassical diffusion equations with the driving delay term in time-dependent spaces. Electronic Research Archive, 2024, 32(12): 6847-6868. doi: 10.3934/era.2024320 |
[10] | Vo Van Au, Hossein Jafari, Zakia Hammouch, Nguyen Huy Tuan . On a final value problem for a nonlinear fractional pseudo-parabolic equation. Electronic Research Archive, 2021, 29(1): 1709-1734. doi: 10.3934/era.2020088 |
This paper was concerned with the Cauchy problem of the 3D magnetohydrodynamic (MHD) system. We first proved that this system was local well-posed with initial data in the Besov space ˙Bsp,q(R3), in the critical Besov space ˙B−1+3pp,q(R3), and in Lp(R3) with p∈]3,6[, respectively. We also obtained a new growth rate estimates for the analyticity radius.
The system of 3D incompressible MHD equations is given by
{∂tu+u⋅∇u−Δu+∇Π=b⋅∇b,(t,x)∈R+×R3,∂tb+u⋅∇b−Δb=b⋅∇u,∇⋅u=∇⋅b=0,(u,b)|t=0=(u0,b0), | (1.1) |
where u=u(t,x), b=b(t,x), Π=Π(t,x) denote the velocity of the fluid, the magnetic field and the modified pressure, respectively. The system (1.1) can be widely applied in many fields, including geophysics, astrophysics, and engineering.
In the case of b=0, the system (1.1) reduces to the classical Navier-Stokes system:
{∂tu+u⋅∇u−Δu+∇Π=0,(t,x)∈R+×R3,∇⋅u=0,u|t=0=u0. | (1.2) |
It is well-known that one of the most challenging problems in applied analysis is establishing the global well-posedness of the system (1.2) when the initial data is large. Thus, many papers have tried to obtain the global existence of solutions with small initial data. Giga [1] proved the local well-posedness of the Navier-Stokes equations with the initial data u0∈Lp(R3) for some p∈]3,∞[, whereas Kato and Masuda [2] established the endpoint case when p=3. In 1981, Foias and Temam [3] proposed a technique which can be used to derive the analyticity radius of solutions of the system (1.2) and obtained the analyticity of periodic solutions. This result was then generalized by many authors; see [4,5,6,7] and its cited references. It should be emphasise that the analyticity radius estimates given above are lower estimates; in certain cases, the true analyticity radius may be significantly higher. Consequently, Biswas and Foias [8] by solving a new auxiliary ODE for the evolution of the analyticity radius involving the Gevrey class norms to obtain a more intimate connection between the radius of analyticity and the dynamics of the Navier-Stokes equations. Bae et al. [9] investigated the analyticity of the system (1.2) with the initial data in the critical Besov spaces. On this basis, Zhang [10] generalized the result to the initial data belonging to general Besov space.
For the MHD system (1.1), Duvaut and Lions [11], Miao and Yuan [12], and Wang and Wang [13] independently obtained the existence, uniqueness, and regularities of generalized solutions. Yu and Li [14] established the time analyticity radius of the 2D MHD system with periodic boundary conditon, and they proved that if the initial data is close enough to a stationary solution, then the radius of the solution at t=0 can be arbitrarily large. Wang et al. [15] utilized the Gevrey class method in [3] to prove the analyticity of the solutions to the system (1.1) with the initial data in the Lei-Lin space χ−1(R3). In [16], the analyticity of periodic solutions to the system (1.1) with initial data in Sobolev spaces Hs(T3) with s>12 had been established. By using the semigroup technique, Xiao and Yuan [17] derived the analytic estimates for small perturbation near the solutions to the generalized MHD system in the critical space χ1−α with 12≤α≤1. For more results about the Hall-MHD system, the generalized MHD system and magnetohydrodynamics-α system, we may refer to [18,19,20,21] and the references cited therein.
Motivated by [10], this paper focuses on the analyticity of solutions to the system (1.1) when the initial data in ˙Bsp,q(R3) for some s∈[−1+3p,3p[, p∈]1,∞[, and q∈[1,∞]. By utilizing the new fixed point theorem, the Mihlin-Hormander multiplier lemma, and the properties of the semigroup operator, lower bounds on the analytic radius of the MHD equations are proven in ˙Bsp,q(R3) for some s∈]−1+3p,3p[, p∈]1,∞[, and q∈[1,∞]; in ˙B−1+3pp,q(R3), p∈]1,∞[, and q∈[1,∞]; and Lp(R3) with p∈]3,6[, respectively. In particular, it should be noted that by using the classical Bony decomposition, we estimate the nonlinear term in proving Theorems 1.2 and 1.3. Furthermore, our results correspond to Zhang's findings [10] when b=0. Our conclusion is articulated as follows.
Theorem 1.1. Suppose (u0,b0)∈˙Bsp,q(R3) for some s∈]−1+3p,3p[, p∈]1,∞[, q∈[1,∞], and Λ(D)=√−Δ. Then, there exist positive constants t0=t0(ε,‖(u0,b0)‖˙Bsp,q) and c0=c0(ε) such that for any ε<ε0, the MHD Eq (1.1) admits a unique solution (u,b) on [0,t0] satisfying
‖e√2(1−ε)(1+s3−1p−ε)√t|lnt|Λ(D)(u(t),b(t))‖˙Bsp,q≤c0t−1+s2+32pforanyt∈[0,t0], | (1.3) |
and
lim inft→0rad(u(t),b(t))√t|lnt|≥√2(1+s3−1p). | (1.4) |
Inspired by [10], we consider endpoint cases, i.e., s=−1+3p.
Theorem 1.2. Let (u0,b0)∈˙B−1+3pp,q(R3), p∈]1,∞[, and q∈[1,∞[. Then, there exist positive constants t1=t1(ε,‖(u0,b0)‖˙B−1+3pp,q) and c1=c1(ε) such that for any 0<η<ε≤ε1, the MHD Eq (1.1) admits a unique solution (u,b)=(uL,bL)+(v,w) with (v,w)∈Bεr(T) on [0,t1] which satisfies for any r∈]1,∞[ with 1r+3p>1 and (uη,L,bη,L)def=(eηtΔ(u0,b0)),
‖e2(1−ε)A√tΛ(D)(u(t),b(t))‖˙B−1+3pp,q≤c1foranyt∈[0,t1], | (1.5) |
and
lim inft→0rad(u(t),b(t))√tA≥2(1−ε), | (1.6) |
where A=(−13ln‖(uη,L,bη,L)‖˜L2rT(˙B−1+1r+3pp,q))12 and the norm of ˜L2rT(˙B−1+1r+3pp,q) is defined by Definition A3 in the Appendix.
Remark 1.1. When (u0,b0)∈˙B−1+3pp,q(R3) with q∈[1,∞[ and 0<r<∞, we can naturally conclude that
limt→0+‖(uη,L,bη,L)‖˜L2rT(˙B−1+1r+3pp,q)=0, |
which combining with (1.6), we can infer that
lim inft→0rad(u(t),b(t))√t=∞. |
Now, we will consider the Gevrey regularity of solutions to the system (1.1) with initial data in Lp(R3). To do this, we introduce the following function space:
Definition 1.1. Let 0≤t≤T, then for p∈]3,6[, the definition of the norm of the function space Ep(T) is as follows:
‖f‖Ep(T)=‖f‖˜L∞T(˙B1−3pp,p2)+‖f‖˜L1T(˙B3−3pp,p2), | (1.7) |
where f is a homogeneous tempered distribution, and ˜LrT(˙Bsp,q) is the Chemin-Lerner type space where its norm is defined by Definition A3.
Theorem 1.3. Assume that (u0,b0)∈Lp(R3) with p∈]3,6[, then there exists a sufficiently small constant ξ, such that for any T satisfying
T12γ‖(u0,b0)‖Lp≤ξwithγ=pp−3, | (1.8) |
the MHD Eq (1.1) admits a unique solution (u,b)=(uL,bL)+(v,w) with (v,w)∈Ep(T) on [0,t2] which satisfies
‖e√2(1−ε)3γ(1+ε)√t|lnt|Λ(D)(v,w)‖˙B1−3pp,p2≤c2t−1γforanyt∈[0,t2], | (1.9) |
and
lim inft→0rad(v,w)√t|lnt|≥√23γ. | (1.10) |
The remainder of the paper is structured as follows: In Section 2, we show the proof of Theorem 1.1. Sections 3 and 4 are devoted to prove Theorems 1.2 and 1.3, respectively. In Section 5, we shall present some basic facts on Littlewood-Paley theory and functional spaces.
Notation: In this paper, the letter C represents different positive and finite constants. The precise values of these constants are not significant and may differ from one line to another. For A≲B, what we mean is a universal constant C, such that A≤CB.
Definition 2.1. Let Λ(ξ)=∑3j=1|ξj|, λ>0, and 0≤t≤T. For p,q∈[1,∞[, ε∈]0,1[, and s∈R, the definition of the norm of the function space Bεs(T) is as follows:
‖f‖Bεs(T)=‖e−3λ24(1−ε)tTeλt√TΛf‖˜L∞T(˙Bsp,q)+‖e−3λ24(1−ε)tTeλt√TΛf‖˜L1T(˙Bs+2p,q). | (2.1) |
We recall the following Mihlin-Hörmander multiplier lemma on Rn from [22].
Lemma 2.1. ([22]) Let m(ξ) be a complex-valued bounded function on Rn∖0 that obeys for some 0<A<∞
(∫R<|ξ|<2R|∂αξm(ξ)|2dξ)12≤ARn2−|α|<∞, |
for all multi-indices |α|≤[n2]+1 and R>0. Then, for all 1<p<∞, m lies in Mp(R3), and the following estimate is valid:
∀f∈Lp(Rn)‖m(D)f‖Lp≤Cnmax(p,(p−1)−1)(A+‖m‖L∞)‖f‖Lp. |
In order to make it easier for the reader, we present the following lemma that outlines the properties of the Heat semigroup operator acting on the initial data. The proof of this lemma can be accessed in [10], and we exclude the details here.
Lemma 2.2. Let 0<η<ε and m(t,ξ)=e−3λ24(1−ε)tTeλt√TΛ(ξ)e−(1−η)t|ξ|2, then for any p∈]1,∞[, there exists a constant Cε,η so that
‖m(t,D)f‖Lp≤Cε,η‖f‖Lp∀f∈Lp(R3). |
The following lemmas are also necessary for estimating the nonlinear terms.
Lemma 2.3. ([23]) Let Bt(⋅,⋅) be the bilinear operator defined by
Bt(f,g)def=eλt√TΛ(D)(e−λt√TΛ(D)f⋅e−λt√TΛ(D)g), |
and it has the following expansion
Bt(f,g)def=∑(→ϕ,→χ,→ψ)∈{−1,1}3Kϕ1⊗Kϕ2⊗Kϕ3(Zt,→ϕ,→χf⋅Zt,→ϕ,→ψg). |
Here, →ϕ=(ϕ1,ϕ2,ϕ3) and →χ=(χ1,χ2,χ3) belong to {−1,1}3, and the operators Kϕ=Kϕ1⊗Kϕ2⊗Kϕ3 and Zt,→ϕ,→χ=∑3i=1KχiLt,ϕi,χi can be defined by
K1f(xj)def=12π∫∞0eixjξjFf(ξj)dξj,K−1f(xj)def=12π∫0−∞eixjξjFf(ξj)dξj, |
and
Lt,ϕi,χifdef=fifϕiχi=1,Lt,ϕi,χifdef=12π∫Reixjξje−2λt√T|ξj|Ff(ξj)dξjifϕiχi=−1. |
Then, for any p∈]1,∞[, we have
‖Bt(f,g)‖Lp≲‖Zt,→ϕ,→χf⋅Zt,→ϕ,→ψg‖Lpand‖Zt,→ϕ,→χf‖Lp≲‖f‖Lp. |
Lemma 2.4. ([10]) Let u,v∈Bεs(T) and B(⋅,⋅) be the bilinear operator, then for p∈]1,∞[ and s∈]−1+3p,3p[, there holds
‖B(u,v)‖Bεs(T)≤CεT1+s2−32pe3λ24(1−ε)‖u‖Bεs(T)‖v‖Bεs(T). |
The subsequent lemma is crucial in substantiating our findings.
Lemma 2.5. ([24]) Let X be a Banach space, L be a continuous linear map from X to X, and B be a bilinear map from X×X to X. Let us define
‖L‖L(X)def=sup‖x‖=1‖Lx‖and‖B‖B(x)def=sup‖x‖=‖y‖=1‖B(x,y)‖. |
If ‖L‖L(X)<1, then for any x0 in X such that
‖x0‖X<(1−‖L‖L(X))24‖B‖B(x), | (2.2) |
the equation
x=x0+Lx+B(x,x) |
admits a unique solution in the ball of center 0 and radius 1−‖L‖L(X)2‖B‖B(x).
Now, we give the complete proof of Theorem 1.1. Before proceeding, we denote uLdef=etΔu0 and bLdef=etΔb0. Let P=Id−∇Δ−1div be the orthogonal projection of L2 over divergence-free vector fields. By applying P to (1.1), we attain
{∂tu−Δu=P∇⋅(b⊗b−u⊗u),(t,x)∈R+×R3,∂tb−Δb=P∇⋅(b⊗u−u⊗b),∇⋅u=∇⋅b=0,(u,b)|t=0=(u0,b0), |
then the system (1.1) can be equivalently reformulated as
{u=uL+B(u,u)+B(b,b),b=bL+B(u,b)+B(b,u), | (2.3) |
with B(f,g)def=∫t0e(t−s)ΔP∇⋅(f⊗g)ds. We deduce from Lemmas 2.2 and A2 that
‖e−3λ24(1−ε)tTeλt√TΛ(D)ΔjuL‖Lp=‖e−3λ24(1−ε)tTeλt√TΛ(D)e(1−ε2)tΔΔjeε2tΔu0‖Lp≤Cε‖Δjeε2tΔu0‖Lp≤Cεe−cεt22j‖Δju0‖Lp, | (2.4) |
and
‖e−3λ24(1−ε)tTeλt√TΛ(D)ΔjbL‖Lp≤Cεe−cεt22j‖Δjb0‖Lp. | (2.5) |
Combining (2.4) and (2.5), we have
‖e−3λ24(1−ε)tTeλt√TΛ(D)(ΔjuL,ΔjbL)‖L∞T(Lp)+22j‖e−3λ24(1−ε)tTeλt√TΛ(D)(ΔjuL,ΔjbL)‖L1T(Lp)≤Cεcj,q2−sj‖(u0,b0)‖˙Bsp,q. |
Definition 2.1 implies that
‖(uL,bL)‖Bεs(T)≤Cε‖(u0,b0)‖˙Bsp,q. | (2.6) |
Subsequently, to deduce Theorem 1.1 from Lemma 2.5, let X be Bεs(T) as in Definition 2.1, L be 0, and x0 be set to (uL,bL), then owing to Lemma 2.4 and (2.6), we get
‖x0‖X≤Cε‖(u0,b0)‖˙Bsp,q,‖L‖L(X)=0,‖B‖B(X)≤CεT1+s2−32pe3λ24(1−ε). |
To ensure contraction condition (2.2) holds ture, we take
λ(T)=√2(1−ε)(1+s3−1p−ε)|lnT|, | (2.7) |
so that there exist δ and T<1 sufficiently small to have
4C2εT1+s2−32pe3λ24(1−ε)‖(u0,b0)‖˙Bsp,q=4C2ε‖(u0,b0)‖˙Bsp,qT32ε<δ. | (2.8) |
Then, the system (2.3) admits a unique solution (u,b)∈Bεs in the ball of center 0 and radius 12‖B‖B(X). Moreover, for any ε≤ε0 and T≤t0(ε,‖(u0,b0)‖˙Bsp,q), we have
‖eλ(T)√TΛ(D)(u(T),b(T))‖˙Bsp,q≤12CεT−1+s2+32p. | (2.9) |
Motivated by [10], this section is to give the proof of Theorem 1.2. In order to do so, we first introduce a functional space.
Definition 3.1. Under the conditions of Definition 2.1, let s=−1+3p, thus the definition of the norm of the function space Bεr(T) is as follows:
‖f‖Bεr(T)=‖e−3λ24(1−ε)tTeλt√TΛf‖˜L∞T(˙B−1+3pp,q)+‖e−3λ24(1−ε)tTeλt√TΛf‖˜L2rT(˙B−1+3p+1rp,q), | (3.1) |
where r∈]0,∞[ and 3p+1r>1.
Lemma 3.1. Let b0∈˙B−1+3pp,q(R3) and bη,L=eηtΔb0 for some η∈]0,ε[ and ε∈]0,1[. Then, we have
‖B(bL,bL)‖Bεr(T)≲Cε,ηe3λ24(1−ε)‖bη,L‖2˜L2rT(˙B−1+3p+1rp,q). |
Proof. By utilizing Bony's decomposition Definition A2 to bL⊗bL, we have
bL⊗bL=2TbLbL+R(bL,bL), |
where
TbLbL=∑l′∈ZSl′−1bLΔl′bL,R(bL,bL)=∑l′∈ZΔl′bL˜Δl′bL. |
For 0<t≤T, denote bλLdef=eλt√TΛ(D)bL. Then, we get
‖e−3λ22(1−ε)tTeλt√TΛ(D)Δl(TbLbL)‖LrT(Lp)≤∑|l−l′|≤4‖e−3λ22(1−ε)tTeλt√TΛ(D)(e−λt√TΛ(D)Sl′−1bλL⊗e−λt√TΛ(D)Δl′bλL)‖LrT(Lp)≤C∑|l−l′|≤4‖e−3λ24(1−ε)tTZt,→ϕ,→χSl′−1bλL‖L2rT(L∞)‖e−3λ24(1−ε)tTZt,→ϕ,→ψΔl′bλL‖L2rT(Lp), | (3.2) |
where the operators Zt,→ϕ,→χ and Zt,→ϕ,→ψ are defined by Lemma 2.3 and (→ϕ,→χ,→ψ)∈{1,−1}3. By using Lemmas 2.2 and 2.3, we deduce
‖e−3λ24(1−ε)tTZt,→ϕ,→ψΔl′bλL‖L2rT(Lp)≤C‖e−3λ24(1−ε)tTeλt√TΛ(D)Δl′etΔb0‖L2rT(Lp)=‖e−3λ24(1−ε)tTeλt√TΛ(D)e(1−η)tΔΔl′eηtΔb0‖L2rT(Lp)≤Cε,η‖Δl′bη,L‖L2rT(Lp)≤Cε,ηcl′,q2−l′(−1+1r+3p)‖bη,L‖˜L2rT(˙B−1+1r+3pp,q). | (3.3) |
For the case r>1, we can conclude from Lemmas 2.3 and A1 that
‖e−3λ24(1−ε)tTZt,→ϕ,→χSl′−1bλL‖L2rT(L∞)≤C∑k≤l′−223pk‖e−3λ24(1−ε)tTZt,→ϕ,→χΔkbλL‖L2rT(Lp)≤C∑k≤l′−223pk‖e−3λ24(1−ε)tTeλt√TΛ(D)e(1−η)tΔΔkeηtΔb0‖L2rT(Lp)≤Cε,η∑k≤l′−223pk‖Δkbη,L‖L2rT(Lp)≤Cε,η∑k≤l′−2ck,q2(1−1r)k‖bη,L‖˜L2rT(˙B−1+1r+3pp,q)≤Cε,η2(1−1r)l′‖bη,L‖˜L2rT(˙B−1+1r+3pp,q). | (3.4) |
By substituting estimates (3.3) and (3.4) into (3.2), we get
‖e−3λ22(1−ε)tTeλt√TΛ(D)Δl(TbLbL)‖LrT(Lp)≤Cε,ηcl,q2l(2−2r−3p)‖bη,L‖2˜L2rT(˙B−1+1r+3pp,q). | (3.5) |
Along the same lines of the proof of (3.5), for p∈[2,∞[, we get
‖e−3λ22(1−ε)tTeλt√TΛ(D)Δl(R(bL,bL))‖LrT(Lp)≤∑l′≥l−323pl‖e−3λ22(1−ε)tTeλt√TΛ(D)(e−λt√TΛ(D)Δl′bλL⋅e−λt√TΛ(D)˜Δl′bλL)‖LrT(Lp2)≤C∑l′≥l−323pl‖e−3λ24(1−ε)tTZt,→ϕ,→χΔl′bλL‖L2rT(Lp)‖e−3λ24(1−ε)tTZt,→ϕ,→ψ˜Δl′bλL‖L2rT(Lp)≤Cε,η23pl∑l′≥l−3cl′,q2−2l′(−1+3p+1r)‖bη,L‖2˜L2rT(˙B−1+1r+3pp,q)≤Cε,ηcl,q2l(2−3p−2r)‖bη,L‖2˜L2rT(˙B−1+1r+3pp,q), | (3.6) |
where we used the fact that 3p+1r>1 in the last step. For p∈]1,2[, taking advantage of Lemmas 2.2, 2.3 and A1, we get
‖e−3λ22(1−ε)tTeλt√TΛ(D)Δl(R(bL,bL))‖LrT(Lp)≤23l(1−1p)‖e−3λ22(1−ε)tTeλt√TΛ(D)Δl(R(bL,bL))‖LrT(L1)≤23l(1−1p)∑l′≥l−3‖e−3λ24(1−ε)tTZt,→ϕ,→χΔl′bλL‖L2rT(Lpp−1)‖e−3λ24(1−ε)tTZt,→ϕ,→ψ˜Δl′bλL‖L2rT(Lp)≤23l(1−1p)∑l′≥l−3Cε,η2l′(6p−3)‖e−3λ24(1−ε)tTeλt√TΛ(D)e(1−η)tΔΔl′bη,L‖L2rT(Lp)×‖e−3λ24(1−ε)tTeλt√TΛ(D)e(1−η)tΔ˜Δl′bη,L‖L2rT(Lp)≤Cε,η23l(1−1p)∑l′≥l−32l(−1−2r)cl′,q‖bη,L‖2˜L2rT(˙B−1+1r+3pp,q)≤Cε,ηcl,q2l(2−1p−2r)‖bη,L‖2˜L2rT(˙B−1+1r+3pp,q). | (3.7) |
By summing up the estimates (3.5)–(3.7), for p∈]1,∞[, we obtain
‖e−3λ22(1−ε)tTeλt√TΛ(D)Δl(bL⊗bL)‖LrT(Lp)≤Cε,ηcl,q2l(2−2r−3p)‖bη,L‖2˜L2rT(˙B−1+1r+3pp,q). | (3.8) |
Meanwhile, for t≤T and ε∈]0,1[, by using Lemmas 2.2 and A1, we get that
‖∫t0e−3λ24(1−ε)tTeλt√TΛ(D)e(t−s)ΔΔl∇(bL⊗bL)(s)ds‖Lp≤∫t0‖e−3λ24(1−ε)t−sTeλt−s√TΛ(D)e(1−ε2)(t−s)Δ×e−3λ24(1−ε)sTeλs√TΛ(D)eε2(t−s)ΔΔl∇(bL⊗bL)(s)‖Lpds≤Cε2le3λ24(1−ε)∫t0e−cε(t−s)22l‖e−3λ22(1−ε)sTeλs√TΛ(D)Δl(bL⊗bL)(s)‖Lpds. | (3.9) |
Combining (3.9) with (3.8), we have
‖e−3λ24(1−ε)tTeλt√TΛ(D)ΔlB(bL,bL)‖L∞T(Lp)≤Cε2le3λ24(1−ε)‖e−cεt22l‖Lrr−1T‖e−3λ22(1−ε)sTeλs√TΛ(D)Δl(bL⊗bL)(s)‖LrT(Lp)≤Cε,ηcl,q2l(1−3p)e3λ24(1−ε)‖bη,L‖2˜L2rT(˙B−1+1r+3pp,q). | (3.10) |
Along the same lines, we obtain
‖e−3λ24(1−ε)tTeλt√TΛ(D)ΔlB(bL,bL)‖LrT(Lp)≤Cε2le3λ24(1−ε)‖e−cεt22l‖L1T‖e−3λ22(1−ε)sTeλs√TΛ(D)Δl(bL⊗bL)(s)‖LrT(Lp)≤Cε,ηcl,q2l(1−3p−2r)e3λ24(1−ε)‖bη,L‖2˜L2rT(˙B−1+1r+3pp,q). | (3.11) |
We deduce from the time-interpolation formula that
‖e−3λ24(1−ε)tTeλt√TΛ(D)ΔlB(bL,bL)‖L2rT(Lp)≤‖e−3λ24(1−ε)tTeλt√TΛ(D)ΔlB(bL,bL)‖12L∞T(Lp)‖e−3λ24(1−ε)tTeλt√TΛ(D)ΔlB(bL,bL)‖12LrT(Lp)≤Cε,ηcl,q2l(1−3p−2r)e3λ24(1−ε)‖bη,L‖2˜L2rT(˙B−1+1r+3pp,q), |
which together with Definition 3.1 and (3.10) ensures Lemma 3.1. This proof is complete.
Lemma 3.2. Let u,b∈Bεr(T), then we have
‖B(u,b)‖Bεr(T)≲Cεe3λ24(1−ε)‖u‖Bεr(T)‖b‖Bεr(T). |
Proof. Similar to the proof of Lemma 3.1, let uλdef=eλt√TΛ(D)u(t), and we obtain for 0≤t≤T
‖e−3λ22(1−ε)tTeλt√TΛ(D)Δl(Tub)‖LrT(Lp)≤C∑|l−l′|≤4‖e−3λ24(1−ε)tTZt,→ϕ,→χSl′−1uλ‖L2rT(L∞)‖e−3λ24(1−ε)tTZt,→ϕ,→ψΔl′bλ‖L2rT(Lp), | (3.12) |
where (→ϕ,→χ,→ψ)∈{1,−1}3. Then, by using Lemmas 2.3 and A1, we infer that
‖e−3λ24(1−ε)tTZt,→ϕ,→χSl′−1uλ‖L2rT(L∞)≤C∑k≤l′−223pkC‖e−3λ24(1−ε)tTZt,→ϕ,→χΔkuλ‖L2rT(Lp)≤C∑k≤l′−223pk‖e−3λ24(1−ε)tTΔkuλ‖L2rT(Lp)≤Cε2(1−1r)l′‖u‖Bεr(T). | (3.13) |
Thus, we have
‖e−3λ22(1−ε)tTeλt√TΛ(D)Δl(Tub)‖LrT(Lp)≤Cεcl,q2l(2−2r−3p)‖u‖Bεr(T)‖b‖Bεr(T). | (3.14) |
Along the same lines of the proof of (3.14), we can show that
‖e−3λ22(1−ε)tTeλt√TΛ(D)Δl(Tbu)‖LrT(Lp)≤Cεcl,q2l(2−2r−3p)‖u‖Bεr(T)‖b‖Bεr(T). |
By using a method similar to get (3.7) and Lemma A1, for p∈[2,∞[, we obtain
‖e−3λ22(1−ε)tTeλt√TΛ(D)Δl(R(u,b))‖LrT(Lp)≤∑l′≥l−323pl‖e−3λ22(1−ε)tTeλt√TΛ(D)(e−λt√TΛ(D)Δl′uλ⋅e−λt√TΛ(D)˜Δl′bλ)‖LrT(Lp2)≤C∑l′≥l−323pl‖e−3λ24(1−ε)tTZt,→ϕ,→χΔl′uλ‖L2rT(Lp)‖e−3λ24(1−ε)tTZt,→ϕ,→ψ˜Δl′bλ‖L2rT(Lp)≤Cε23pl∑l′≥l−3cl′,q2−2l′(−1+3p+1r)‖u‖Bεr(T)‖b‖Bεr(T)≤Cεcl,q2l(2−3p−2r)‖u‖Bεr(T)‖b‖Bεr(T), | (3.15) |
where we used the fact that 3p+1r>1 in the last step. The case for p∈]1,2[ is similar to that of (3.7). Hence, for p∈]1,∞[, we have
‖e−3λ22(1−ε)tTeλt√TΛ(D)Δl(u⊗b)‖LrT(Lp)≤cl,q2l(2−2r−3p)‖u‖Bεr(T)‖b‖Bεr(T). | (3.16) |
Using a similar approach to (3.10), we derive
‖e−3λ24(1−ε)tTeλt√TΛ(D)ΔlB(u,b)‖L∞T(Lp)≤Cε2le3λ24(1−ε)‖e−cεt22l‖Lrr−1T‖e−3λ22(1−ε)tTeλt√TΛ(D)Δl(u⊗b)‖LrT(Lp)≤Cεcl,q2l(1−3p)e3λ24(1−ε)‖u‖Bεr(T)‖b‖Bεr(T), | (3.17) |
and
‖e−3λ24(1−ε)tTeλt√TΛ(D)ΔlB(u,b)‖LrT(Lp)≤Cε2le3λ24(1−ε)‖e−cεt22l‖L1T‖e−3λ22(1−ε)sTeλs√TΛ(D)Δl(u⊗b)‖LrT(Lp)≤Cεcl,q2l(1−3p−2r)e3λ24(1−ε)‖u‖Bεr(T)‖b‖Bεr(T). | (3.18) |
Combined with Definition 3.1, this proof is complete.
Lemma 3.3. Let u∈Bεr(T) and b0∈˙B−1+3pp,q, then the following inequality holds
‖B(u,bL)‖Bεr(T)≲Cε,ηe3λ24(1−ε)‖u‖Bεr(T)‖bη,L‖˜L2rT(˙B−1+1r+3pp,q). |
Proof. According to the Bony decomposition of Definition A2, we have
ubL=TubL+TbLu+R(u,bL). |
By applying an argument similar to the one used to prove (3.2) shows that
‖e−3λ22(1−ε)tTeλt√TΛ(D)Δl(TubL)‖LrT(Lp)≤C∑|l−l′|≤4‖e−3λ24(1−ε)tTZt,→ϕ,→χSl′−1uλ‖L2rT(L∞)‖e−3λ24(1−ε)tTZt,→ϕ,→ψΔl′bλL‖L2rT(Lp), |
where (→ϕ,→χ,→ψ)∈{1,−1}3. Then, we can conclude from (3.3) and (3.13) that
‖e−3λ22(1−ε)tTeλt√TΛ(D)Δl(TubL)‖LrT(Lp)≤Cε,ηcl,q2l(2−2r−3p)‖u‖Bεr(T)‖bη,L‖˜L2rT(˙B−1+1r+3pp,q). | (3.19) |
Along the same lines of the proof of (3.19), it is easy to verify that
‖e−3λ22(1−ε)tTeλt√TΛ(D)Δl(TbLu)‖LrT(Lp)≤Cε,ηcl,q2l(2−2r−3p)‖u‖Bεr(T)‖bη,L‖˜L2rT(˙B−1+1r+3pp,q). | (3.20) |
By using a method similar to get (3.7) and Lemma A1, for p∈[2,∞[, we obtain
‖e−3λ22(1−ε)tTeλt√TΛ(D)Δl(R(u,bL))‖LrT(Lp)≤C∑l′≥l−323pl‖e−3λ24(1−ε)tTZt,→ϕ,→χΔl′uλ‖L2rT(Lp)‖e−3λ24(1−ε)tTZt,→ϕ,→ψ˜Δl′bλL‖L2rT(Lp)≤Cε,η23pl∑l′≥l−3cl′,q2−2l′(−1+3p+1r)‖bη,L‖˜L2rT(˙B−1+1r+3pp,q)‖u‖Bεr(T)≤Cε,ηcl,q2l(2−3p−2r)‖u‖Bεr(T)‖bη,L‖˜L2rT(˙B−1+1r+3pp,q). | (3.21) |
The case for p∈]1,2[ is similar to that of (3.7). Hence, (3.19)–(3.21) implies that for p∈]1,∞[,
‖e−3λ22(1−ε)tTeλt√TΛ(D)Δl(u⊗bL)‖LrT(Lp)≤cl,q2l(2−2r−3p)‖u‖Bεr(T)‖bη,L‖˜L2rT(˙B−1+1r+3pp,q). | (3.22) |
The remainder of the argument is analogous to that in Lemma 3.2 and is left to the reader.
We are now in a position to prove Theorem 1.2. We shall use Lemma 2.5 and denote (v,w)def=(u−uL,b−bL); thus, from (2.3), we can express
{v=B(v,v)+B(v,uL)+B(uL,v)+B(uL,uL)+B(w,w)+B(w,bL)+B(bL,w)+B(bL,bL),w=B(v,w)+B(v,bL)+B(uL,w)+B(uL,bL)+B(w,v)+B(w,uL)+B(bL,v)+B(bL,uL). | (3.23) |
Let Xdef=Bεr(T) be defined by Definition 3.1,
L(v,w)=B(v,uL)+B(uL,v)+B(w,bL)+B(bL,w)+B(v,bL)+B(uL,w)+B(w,uL)+B(bL,v),x0=B(uL,uL)+B(bL,uL)+B(uL,bL)+B(bL,bL). | (3.24) |
Based on Lemmas 3.1–3.3, it turns out that
‖x0‖X≤Cε,ηe3λ24(1−ε)‖(uη,L,bη,L)‖2˜L2rT(˙B−1+3p+1rp,q),‖B‖B(X)≤Cεe3λ24(1−ε),and‖L‖L(X)≤Cε,ηe3λ24(1−ε)‖(uη,L,bη,L)‖˜L2rT(˙B−1+3p+1rp,q). |
Let us now examine the conditions (2.2) of Lemma 2.5. Since (u0,b0)∈˙B−1+3pp,q, we can choose δ and t1(ε,η,‖(u0,b0)‖˙B−1+3pp,q) sufficiently small, such that
‖(uη,L,bη,L)‖˜L2rt1(˙B−1+1r+3pp,q)≤(δ4CεCε,η)12ε. | (3.25) |
For T≤t1, we set
λ(T)def=2(1−ε)√−13ln‖(uη,L,bη,L)‖˜L2rT(˙B−1+1r+3pp,q). | (3.26) |
From (3.25) and (3.26), it suffices to have
4Cε,ηCηe3λ24(1−ε)e3λ24(1−ε)‖(uη,L,bη,L)‖2˜L2rT(˙B−1+3p+1rp,q)≤δ. | (3.27) |
Using (3.27), we can show that (2.2) holds, and, therefore, the system (3.23) admits a unique solution (v,w)∈Bεr(T) satisfying
‖e−3λ24(1−ε)tTeλt√TΛ(v,w)‖˜L∞T(˙B−1+3pp,q)≤12Cεe−3λ24(1−ε). | (3.28) |
Consequently, from (3.26) and (3.28), we have
lim inft→0rad(v(t),w(t))√−13tln‖(uη,L,bη,L)‖˜L2rT(˙B−1+1r+3pp,q)≥2(1−ε). |
Following [10], we shall study the Gevrey regularity of solutions to system (1.1) and the instantaneous radius of space analyticity of (v,w)=(u−uL,b−bL) with the initial data in Lp for p∈]3,6[.
Lemma 4.1. Let b0∈Lp(R3) and bL=etΔb0. Then, for p∈[2,∞[, we have
‖B(bL,bL)‖Ep(T)≲‖b0‖2Lp. |
Proof. By definition of the para-product of bL and bL in Definition A2, we have
‖Δl(TbLbL)‖L1T(Lp)≤C∑|l−l′|≤4‖Sl′−1bL‖L∞T(L∞)‖Δl′bL‖L1T(Lp)≤C∑|l−l′|≤4∑k≤l′−123pk‖ΔkbL‖L∞T(Lp)‖Δl′bL‖L1T(Lp)≤cl,p22−(2−3p)l‖b0‖2Lp, | (4.1) |
where we use the fact that Lp↪˙B0p,p, and by virtue of Lemma A2, we infer that
‖ΔlbL‖L∞T(Lp)+22l‖ΔlbL‖L1T(Lp)≲‖Δlb0‖Lp≤cl,p‖b0‖Lp. | (4.2) |
By using Lemma A1 and (4.2), for p∈[2,∞[, we obtain
‖Δl(R(bL,bL))‖L1T(Lp)≤C23pl∑l′≥l−3‖Δl′bL‖L∞T(Lp)‖˜Δl′bL‖L1T(Lp)≤C23pl∑l′≥l−3cl′,p22−2l′‖b0‖2Lp≤cl,p22−(2−3p)l‖b0‖2Lp. | (4.3) |
Using (4.1) and (4.3), we can show that
‖Δl(bL⊗bL)‖L1T(Lp)≤cl,p22−(2−3p)l‖b0‖2Lp. | (4.4) |
We infer an estimate similar to (3.17) and (3.18) such that
‖ΔlB(bL,bL)‖L∞T(Lp)+22l‖ΔlB(bL,bL)‖L1T(Lp)≤2l‖Δl(bL⊗bL)‖L1T(Lp)≤mcl,p22−(1−3p)l‖b0‖2Lp, |
which combined with Definition 1.1 completes the proof of Lemma 4.1.
Lemma 4.2. Let u,b∈Ep(T) with p∈]3,6[ and 1γ=1−3p, then we have
‖B(u,b)‖Ep(T)≲T1γ‖u‖Ep(T)‖b‖Ep(T). |
Proof. In a similar way as in the proof of Lemma 4.1, we obtain
‖Δl(Tub)‖Lp3T(Lp)≤C∑|l−l′|≤4‖Sl′−1u‖L∞T(L∞)‖Δl′b‖Lp3T(Lp)≤C∑|l−l′|≤4∑k≤l′−123pk‖Δku‖L∞T(Lp)‖Δl′b‖Lp3T(Lp)≤cl,p22−(2−3p)l‖u‖Ep(T)‖b‖Ep(T), | (4.5) |
where we use the fact that
‖Δl′b‖Lp3T(Lp)≲‖Δl′b‖1−3pL∞T(Lp)‖Δl′b‖3pL1T(Lp)≤cl′,p22−(1+3p)l′‖b‖Ep(T), | (4.6) |
and
∑k≤l′−123pk‖Δku‖L∞T(Lp)≤cl′,p22−(1−6p)l′‖u‖Ep(T). |
The term ‖Δl(Tbu)‖Lp3T(Lp) has the same bound as (4.5). By using Lemma A1 and (4.6), for p∈[2,∞[, we obtain
‖Δl(R(u,b))‖Lp3T(Lp)≤C23pl∑l′≥l−3‖Δl′u‖Lp3T(Lp)‖˜Δl′b‖L∞T(Lp)≤C23pl∑l′≥l−3cl′,p22−2l′‖u‖Ep(T)‖b‖Ep(T)≤cl,p22−(2−3p)l‖u‖Ep(T)‖b‖Ep(T). | (4.7) |
By a suitable modification of the proof of Lemma 4.1, we can show that
‖ΔlB(u,b)‖L∞T(Lp)+22l‖ΔlB(u,b)‖L1T(Lp)≤2l‖Δl(u⊗b)‖L1T(Lp)≤T1γ2l‖Δl(u⊗b)‖Lp3T(Lp)≤cl,p22−(1−3p)lT1γ‖u‖Ep(T)‖b‖Ep(T). |
This combined with Definition 1.1 ensures Lemma 4.2.
Lemma 4.3. Let u∈Ep(T) and b0∈Lp with p∈]3,6[, then we get
‖B(u,bL)‖Ep(T)≲T12γ‖u‖Ep(T)‖b0‖Lp. |
Proof. By applying an argument similar to the one used to prove (4.5), as well as Hölder's inequality and (4.2), one shows that
‖Δl(TubL)‖L2pp+3T(Lp)≤C∑|l−l′|≤4‖Sl′−1u‖L∞T(L∞)‖Δl′bL‖L2pp+3T(Lp)≤C∑|l−l′|≤4∑k≤l′−123pk‖Δku‖L∞T(Lp)‖Δl′bL‖1−p+32pL∞T(Lp)‖Δl′bL‖p+32pL1T(Lp)≤C∑|l−l′|≤4cl′,p22−(2−3p)l′‖u‖Ep(T)‖Δl′bL‖1−p+32pL∞T(Lp)(22j′‖Δl′bL‖L1T(Lp))p+32p≤cl,p22−(2−3p)l‖u‖Ep(T)‖b0‖Lp. | (4.8) |
The term with TbLu has the same bound as (4.8). Owing to Lemma A1, we have
‖Δl(R(u,bL))‖L2pp+3T(Lp)≤C23pl∑l′≥l−3‖Δl′u‖L2pp+3T(Lp)‖˜Δl′bL‖L∞T(Lp)≤C23pl∑l′≥l−3cl′,p22−2l′‖u‖Ep(T)‖b0‖Lp≤cl,p22−(2−3p)l‖u‖Ep(T)‖b0‖Lp. | (4.9) |
From estimates (4.8) and (4.9), it is evident that
‖ΔlB(u,bL)‖L∞T(Lp)+22l‖ΔlB(u,bL)‖L1T(Lp)≤2l‖Δl(u⊗bL)‖L1T(Lp)≤T12γ2l‖Δl(u⊗bL)‖L2pp+3T(Lp)≤cl,p22−(1−3p)lT12γ‖u‖Ep(T)‖b0‖Lp, |
which together with Definition 1.1 ensures Lemma 4.3.
Now, let us present the existence part of Theorem 1.3 by using Lemma 2.5. We take Xdef=Ep(T) according to Definition 1.1, and use (3.24) to choose L and x0. Then, we deduce from Lemmas 4.1 to 4.3 that
‖x0‖X≤‖(u0,b0)‖2Lp,‖B‖B(X)≤T1γ,and‖L‖L(X)≤T12γ‖(u0,b0)‖Lp. |
To ensure contraction condition (2.2) holds true, we take T12γ‖(u0,b0)‖Lp≤ξ for a sufficiently small ξ, then by using Lemma 2.5, we get that the system (3.23) admits a unique solution (v,w)∈Ep(T). We thus obtain the unique solution (u,b)=(uL+v,bL+w) of the system (1.1) on [0,T].
The aim of the next subsection is to study the instantaneous radius of analyticity of (v,w) under the assumptions that the initial data (u0,b0)∈Lp(R3) for p∈]3,6[.
Definition 4.1. Under the conditions of Definition 1.1, let p∈[2,∞[, then the definition of the norm of the function space Bεp(T) is as follows:
‖f‖Bεp(T)def=‖e−3λ24(1−ε)tTeλt√TΛf‖Ep(T). | (4.10) |
Lemma 4.4. Let b0∈Lp(R3) with 2≤p≤∞ and bL=etΔb0 for some η∈]0,ε[ and ε∈]0,1[. Then, we have
‖B(bL,bL)‖Bεp(T)≲Cεe3λ24(1−ε)‖b0‖2Lp. |
Proof. An argument similar to Lemma 3.1 shows that
‖e−3λ22(1−ε)tTeλt√TΛ(D)Δl(TbLbL)‖L1T(Lp)≤∑|l−l′|≤4‖e−3λ22(1−ε)tTeλt√TΛ(D)(e−λt√TΛ(D)Sl′−1bλL⊗e−λt√TΛ(D)Δl′bλL)‖L1T(Lp)≤C∑|l−l′|≤4‖e−3λ24(1−ε)tTZt,→ϕ,→χSl′−1bλL‖L∞T(L∞)‖e−3λ24(1−ε)tTZt,→ϕ,→ψΔl′bλL‖L1T(Lp), | (4.11) |
for the operators Zt,→ϕ,→χ and Zt,→ϕ,→ψ defined by Lemma 2.3 and (→ϕ,→χ,→ψ)∈{1,−1}3. By virtue of Lp↪˙B0p,p(R3) in Theorem 2.40 of [25] and (2.5), we have
‖e−3λ24(1−ε)tTZt,→ϕ,→ψΔl′bλL‖L1T(Lp)≤C‖e−3λ24(1−ε)tTeλt√TΛ(D)Δl′etΔb0‖L1T(Lp)=‖e−3λ24(1−ε)tTeλt√TΛ(D)e(1−η)tΔΔl′eηtΔb0‖L1T(Lp)≤Cε‖‖e−cηt22l′Δl′b0‖Lp‖L1T≤Cεcl′,p2−2l′‖b0‖Lp. | (4.12) |
By Lemmas 2.3 and A1, for r>1, the following inequality holds true:
‖e−3λ24(1−ε)tTZt,→ϕ,→χSl′−1bλL‖L∞T(L∞)≤C∑k≤l′−223pk‖e−3λ24(1−ε)tTZt,→ϕ,→χΔkbλL‖L∞T(Lp)≤C∑k≤l′−223pk‖e−3λ24(1−ε)tTeλt√TΛ(D)e(1−η)tΔΔkeηtΔb0‖L∞T(Lp)≤Cε∑k≤l′−223pk‖ΔkeηtΔb0‖L∞T(Lp)≤Cε∑k≤l′−223pkck,p‖b0‖Lp≤Cε23pl′cl′,p‖b0‖Lp. | (4.13) |
By substituting estimates (4.12) and (4.13) into (4.11), we get
‖e−3λ22(1−ε)tTeλt√TΛ(D)Δl(TbLbL)‖L1T(Lp)≤Cεcl,p22−l(2−3p)‖b0‖2Lp. | (4.14) |
Along the same lines as in the proof of (4.14), we get
‖e−3λ22(1−ε)tTeλt√TΛ(D)Δl(R(bL,bL))‖L1T(Lp)≤∑l′≥l−323pl‖e−3λ22(1−ε)tTeλt√TΛ(D)(e−λt√TΛ(D)Δl′bλL⋅e−λt√TΛ(D)˜Δl′bλL)‖L1T(Lp2)≤C∑l′≥l−323pl‖e−3λ24(1−ε)tTZt,→ϕ,→χΔl′bλL‖L∞T(Lp)‖e−3λ24(1−ε)tTZt,→ϕ,→ψ˜Δl′bλL‖L1T(Lp)≤Cε23pl∑l′≥l−3cl′,q2−2l′‖b0‖2Lp≤Cεcl,p22−l(2−3p)‖b0‖2Lp. | (4.15) |
By summing up the estimates (4.14) and (4.15), for p∈[2,∞[, we obtain
‖e−3λ22(1−ε)tTeλt√TΛ(D)Δl(bL⊗bL)‖L1T(Lp)≤Cεcl,q2−l(2−3p)‖b0‖2Lp. | (4.16) |
We deduce from Lemmas 2.2 and A1 that for any t≤T and ε∈]0,1[,
‖∫t0e−3λ24(1−ε)tTeλt√TΛ(D)e(t−s)ΔΔl∇(bL⊗bL)(s)ds‖Lp≤∫t0‖e−3λ24(1−ε)t−sTeλt−s√TΛ(D)e(1−ε2)(t−s)Δ×e−3λ24(1−ε)sTeλs√TΛ(D)eε2(t−s)ΔΔl∇(bL⊗bL)(s)‖Lpds≤Cε2le3λ24(1−ε)∫t0e−cε(t−s)22l‖e−3λ22(1−ε)sTeλs√TΛ(D)Δl(bL⊗bL)(s)‖Lpds. | (4.17) |
Combining (4.16) with (4.17), we have
‖e−3λ24(1−ε)tTeλt√TΛ(D)ΔlB(bL,bL)‖L∞T(Lp)+22l‖e−3λ24(1−ε)tTeλt√TΛ(D)ΔlB(bL,bL)‖L1T(Lp)≤Cε2le3λ24(1−ε)‖e−3λ22(1−ε)sTeλs√TΛ(D)Δl(bL⊗bL)(s)‖L1T(Lp)≤Cεcl,q2−l(1−3p)e3λ24(1−ε)‖b0‖2Lp, |
which together with Definition A1, we get the desired result.
Lemma 4.5. Let v,w∈Bεp(T) with p∈]3,6[, then for 1γ=1−3p, we have
‖B(w,v)‖Bεp(T)≲Cεe3λ24(1−ε)T1γ‖w‖Bεp(T)‖v‖Bεp(T). |
Proof. We recall vλdef=eλt√TΛ(D)v(t), and follow the same technique as in the proof of Lemma 4.4 to obtain for 0≤t≤T,
‖e−3λ22(1−ε)tTeλt√TΛ(D)Δl(Twv)‖Lp3T(Lp)≤C∑|l−l′|≤4‖e−3λ24(1−ε)tTZt,→ϕ,→χSl′−1wλ‖L∞T(L∞)‖e−3λ24(1−ε)tTZt,→ϕ,→ψΔl′vλ‖Lp3T(Lp), |
where (→ϕ,→χ,→ψ)∈{1,−1}3. By Lemmas 2.3 and A1, we deduce
‖e−3λ24(1−ε)tTZt,→ϕ,→χSl′−1wλ‖L∞T(L∞)≤C∑k≤l′−223pkC‖e−3λ24(1−ε)tTZt,→ϕ,→χΔkwλ‖L∞T(Lp)≤C∑k≤l′−223pk‖e−3λ24(1−ε)tTΔkwλ‖L∞T(Lp)≤Cεcl′,p22(6p−1)l′‖w‖Bεp(T). | (4.18) |
We infer from the interpolation inequality that
‖e−3λ24(1−ε)tTZt,→ϕ,→ψΔl′vλ‖Lp3T(Lp)≤‖e−3λ24(1−ε)tTΔl′vλ‖Lp3T(Lp)≤‖e−3λ24(1−ε)tTΔl′vλ‖1−3pL∞T(Lp)‖e−3λ24(1−ε)tTΔl′vλ‖3pL1T(Lp)≤Cεcl′,p22−l′(1+3p)‖v‖Bεp(T). | (4.19) |
Combining (4.18) and (4.19), we get
‖e−3λ22(1−ε)tTeλt√TΛ(D)Δl(Twv)‖LrT(Lp)≤Cεcl′,p22−l′(2−3p)‖w‖Bεp(T)‖v‖Bεp(T). | (4.20) |
Along the same lines of the proof of (4.20), the term ‖e−3λ22(1−ε)tTeλt√TΛ(D)Δl(Tvw)‖Lp3T(Lp) admits the same estimate. Moreover, from the same lines to prove (4.15) and Lemma A1, we get that
‖e−3λ22(1−ε)tTeλt√TΛ(D)Δl(R(w,v))‖Lp3T(Lp)≤∑l′≥l−323pl‖e−3λ22(1−ε)tTeλt√TΛ(D)(e−λt√TΛ(D)Δl′wλ⋅e−λt√TΛ(D)˜Δl′vλ)‖Lp3T(Lp2)≤C∑l′≥l−323pl‖e−3λ24(1−ε)tTZt,→ϕ,→χΔl′wλ‖L∞T(Lp)‖e−3λ24(1−ε)tTZt,→ϕ,→ψ˜Δl′vλ‖Lp3T(Lp)≤Cε23pl∑l′≥l−3cl′,p22−2l′‖w‖Bεp(T)‖v‖Bεp(T)≤Cεcl′,p22−l′(2−3p)‖w‖Bεp(T)‖v‖Bεp(T). | (4.21) |
As a consequence, we obtain
‖e−3λ22(1−ε)tTeλt√TΛ(D)Δl(w⊗v)‖Lp3T(Lp)≤Cεcl,p22−l(2−3p)‖w‖Bεp(T)‖v‖Bεp(T). | (4.22) |
Then, we get
‖e−3λ24(1−ε)tTeλt√TΛ(D)ΔlB(w,v)‖Lp≤Cεcl,p22le3λ24(1−ε)tT∫t0e−cε(t−s)22l‖e−3λ24(1−ε)tTeλt√TΛ(D)Δl(w⊗v)(s)‖Lpds. |
which combines with (4.22) to ensure that
‖e−3λ24(1−ε)tTeλt√TΛ(D)ΔlB(w,v)‖L∞T(Lp)+22l‖e−3λ24(1−ε)tTeλt√TΛ(D)ΔlB(w,v)‖L1T(Lp)≤Cε2le3λ24(1−ε)‖e−3λ22(1−ε)tTeλt√TΛ(D)Δl(w⊗v)‖L1T(Lp)≤Cε2le3λ24(1−ε)T1γ‖e−3λ22(1−ε)tTeλt√TΛ(D)Δl(w⊗v)‖Lp3T(Lp)≤Cεcl,p22−l(1−3p)e3λ24(1−ε)T1γ‖w‖Bεp(T)‖v‖Bεp(T), |
which together with Definition A1 ensures Lemma 4.5.
Lemma 4.6. Let w∈Bεp(T) and b0∈Lp(R3) with p∈]3,6[, then the following inequality holds
‖B(w,bL)‖Bεp(T)≲CεT12γe3λ24(1−ε)‖w‖Bεp(T)‖b0‖Lp. |
Proof. According to the Bony decomposition of Definition A2, we have
wbL=TwbL+TbLw+R(w,bL). |
By an argument similar to the one used to prove Lemma 4.5, we get that
‖e−3λ22(1−ε)tTeλt√TΛ(D)Δl(TwbL)‖L2pp+3T(Lp)≤C∑|l−l′|≤4‖e−3λ24(1−ε)tTZt,→ϕ,→χSl′−1wλ‖L∞T(L∞)‖e−3λ24(1−ε)tTZt,→ϕ,→ψΔl′bλL‖L2pp+3T(Lp), |
where (→ϕ,→χ,→ψ)∈{1,−1}3. Then, by using (3.3) and (4.18), we infer that
‖e−3λ22(1−ε)tTeλt√TΛ(D)Δl(TwbL)‖L2pp+3T(Lp)≤Cεcl,p22−l(2−3p)‖w‖Bεp(T)‖b0‖Lp. | (4.23) |
Along the same lines as in the proof of (4.23), it is easy to verify that
‖e−3λ22(1−ε)tTeλt√TΛ(D)Δl(TbLw)‖L2pp+3T(Lp)≤Cεcl,p22−l(2−3p)‖w‖Bεp(T)‖b0‖Lp. | (4.24) |
Taking advantage of Lemma A1 and a similar way to get (4.15), we have
‖e−3λ22(1−ε)tTeλt√TΛ(D)Δl(R(w,bL))‖L2pp+3T(Lp)≤C∑l′≥l−323pl‖e−3λ24(1−ε)tTZt,→ϕ,→χΔl′wλ‖L∞T(Lp)‖e−3λ24(1−ε)tTZt,→ϕ,→ψ˜Δl′bλL‖L2pp+3T(Lp)≤Cε23pl∑l′≥l−3cl′,q2−2l′‖b0‖Lp‖w‖Bεp(T)≤Cεcl,p22−l(2−3p)‖w‖Bεp(T)‖b0‖Lp. |
The remainder of the argument is analogous to that in Lemma 3.2 and is left to the reader.
We now apply Lemma 2.5 to prove Theorem 1.3. Let Xdef=Bεp(T) according to Definition A1, and use (3.24) to choose L and x0. Based on Lemmas 4.4–4.6, it turns out that
‖x0‖X≤Cεe3λ24(1−ε)‖(u0,b0)‖2Lp,‖B‖B(X)≤Cεe3λ24(1−ε)T1γ,and‖L‖L(X)≤Cεe3λ24(1−ε)T12γ‖(u0,b0)‖Lp. |
We set
λ(T)def=√2(1−ε)3γ(1+ε)|lnT|, | (4.25) |
and we deduce from (4.25) such that
2Cεe3λ24(1−ε)T12γ‖(u0,b0)‖Lp=2CεTε2γ(1+ε)‖(u0,b0)‖Lp. | (4.26) |
We take t2 so small such that
2Cεtε2γ(1+ε)2‖(u0,b0)‖Lp≤δ, |
where δ being sufficiently small, then we have
4C2εe3λ22(1−ε)T1γ‖(u0,b0)‖Lp≤δ2, |
from which we can show that (2.2) is true. Thus, Lemma 2.5 leads us to conclude that the system (3.23) admits a unique solution (v,w)∈Bεp(T) satisfying
‖e−3λ24(1−ε)tTeλt√TΛ(v,w)‖˜L∞T(˙B1−3pp,p2)≤12Cεe−3λ24(1−ε)T−1γ, |
which implies
‖eλt√TΛ(v,w)‖˙B1−3pp,p2≤12CεT−1γ. | (4.27) |
This is (1.9) of Theorem 1.3. (1.10) follows from (1.9) and, thus, we complete the proof of Theorem 1.3.
The authors declare that they have not used Artificial Intelligence (AI) tools in the creation of this article.
This work is partially supported by the National Natural Science Foundation of China (No.11801443), Shaanxi Fundamental Science Research Project for Mathematics and Physics (No.22JSQ031 and 23JSQ046) and Young Talent Fund of Association for Science and Technology in Shaanxi, China (No.20230525).
The authors declare that there are no conflicts of interest.
We start with the classical dyadic decomposition in R3; see [25]. Let χ,φ∈[0,1] be two nonnegative radial functions which are supported, respectively, in the ball B={ξ∈R3,|ξ|≤43} and the annulus C={ξ∈R3,34≤|ξ|≤83} such that
χ(ξ)+∑j≥0φ(2−jξ)=1,∀ξ∈R3and∑j∈Zφ(2−jξ)=1,∀ξ∈R3∖{0}. |
The homogeneous dyadic blocks ˙Δj and the homogeneous low-frequency cut-off operator ˙Sj are defined for all j∈Z by
˙Δju=φ(2−jD)u=2jd∫R3h(2jy)u(x−y)dy,˙Sju=χ(2−jD)u=2jd∫R3˜h(2jy)u(x−y)dy, |
where hdef=F−1φ and ˜hdef=F−1χ. Formally, ˙Δj=˙Sj+1−˙Sj is a frequency projection to annulus |ξ|∼2j, and ˙Sj is a frequency projection to the ball {|ξ|≤C2j}. The homogeneous dyadic blocks Δj are defined by
Δju=0ifj≤−2,Δ−1u=χ(D)u=∫R3˜h(y)u(x−y)dy,andΔju=φ(2−jD)u=2jd∫R3h(2jy)u(x−y)dyifj≥0. |
The homogeneous low-frequency cut-off operator Sj is defined by
Sju=∑j′≤j−1Δj′u. |
First, we recall the definition of the homogeneous Besov space.
Definition A1. (Besov Spaces) Let S′ be the space of all tempered distributions. For s is a real number and (p,q) is in [1,∞]2, the homogeneous Besov space ˙Bsp,q is defined by
˙Bsp,q={f∈S′h(R3)|‖f‖˙Bsp,q<∞}, |
where
S′h={f∈S′(R3):f=∑j∈Z˙Δjf}, |
and
‖f‖˙Bsp,q={(∑j∈Z2sqj‖˙Δjf‖qLp)1q,ifq<∞,supj∈Z2js‖˙Δjf‖Lp,ifq=∞. |
Now, we give the definition of the following so-called Bony decomposition.
Definition A2. (Bony's para-product) The para-product of f and g is defined by
Tgf=∑j∈ZSj−1gΔjf=∑j∈Z∑i≤j−2ΔigΔjf. |
The remainder of f and g is defined by
R(f,g)=∑j∈ZΔig˜Δjf,where˜Δjf=j′=j+1∑j′=j−1Δj′f. |
Then, Bony's decomposition reads
fg=Tgf+Tfg+R(f,g). |
Lemma A1. (Bernstein's inequalities; see [25]) Let B be a ball and C be an annulus of R3. A constant C exists such that for positive real number λ and nonnegative integer k, any smooth homogeneous function σ of degree m, and any couple of real numbers (p,q) in [1,∞]2 with q≥p≥1, we have
Suppˆu⊂λB⇒sup|α|=k‖∂αu‖Lq≤Ck+1λk+3(1p−1q)‖u‖Lp,Suppˆu⊂λC⇒C−(k+1)λk‖u‖Lp≤sup|α|=k‖∂αu‖Lp≤Ck+1λk‖u‖Lp,Suppˆu⊂λC⇒‖σ(D)u‖Lq≤Cσ,mλk+3(1p−1q)‖u‖Lp, |
with σ(D)udef=F−1(σˆu).
Definition A3. (Chemin-Lerner type space; see [25]) For T>0, s∈R, and 0≤r,q≤∞, we set
‖u‖˜Lr(0,T;˙Bsp,q)def=‖2js‖˙Δju‖LrT(Lp)‖lq(Z). |
We also need the following lemma to describe the action of the semigroup of the heat equation on distributions with Fourier transforms supported in an annulus.
Lemma A2 ([25]). Let C be an annulus. Then, there exist positive constants c and C such that for any p in [1,∞] and any couple (t,λ) of positive real numbers, we have
Suppˆu⊂λC⇒‖etΔu‖Lp≤Ce−ctλ2‖u‖Lp. |
[1] |
Y. Giga, Solutions for semilinear parabolic equations in Lp and regularity of weak solutions of the Navier-Stokes system, J. Differ. Equations, 62 (1986), 186–212. https://doi.org/10.1016/0022-0396(86)90096-3 doi: 10.1016/0022-0396(86)90096-3
![]() |
[2] | T. Kato, K. Masuda, Nonlinear evolution equations and analyticity, Annales de l'Institut Henri Poincaré, Analyse non linéaire, 3 (1986), 455–467. |
[3] | C. Foias, R. Temam, Gevrey class regularity for the solutions of the Navier-Stokes equations, J. Funct. Anal., 87 (1989), 359–369. |
[4] | J. Y. Chemin, Le système de Navier-Stokes incompressible soixante dix ans après Jean Leray, in Actes des Journées Mathématiques à la Mémoire de Jean Leray, Séminaires et Congrès, (2004), 99–123. |
[5] |
J. Y. Chemin, I. Gallagher, P. Zhang, On the radius of analyticity of solutions to semi-linear parabolic system, Math. Res. Lett., 27 (2020), 1631–1643. https://dx.doi.org/10.4310/MRL.2020.v27.n6.a2 doi: 10.4310/MRL.2020.v27.n6.a2
![]() |
[6] |
I. Herbst, E. Skibsted, Analyticity estimates for the Navier-Stokes equations, Adv. Math., 228 (2011), 1990–2033. https://doi.org/10.1016/j.aim.2011.05.026 doi: 10.1016/j.aim.2011.05.026
![]() |
[7] |
P. G. Lemarié-Rieusset, Nouvelles remarques sur l'analyticité des solutions milds des équations de Navier-Stokes dans R3, C. R. Acad. Sci. Paris, Ser. I, 338 (2004), 443–446. https://doi.org/10.1016/j.crma.2004.01.015 doi: 10.1016/j.crma.2004.01.015
![]() |
[8] |
A. Biswas, C. Foias, On the maximal space analyticity radius for the 3D Navier-Stokes equations and energy cascades, Ann. Mat. Pur. Appl., 193 (2014), 739–777. https://doi.org/10.1007/s10231-012-0300-z doi: 10.1007/s10231-012-0300-z
![]() |
[9] |
H. Bea, A. Biswas, E. Tadmor, Analyticity and decay estimates of the Navier-Stokes equations in critical Besov spaces, Arch. Ration. Mech. Anal., 205 (2012), 963–991. https://doi.org/10.1007/s00205-012-0532-5 doi: 10.1007/s00205-012-0532-5
![]() |
[10] |
P. Zhang, On the instantaneous redius of analyticity of Lp solutions to 3D Navier-Stokes system, Math. Z., 304 (2023), 38. https://doi.org/10.1007/s00209-023-03301-x doi: 10.1007/s00209-023-03301-x
![]() |
[11] |
G. Duvaut, J. L. Lions, Inéquations en thermoélasticité et magnétohydrodynamique, Arch. Ration. Mech. Anal., 46 (1972), 241–279. https://doi.org/10.1007/BF00250512 doi: 10.1007/BF00250512
![]() |
[12] |
C. Miao, B. Yuan, On the well-posedness of the Cauchy problem for an MHD system in Besov spaces, Math. Methods Appl. Sci., 32 (2009), 53–76. https://doi.org/10.1002/mma.1026 doi: 10.1002/mma.1026
![]() |
[13] |
Y. Wang, K. Wang, Global well-posedness of the three dimensional magnetohydrodynamics equations, Nonlinear Anal.-Real, 17 (2014), 245–251. https://doi.org/10.1016/j.nonrwa.2013.12.002 doi: 10.1016/j.nonrwa.2013.12.002
![]() |
[14] | Y. Yu, K. Li, Time analyticity and periodic solutions for magnetohydrodynamics equations, Appl. Math. J. Chinese Univ. Ser. A., 20 (2005), 465–474. |
[15] |
S. Wang, Y. Ren, F. Xu, Analyticity of mild solution for the 3D incompressible magneto-hydrodynamics equations in critical spaces, Acta. Math Sin.-Engl. Ser., 34 (2018), 1731–1741. https://doi.org/10.1007/s10114-018-8043-4 doi: 10.1007/s10114-018-8043-4
![]() |
[16] |
V. Zheligovsky, Space analyticity and bounds for derivatives of solutions to the evolutionary equations of diffusive magnetohydrodynamics, Mathematics, 9 (2021), 1789. https://doi.org/10.3390/math9151789 doi: 10.3390/math9151789
![]() |
[17] |
Y. Xiao, B. Yuan, Global existence and large time behavior of solutions to 3D MHD system near equilibrium, Results Math., 76 (2021), 73. https://doi.org/10.1007/s00025-021-01382-w doi: 10.1007/s00025-021-01382-w
![]() |
[18] |
C. Lu, W. Li, Y. Wang, Analyticity and time-decay rate of global solutions for the generalized MHD system near an equilibrium, Z. Angew. Math. Phys., 73 (2022), 73. https://doi.org/10.1007/s00033-022-01705-z doi: 10.1007/s00033-022-01705-z
![]() |
[19] |
W. Wang, T. Qin, Q. Bie, Global well-posedness and analyticity results to 3-D generalized magnetohydrodynamic equations, Appl. Math. Lett., 59 (2016), 65–70. https://doi.org/10.1016/j.aml.2016.03.009 doi: 10.1016/j.aml.2016.03.009
![]() |
[20] |
Y. Xiao, B. Yuan, Q. Zhang, Temporal decay estimate of solutions to 3D generalized magnetohydrodynamic system, Appl. Math. Lett., 98 (2019), 108–113. https://doi.org/10.1016/j.aml.2019.06.003 doi: 10.1016/j.aml.2019.06.003
![]() |
[21] |
X. Zhao, Z. Cao, Global well-posedness of solutions for magnetohydrodynamics-α model in R3, Appl. Math. Lett., 74 (2017), 134–139. https://doi.org/10.1016/j.aml.2017.05.021 doi: 10.1016/j.aml.2017.05.021
![]() |
[22] | L. Grafakos, Classical Fourier Analysis, 3nd edition, Springer, New York, 2014. |
[23] | P. G. Lemarié-Rieusset, Recent Developments in the Navier-Stokes Problem, CRC Press, Boca Raton, 2002. |
[24] |
J. Y. Chemin, I. Gallagher, Wellposedness and stability results for the Navier-Stokes equations in R3, Ann. Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 599–624. https://doi.org/10.1016/j.anihpc.2007.05.008 doi: 10.1016/j.anihpc.2007.05.008
![]() |
[25] | H. Bahouri, R. Danchin, J. Y. Chemin, Fourier Analysis and Nonlinear Partial Differential Equations, Springer, Heidelberg 2011. |