Research article Special Issues

The influence of synaptic strength and noise on the robustness of central pattern generator

  • Received: 25 September 2023 Revised: 23 December 2023 Accepted: 27 December 2023 Published: 09 January 2024
  • In this paper, we explore the mechanisms of central pattern generators (CPGs), circuits that can generate rhythmic patterns of motor activity without external input. We study the half-center oscillator, a simple form of CPG circuit consisting of neurons connected by reciprocally inhibitory synapses. We examine the role of asymmetric coupling factors in shaping rhythm activity and how different network topologies contribute to network efficiency. We have discovered that neurons with lower synaptic strength are more susceptible to noise that affects rhythm changes. Our research highlights the importance of asymmetric coupling factors, noise, and other synaptic parameters in shaping the broad regimes of CPG rhythm. Finally, we compare three topology types' regular regimes and provide insights on how to locate the rhythm activity.

    Citation: Feibiao Zhan, Jian Song, Shenquan Liu. The influence of synaptic strength and noise on the robustness of central pattern generator[J]. Electronic Research Archive, 2024, 32(1): 686-706. doi: 10.3934/era.2024033

    Related Papers:

    [1] Tingting Du, Zhengang Wu . On the reciprocal sums of products of $ m $th-order linear recurrence sequences. Electronic Research Archive, 2023, 31(9): 5766-5779. doi: 10.3934/era.2023293
    [2] Qingjie Chai, Hanyu Wei . The binomial sums for four types of polynomials involving floor and ceiling functions. Electronic Research Archive, 2025, 33(3): 1384-1397. doi: 10.3934/era.2025064
    [3] Jiafan Zhang . On the distribution of primitive roots and Lehmer numbers. Electronic Research Archive, 2023, 31(11): 6913-6927. doi: 10.3934/era.2023350
    [4] Jin Zhang, Xiaoxue Li . The sixth power mean of one kind generalized two-term exponential sums and their asymptotic properties. Electronic Research Archive, 2023, 31(8): 4579-4591. doi: 10.3934/era.2023234
    [5] Jianghua Li, Zepeng Zhang, Tianyu Pan . On two-term exponential sums and their mean values. Electronic Research Archive, 2023, 31(9): 5559-5572. doi: 10.3934/era.2023282
    [6] Jianxing Du, Xifeng Su . On the existence of solutions for the Frenkel-Kontorova models on quasi-crystals. Electronic Research Archive, 2021, 29(6): 4177-4198. doi: 10.3934/era.2021078
    [7] Li Wang, Yuanyuan Meng . Generalized polynomial exponential sums and their fourth power mean. Electronic Research Archive, 2023, 31(7): 4313-4323. doi: 10.3934/era.2023220
    [8] Guo-Niu Han, Huan Xiong . Skew doubled shifted plane partitions: Calculus and asymptotics. Electronic Research Archive, 2021, 29(1): 1841-1857. doi: 10.3934/era.2020094
    [9] Zhefeng Xu, Xiaoying Liu, Luyao Chen . Hybrid mean value involving some two-term exponential sums and fourth Gauss sums. Electronic Research Archive, 2025, 33(3): 1510-1522. doi: 10.3934/era.2025071
    [10] Dmitry Krachun, Zhi-Wei Sun . On sums of four pentagonal numbers with coefficients. Electronic Research Archive, 2020, 28(1): 559-566. doi: 10.3934/era.2020029
  • In this paper, we explore the mechanisms of central pattern generators (CPGs), circuits that can generate rhythmic patterns of motor activity without external input. We study the half-center oscillator, a simple form of CPG circuit consisting of neurons connected by reciprocally inhibitory synapses. We examine the role of asymmetric coupling factors in shaping rhythm activity and how different network topologies contribute to network efficiency. We have discovered that neurons with lower synaptic strength are more susceptible to noise that affects rhythm changes. Our research highlights the importance of asymmetric coupling factors, noise, and other synaptic parameters in shaping the broad regimes of CPG rhythm. Finally, we compare three topology types' regular regimes and provide insights on how to locate the rhythm activity.



    In the past years, many mathematicians were interested in finding the formula for the integer part of the reciprocal tails of the convergent series. That is, find the explicit value of (k=nak)1 when k=1ak converges. The motivation of such research comes from the reciprocal sum of Fibonacci numbers. Let us recall that the Fibonacci sequence (Fn)n0 is defined by

    Fn+2=Fn+1+Fn,F0=0,F1=1,

    where n0. In [1], Ohtsuka and Nakamura proved

    (k=n1Fk)1={Fn2,if n2 is even;Fn21,if n1 is odd,

    and

    (k=n1F2k)1={Fn1Fn1,if n2 is even;Fn1Fn,if n1 is odd,

    where x denotes the greatest integer x. In [2], Wang proved

    (k=n1F3k)1={FnF2n1+Fn2F2n+111(14Fn25Fn),if n2 is even;FnF2n1+Fn2F2n+111(5Fn14Fn2),if n1 is odd,

    where F1=F1=1. In [3], Hwang et al. provided the relevant formula for the reciprocal sum of the fourth power of the Fibonacci numbers, that is,

    (k=n1F4k)1=F4nF4n1+2(1)n5F2n1{n+25},

    where {x}=xx. In addition, some mathematicians studied the reciprocal sums of Fibonacci, Lucas, and Pell sequences, such as [4,5,6,7], while some mathematicians studied the reciprocal sums of other types of sequences, such as [8,9,10].

    Many mathematicians also considered the asymptotic behavior of these sequences. That is, find a suitable function gn such that

    (k=nak)1gn

    when k=1ak converges. Here the notation AnBn means that

    limn(AnBn)=0.

    In [11], Lee et al. proved that

    (k=n1Fmkl)1FmnlFm(n1)l

    for any positive integer m and 0lm1. In [12], Marques et al. proved that for any positive integer m there exists a positive constant Cm such that

    (k=n1F2mk)1F2mnF2m(n1)+(1)mnCm.

    Moreover, they gave an explicit form for Cm as follows:

    Cm={2(L2m2)25F2m5,ifmis even,2(L2m+2)5L2m,ifmis odd,

    where Ln is the nth Lucas number. In [3], Hwang et al. studied the asymptotic behavior of the reciprocal sum of the fourth power of the Fibonacci numbers, and they proved that

    (k=n1F4k)1F4nF4n1+2(1)n5F2n1+2575.

    In [13], Lee and Park studied the asymptotic behavior of the reciprocal sum of FkFk+m, and they proved that

    (k=n1FkFk+2l)1Fn+l1Fn+l(F2l+(1)l)(1)n3

    and

    (k=n1FkFk+2l1)1F2n+l1(Fl1Fl+(1)l)(1)n3,

    where l is a positive integer. In addition, some mathematicians studied other types of asymptotic behavior, such as [14,15]. Inspired by the above results, we use the method of Yuan et al. [16] to study the asymptotic behavior of the sequences that are more general than the Fibonacci sequence. Let (un)n0 be the special Lucas u-sequence defined by

    un+2=Aun+1Bun,u0=0,u1=1, (1.1)

    where n0, B=±1, and A is an integer such that A24B>0. The relevant properties of the Lucas u-sequence can be found in Sun's book [17]. We know that the Binet formula is related to the sequence (un)n0 has the form

    un=αnβnαβ,n0, (1.2)

    where

    α,β=A±A24B2.

    Let

    ak=1usmk,1umk+umk+l,1li=0umk+i,1umkumk+2l,1umkumk+2l1,1umk+C,

    where m and l are positive integers, s=1,2,3,4, and C is any constant. The aim of this paper is to find a form gn such that

    (k=nak)1gn.

    The rest of this paper is organized as follows: in Section 2, we give our main results. In Section 3, we give the proof of our main results.

    Let un be defined by the second-order linear recurrence sequence (1.1). In this paper, we shall prove the following eight theorems.

    Theorem 2.1. For any positive integer m, we have

    (k=n1umk)1umnum(n1).

    Theorem 2.2. For any positive integer m, we have

    (k=n1u2mk)1u2mnu2m(n1)+BmnCm,

    where Cm=2(1Bm)(αβ)22(α2m1)2(αβ)2(α4mBm).

    Theorem 2.3. For any positive integer m, we have

    (k=n1u3mk)1u3mnu3m(n1)+3BmnQm(um(n+2)um(n3)),

    where Qm=u2m(1(Bα)5m)(1(Bβ)5m).

    Theorem 2.4. For any positive integer m, we have

    (k=n1u4mk)1u4mnu4m(n1)+4BmnUm(u2m(n+1)Bmu2m(n2))+Vm,

    where Um=u2m(1Bmα6m)(1Bmβ6m) and Vm=(α4m1)2(αβ)4(16(α4m1)(α6mBm)210α8m1).

    Theorem 2.5. For all positive integers m and l, we have

    (k=n1umk+umk+l)1umn+lum(n1)+l+umnum(n1).

    Theorem 2.6. For all positive integers m and l, we have

    (k=n1li=0umk+i)11α1(umn+l+1um(n1)+l+1umn+um(n1)).

    Remark 2.1. Note that when l=1, the two main terms of Theorems 2.5 and 2.6 are different. However, there is no contradiction since they are equivalent.

    Theorem 2.7. For all positive integers m and l, we have

    (ⅰ)

    (k=n1umkumk+2l)1u2mn+lu2m(n1)+lBmn(α2m1)2α4mBmCm,l,

    where Cm,l=u2l+2BlA24B(1(1Bm)(α4mBm)(α2m1)2).

    (ⅱ)

    (k=n1umkumk+2l1)1α(1β2m)u2mn+l1Bmn(α2m1)2α4mBmCm,l,

    where Cm,l=ulul1+Bl1A24B(A2(ααβ2m)(α4mBm)(α2m1)2).

    Theorem 2.8. For any positive integer m and constant C, we have

    (k=n1umk+C)1umnum(n1)+Cαm1αm+1.

    Let A=1 and B=1 in (1.1). Then un becomes the nth Fibonacci number. So we can obtain some known results when we take some special values for m,A,B.

    If we take A=1 and B=1 in Theorem 2.2, then

    Cm=2(1Bm)(αβ)22(α2m1)2(αβ)2(α4mBm)=2(1(1)m)52(α2m1)25(α4m(1)m). (2.1)

    If m is even, then it follows from (2.1) that

    Cm=2(α2m1)25(α4m(1)m)=2(α2mαmβm)25(α4mα2mβ2m)=2(αmβm)25(α2mβ2m)=2(α2m+β2m2)(αβ)5(α2mβ2m)(αβ)=2(L2m2)55u2m=2(L2m2)25u2m5,

    where Ln is the nth Lucas number with L0=2,L1=1. If m is odd, then it follows from (2.1) that

    Cm=452(α2m1)25(α4m+1)=452(α2m+αmβm)25(α4m+α2mβ2m)=452(αm+βm)25(α2m+β2m)=452(α2m+β2m2)5(α2m+β2m)=4L2m5L2m2(L2m2)5L2m=2(L2m+2)5L2m.

    So we have the following corollary, which is given by [12].

    Corollary 2.1. Let Fn be the nth Fibonacci number with F0=0,F1=1 and let Ln be the nth Lucas number with L0=2,L1=1. Then for any positive integer m, we have

    (k=n1F2mk)1F2mnF2m(n1)+(1)mnCm,

    where

    Cm={2(L2m2)25F2m5,ifmis even,2(L2m+2)5L2m,ifmis odd.

    If we take m=A=1 and B=1 in Theorem 2.4, then

    Um=u2m(1Bmα6m)(1Bmβ6m)=1(1+α6)(1+β6)=12+α6+β6=120

    and

    Vm=(α4m1)2(αβ)4(16(α4m1)(α6mBm)210α8m1)=(α41)2(αβ)4(16(α41)(α6+1)210α81)=125(16(α41)3(α6+1)210(α41)α4+1)=125(451053)=2575,

    which imply that

    u4mnu4m(n1)+4BmnUm(u2m(n+1)Bmu2m(n2))+Vm=u4nu4n1+4(1)n120(u2n+1+u2n2)+2575=u4nu4n1+(1)n5(u2n+1+u2n2)+2575=u4nu4n1+(1)n5(u2n+1u2n1+u2n1+u2n2)+2575=u4nu4n1+(1)n5(u2n+u2n3)+2575=u4nu4n1+2(1)n5u2n1+2575.

    So we have the following corollary, which is given by [3, Corollary 4.3].

    Corollary 2.2. Let Fn be the nth Fibonacci number with F0=0,F1=1. Then we have

    (k=n1F4k)1F4nF4n1+2(1)n5F2n1+2575.

    If we take m=A=1 and B=1 in Theorem 2.7, then

    C1,l=u2l+2BlA24B(1(1Bm)(α4mBm)(α2m1)2)=u2l+2(1)l5(12(α4+1)(α21)2)=u2l+2(1)l5(12(α2+β2)(α+β)2)=u2l2(1)l (2.2)

    and

    C1,l=ulul1+Bl1A24B(A2(ααβ2m)(α4mBm)(α2m1)2)=ulul1+(1)l15(12(ααβ2)(α4+1)(α21)2)=ulul1+(1)l15(12(α4+1)(α21)2)=ulul1+(1)l. (2.3)

    Note that

    Bmn(α2m1)2α4mBm=(1)n(α21)2α4+1=(1)n(α+β)2α2+β2=(1)n3. (2.4)

    Then it follows from (2.2)–(2.4) that

    u2mn+lu2m(n1)+lBmn(α2m1)2α4mBmCm,l=u2n+lu2n1+l(1)n3C1,l=un+lun+l1+(1)n+l1(1)n3(u2l2(1)l)=un+lun+l1(1)n3(u2l2(1)l+3(1)l)=un+lun+l1(1)n3(u2l+(1)l)

    and

    α(1β2m)u2mn+l1Bmn(α2m1)2α4mBmCm,l=α(1β2)u2n+l1(1)n3C1,l=u2n+l1(1)n3(ulul1+(1)l).

    So we have the following corollary, which is given by [13, Sections 3 and 4].

    Corollary 2.3. Let Fn be the nth Fibonacci number with F0=0,F1=1. Then for any positive integer l, we have

    (k=n1FkFk+2l)1Fn+l1Fn+l(F2l+(1)l)(1)n3

    and

    (k=n1FkFk+2l1)1F2n+l1(Fl1Fl+(1)l)(1)n3.

    In this section, we give the proofs of the above eight theorems. We first give some identities that will be used in the proofs of our main results. Let m and k be positive integers. Then it follows from (1.2) that

    1umk=αβαmkβmk=αβαmk(1Bmkα2mk)1. (3.1)

    Moreover, we have the following identities:

    (1+x)1=1x+x2x31+x, (3.2a)
    (1x)1=1+x+x2+x31x, (3.2b)
    (1x)2=1+2x+3x2+x3(43x)(x1)2, (3.2c)
    (1x)3=1+3x+6x2+x3(1015x+6x2)(1x)3, (3.2d)
    (1x)4=1+4x+10x2+x3(2045x+36x210x3)(x1)4. (3.2e)

    To prove the above eight theorems, we may split the proofs into eight subsections as follows:

    In this subsection, we will provide a proof of Theorem 2.1.

    Proof. By (3.1) and (3.2b), we have

    1umk=αβαmk(1Bmkα2mk)1=αβαmk(1+Bmkα2mk+1α4mk+Bmkα4mk(α2mkBmk))=(αβ)(1αmk+Bmkα3mk+1α5mk+Bmkα5mk(α2mkBmk)). (3.3)

    Let n be a positive integer. Then it follows from (3.3) that

    k=n1umk=(αβ)(k=n1αmk+k=nBmkα3mk+k=n1α5mk+k=nBmkα5mk(α2mkBmk))=(αβ)(αmαmn(αm1)+Bmnα3mα3mn(α3mBm)+α5mα5mn(α5m1))+(αβ)k=nBmkα5mk(α2mkBmk) =αm(αβ)αmn(αm1)(1+Bmnα2m(αm1)α2mn(α3mBm)+α4m(αm1)α4mn(α5m1)+O(1α6mn)). (3.4)

    Here the notation f(x)=O(g(x)) means that there is a constant C such that |f(x)|Cg(x) for all large enough real numbers x. By (3.2a) and (3.4), we have

    (k=n1umk)1=αmn(αm1)αm(αβ)(1+Bmnα2m(αm1)α2mn(α3mBm)+α4m(αm1)α4mn(α5m1)+O(1α6mn))1=αmn(αm1)αm(αβ)(1Bmnα2m(αm1)α2mn(α3mBm)+O(1α4mn))=αmn(αm1)αm(αβ)Bmnαm(αm1)2αmn(αβ)(α3mBm)+O(1α3mn)=αmnαβαm(n1)αβ+O(1αmn)=αmnβmn+βmnαβαm(n1)βm(n1)+βm(n1)αβ+O(1αmn)=umnum(n1)+βmnβm(n1)αβ+O(1αmn).

    Then

    limn((k=n1umk)1(umnum(n1)))=limn(βmnβm(n1)αβ+O(1αmn))=0.

    So we have

    (k=n1umk)1umnum(n1).

    In this subsection, we will provide a proof of Theorem 2.2.

    Proof. By (3.1) and (3.2c), we have

    1u2mk=(αβ)2α2mk(1Bmkα2mk)2=(αβ)2α2mk(1+2Bmkα2mk+3α4mk+4Bmkα2mk3α4mk(Bmkα2mk1)2)=(αβ)2(1α2mk+2Bmkα4mk+3α6mk+4Bmkα2mk3α6mk(Bmkα2mk1)2)=(αβ)2(1α2mk+2Bmkα4mk+3α6mk+Rk), (3.5)

    where

    Rk=4Bmkα2mk3α6mk(Bmkα2mk1)2.

    Let n be a positive integer. Then it follows from (3.5) that

    k=n1u2mk=(αβ)2(k=n1α2mk+k=n2Bmkα4mk+k=n3α6mk+k=nRk)=(αβ)2(α2mα2mn(α2m1)+2Bmnα4mα4mn(α4mBm)+3α6mα6mn(α6m1)+k=nRk)=(αβ)2α2mα2mn(α2m1)(1+2Bmnα2m(α2m1)α2mn(α4mBm)+3α4m(α2m1)α4mn(α6m1))+(αβ)2α2mα2mn(α2m1)α2mn(α2m1)α2mk=nRk=(αβ)2α2mα2mn(α2m1)(1+ω), (3.6)

    where

    ω=2Bmnα2mnα2m(α2m1)(α4mBm)+3α4mnα4m(α4m+α2m+1)+α2mn(α2m1)α2mk=nRk.

    Note that

    ω=2Bmnα2mnα2m(α2m1)(α4mBm)+O(1α4mn).

    Then we have

    ω2ω31+ω=O(1α4mn). (3.7)

    From (3.2a), (3.6), and (3.7), it follows that

    (k=n1u2mk)1=α2mn(α2m1)(αβ)2α2m(1+ω)1=α2mn(α2m1)(αβ)2α2m(1ω+ω2ω31+ω)=α2mn(α2m1)(αβ)2α2m(1ω+O(1α4mn))=α2mn(α2m1)(αβ)2α2m(12Bmnα2mnα2m(α2m1)(α4mBm)+O(1α4mn))=α2mn(α2m1)(αβ)2α2m2Bmn(αβ)2(α2m1)2(α4mBm)+O(1α2mn)=α2mn(αβ)2α2m(n1)(αβ)22Bmn(αβ)2(α2m1)2(α4mBm)+O(1α2mn)=(αmnβmn+βmnαβ)2(αm(n1)βm(n1)+βm(n1)αβ)22Bmn(αβ)2(α2m1)2(α4mBm)+O(1α2mn)=u2mnu2m(n1)+2Bmn(1Bm)(αβ)22Bmn(αβ)2(α2m1)2(α4mBm)+β2mn(α2m1)(αβ)2+O(1α2mn)=u2mnu2m(n1)+BmnCm+O(1α2mn),

    where

    Cm=2(1Bm)(αβ)22(α2m1)2(αβ)2(α4mBm).

    Then

    limn((k=n1u2mk)1(u2mnu2m(n1)+BmnCm))=0.

    So we have

    (k=n1u2mk)1u2mnu2m(n1)+BmnCm,

    where Cm=2(1Bm)(αβ)22(α2m1)2(αβ)2(α4mBm).

    In this subsection, we will provide a proof of Theorem 2.3.

    Proof. By (3.1) and (3.2d), we have

    1u3mk=(αβ)3α3mk(1Bmkα2mk)3=(αβ)3α3mk(1+3Bmkα2mk+6α4mk+10α4mk15Bmkα2mk+6α4mk(Bmkα2mk1)3)=(αβ)3(1α3mk+3Bmkα5mk+6α7mk+10α4mk15Bmkα2mk+6α7mk(Bmkα2mk1)3)=(αβ)3(1α3mk+3Bmkα5mk+6α7mk+Rk), (3.8)

    where

    Rk=10α4mk15Bmkα2mk+6α7mk(Bmkα2mk1)3.

    Let n be a positive integer. Then it follows from (3.8) that

    k=n1u3mk=(αβ)3(k=n1α3mk+k=n3Bmkα5mk+k=n6α7mk+k=nRk)=(αβ)3(α3mα3mn(α3m1)+3Bmnα5mα5mn(α5mBm)+6α7mα7mn(α7m1)+k=nRk)=(αβ)3α3mα3mn(α3m1)(1+3Bmnα2m(α3m1)α2mn(α5mBm)+6α4m(α3m1)α4mn(α7m1))+(αβ)3α3mα3mn(α3m1)α3mn(α3m1)α3mk=nRk=(αβ)3α3mα3mn(α3m1)(1+ω), (3.9)

    where

    ω=3Bmnα2mnα2m(α3m1)(α5mBm)+6α4mnα4m(α3m1)(α7m1)+α3mn(α3m1)α3mk=nRk.

    Note that

    ω=3Bmnα2mnα2m(α3m1)(α5mBm)+O(1α4mn).

    Then we have

    ω2ω31+ω=O(1α4mn). (3.10)

    From (3.2a), (3.9), and (3.10), it follows that

    (k=n1u3mk)1=((αβ)3α3mα3mn(α3m1))1(1+ω)1=α3mn(α3m1)(αβ)3α3m(1ω+ω2ω31+ω)=α3mn(α3m1)(αβ)3α3m(1ω+O(1α4mn))=α3mn(α3m1)(αβ)3α3m(13Bmnα2mnα2m(α3m1)(α5mBm)+O(1α4mn))=α3mn(α3m1)(αβ)3α3m3(Bα)mn(αβ)3(α3m1)2αm(α5mBm)+O(1αmn)=α3mn(αβ)3α3m(n1)(αβ)33(Bα)mn(αβ)3(α3m1)2αm(α5mBm)+O(1αmn)=(αmnβmn+βmnαβ)3(αm(n1)βm(n1)+βm(n1)αβ)33(Bα)mn(αβ)3(α3m1)2αm(α5mBm)+O(1αmn)=u3mnu3m(n1)+δ+O(1αmn),

    where

    δ=3(Bα)mn(1βm)+3(Bβ)mn(αm1)+β3mn(1(Bα)3m)(αβ)33(Bα)mn(αβ)3(α3m1)2αm(α5mBm)=3(Bα)mn(1βm)(αβ)33(Bα)mn(αβ)3(α3m1)2αm(α5mBm)+O(1αmn)=3(Bα)mn(αβ)3((α3m1)2+(1βm)αm(α5mBm)αm(α5mBm))+O(1αmn)=3(Bα)mn(αβ)3(α4m2Bmα2m+B2m(Bα)5m1)+O(1αmn)=3(Bα)mn(αβ)3α2m(αmβm)21Bmα5m+O(1αmn)=(αmβmαβ)23(Bα)m(n+2)αβ11(Bα)5m+O(1αmn).

    Let Qm=u2m(1(Bα)5m)(1(Bβ)5m). Then we can obtain

    δ=3BmnQmαm(n+2)(1(Bβ)5m)αβ+O(1αmn)=3BmnQm(αm(n+2)αβαm(n3)αβ)+O(1αmn)=3BmnQm(αm(n+2)βm(n+2)+βm(n+2)αβαm(n3)βm(n3)+βm(n3)αβ)+O(1αmn)=3BmnQm(um(n+2)um(n3)+βm(n+2)βm(n3)αβ)+O(1αmn).

    Then

    limn((k=n1u3mk)1 (u3mnu3m(n1)+3BmnQm(um(n+2)um(n3))))=limn(3BmnQmβm(n+2)βm(n3)αβ+O(1αmn))=0.

    So we have

    (k=n1u3mk)1u3mnu3m(n1)+3BmnQm(um(n+2)um(n3)),

    where Qm=u2m(1(Bα)5m)(1(Bβ)5m).

    In this subsection, we will provide a proof of Theorem 2.4.

    Proof. By (3.1) and (3.2e), we have

    1u4mk=(αβ)4α4mk(1Bmkα2mk)4=(αβ)4α4mk(1+4Bmkα2mk+10α4mk+Rk)=(αβ)4(1α4mk+4Bmkα6mk+10α8mk+Rkα4mk), (3.11)

    where

    Rk=20Bmkα6mk45α4mk+36Bmkα2mk10α4mk(Bmkα2mk1)4.

    Let n be a positive integer. Then it follows from (3.11) that

    k=n1u4mk=(αβ)4(k=n1α4mk+k=n4Bmkα6mk+k=n10α8mk+k=nRkα4mk)=(αβ)4(α4mα4mn(α4m1)+4Bmnα6mα6mn(α6mBm)+10α8mα8mn(α8m1)+k=nRkα4mk)=(αβ)4α4mα4mn(α4m1)(1+4Bmnα2m(α4m1)α2mn(α6mBm)+10α4m(α4m1)α4mn(α8m1))+(αβ)4α4mα4mn(α4m1)α4mn(α4m1)α4mk=nRkα4mk=(αβ)4α4mα4mn(α4m1)(1+ω), (3.12)

    where

    ω=4Bmnα2m(α4m1)α2mn(α6mBm)+10α4m(α4m1)α4mn(α8m1)+α4mn(α4m1)α4mk=nRkα4mk.

    Note that

    ω=4Bmnα2m(α4m1)α2mn(α6mBm)+10α4m(α4m1)α4mn(α8m1)+O(1α6mn).

    Then we have

    ω2ω31+ω=16α4m(α4m1)2α4mn(α6mBm)2+O(1α6mn). (3.13)

    By (3.2a), (3.12), and (3.13), we have

    (k=n1u4mk)1=((αβ)4α4mα4mn(α4m1))1(1+ω)1=α4mn(α4m1)(αβ)4α4m(1ω+ω2ω31+ω)=α4mn(α4m1)(αβ)4α4m(1ω+16α4m(α4m1)2α4mn(α6mBm)2+O(1α6mn))=α4mn(α4m1)(αβ)4α4m(14Bmnα2m(α4m1)α2mn(α6mBm)+1α4mnCm+O(1α6mn))=α4mn(α4m1)(αβ)4α4m4Bmnα2mn(α4m1)2(αβ)4α2m(α6mBm)+(α4m1)(αβ)4α4mCm+O(1α2mn)=α4mn(αβ)4α4m(n1)(αβ)44Bmnα2mn(α4m1)2(αβ)4α2m(α6mBm)+(α4m1)(αβ)4α4mCm+O(1α2mn)=(αmnβmn+βmnαβ)4(αm(n1)βm(n1)+βm(n1)αβ)44Bmnα2mn(α4m1)2(αβ)4α2m(α6mBm)+(α4m1)(αβ)4α4mCm+O(1α2mn)=u4mnu4m(n1)+δ+Vm+O(1α2mn),

    where

    Cm=16α4m(α4m1)2(α6mBm)210α4m(α4m1)α8m1,
    Vm=(α4m1)(αβ)4α4mCm=(α4m1)(αβ)4α4m(16α4m(α4m1)2(α6mBm)210α4m(α4m1)α8m1)=(α4m1)2(αβ)4(16(α4m1)(α6mBm)210α8m1)

    and

    δ=4Bmnα2mn(αβ)4((1Bmβ2m)α2m(α6mBm)(α4m1)2α2m(α6mBm))=4Bmnα2mn(αβ)4(α4m2Bmα2m+B2m1Bmα6m)=4Bmnα2mn(αβ)4α2m(αmβm)21Bmα6m=(αmβmαβ)24Bmn(1Bmα6m)(1Bmβ6m)α2m(n+1)(1Bmβ6m)(αβ)2=4Bmnu2m(1Bmα6m)(1Bmβ6m)(α2m(n+1)(αβ)2Bmα2m(n2)(αβ)2).

    Let Um=u2m(1Bmα6m)(1Bmβ6m). Then we can obtain

    δ=4BmnUm((αm(n+1)βm(n+1)+βm(n+1)αβ)2Bm(αm(n2)βm(n2)+βm(n2)αβ)2)=4BmnUm(u2m(n+1)Bmu2m(n2)+Bmβ2m(n2)β2m(n2)(αβ)2)=4BmnUm(u2m(n+1)Bmu2m(n2))+O(1α2m(n2)).

    Then

    limn((k=n1u4mk)1(u4mnu4m(n1)+4BmnUm(u2m(n+1)Bmu2m(n2))+Vm))=limn(O(1α2m(n2))+O(1α2mn))=0.

    So we have

    (k=n1u4mk)1u4mnu4m(n1)+4BmnUm(u2m(n+1)Bmu2m(n2))+Vm,

    where Um=u2m(1Bmα6m)(1Bmβ6m) and Vm=(α4m1)2(αβ)4(16(α4m1)(α6mBm)210α8m1).

    In this subsection, we will provide a proof of Theorem 2.5.

    Proof. By (1.2) and (3.2b), we have

    1umk+umk+l=(αmkβmkαβ+αmk+lβmk+lαβ)1=(αmk(1+αl)αβ)1(1Bmk(1+βl)α2mk(1+αl))1=αβαmk(1+αl)(1+Bmk(1+βl)α2mk(1+αl)+(1+βl)2α4mk(1+αl)2+Rk)=αβ1+αl(1αmk+Bmk(1+βl)α3mk(1+αl)+(1+βl)2α5mk(1+αl)2+Rkαmk), (3.14)

    where

    Rk=Bmk(1+βl)α4mk(1+αl)(α2mk(1+αl)Bmk(1+βl)).

    Let n be a positive integer. Then it follows from (3.14) that

    k=n1umk+umk+l=αβ1+αl(k=n1αmk+k=nBmk(1+βl)α3mk(1+αl)+k=n(1+βl)2α5mk(1+αl)2+k=nRkαmk)=αβ1+αl(αmαmn(αm1)+Cm)=αm(αβ)αmn(αm1)(1+αl)(1+αmn(αm1)αmCm), (3.15)

    where

    Cm=Bmnα3m(1+βl)α3mn(α3mBm)(1+αl)+α5m(1+βl)2α5mn(α5m1)(1+αl)2+k=nRkαmk.

    Then we have

    αmn(αm1)αmCm=O(1α2mn). (3.16)

    By (3.2a), (3.15), and (3.16), we have

    (k=n1umk+umk+l)1=(αm(αβ)αmn(1+αl)(αm1))1(1+O(1α2mn))1=αmn(1+αl)(αm1)αm(αβ)(1+O(1α2mn))=αmn+αmn+lαm(n1)αm(n1)+lαβ+O(1αmn)=αmn+lβmn+l+βmn+lαβαm(n1)+lβm(n1)+l+βm(n1)+lαβ+αmnβmn+βmnαβαm(n1)βm(n1)+βm(n1)αβ+O(1αmn)=umn+lum(n1)+l+umnum(n1)+βmn+βmn+lβm(n1)βm(n1)+lαβ+O(1αmn).

    Then

    limn((k=n1umk+umk+l)1(umn+lum(n1)+l+umnum(n1)))=limn(βmn+βmn+lβm(n1)βm(n1)+lαβ+O(1αmn))=0.

    So we have

    (k=n1umk+umk+l)1umn+lum(n1)+l+umnum(n1).

    In this subsection, we will provide a proof of Theorem 2.6.

    Proof. By (1.2), we have

    li=0umk+i=1αβ(αmkli=0αiβmkli=0βi)=1αβ(αmk(1αl+1)1αβmk(1βl+1)1β)=αmk(1αl+1)(αβ)(1α)(1Bmk(1α)(1βl+1)α2mk(1β)(1αl+1)). (3.17)

    From (3.2b) and (3.17), it follows that

    1li=0umk+i=(αmk(1αl+1)(αβ)(1α))1(1Bmk(1α)(1βl+1)α2mk(1β)(1αl+1))1=(αβ)(1α)αmk(1αl+1)(1+Bmk(1α)(1βl+1)α2mk(1β)(1αl+1)+(1α)2(1βl+1)2α4mk(1β)2(1αl+1)2+Rk)=(αβ)(1α)(1αl+1)(1αmk+Bmk(1α)(1βl+1)α3mk(1β)(1αl+1)+(1α)2(1βl+1)2α5mk(1β)2(1αl+1)2)+(αβ)(1α)(1αl+1)Rkαmk, (3.18)

    where

    Rk=(1βl+1)3(1α)3Bmk(4αmk(1β)(1αl+1)3Bmk(1α)(1βl+1))α4mk(1β)2(1αl+1)2(α2mk(1β)(1αl+1)Bmk(1α)(1βl+1)).

    Let n be a positive integer. Then it follows from (3.18) that

    k=n1li=0umk+i=(αβ)(1α)(1αl+1)(k=n1αmk+Cm)=(αβ)(1α)(1αl+1)(αmαmn(αm1)+Cm)=αm(αβ)(1α)αmn(αm1)(1αl+1)(1+αmn(αm1)αmCm), (3.19)

    where

    Cm=k=nBmk(1α)(1βl+1)α3mk(1β)(1αl+1)+k=n(1α)2(1βl+1)2α5mk(1β)2(1αl+1)2+k=nRkαmk=Bmnα3m(1α)(1βl+1))α3mn(α3mBm)(1β)(1αl+1)+α5m(1α)2(1βl+1)2α5mn(α5m1)(1β)2(1αl+1)2+k=nRkαmk=O(1α3mn).

    Then we have

    αmn(αm1)αmCm=O(1α2mn). (3.20)

    By (3.2a), (3.19), and (3.20), we have

    (k=n1li=0umk+i)1=(αm(α1)(αβ)αmn(αl+11)(αm1))1(1+O(1α2mn))1=αmn(αl+11)(αm1)αm(α1)(αβ)(1+O(1α2mn))=αmn+l+1αm(n1)+l+1αmn+αm(n1)(α1)(αβ)+O(1αmn)=αm(n1)βm(n1)+βm(n1)(α1)(αβ)αm(n1)+l+1βm(n1)+l+1+βm(n1)+l+1(α1)(αβ)αmnβmn+βmn(α1)(αβ)+αmn+l+1βmn+l+1+βmn+l+1(α1)(αβ)+O(1αmn)=1α1(umn+l+1um(n1)+l+1umn+um(n1))+βmn+l+1βmn+βm(n1)βm(n1)+l+1(α1)(αβ)+O(1αmn).

    Then

    limn((k=n1li=0umk+i)11α1(umn+l+1um(n1)+l+1umn+um(n1)))=limn(βmn+l+1βmn+βm(n1)βm(n1)+l+1(α1)(αβ)+O(1αmn))=0.

    So we have

    (k=n1li=0umk+i)11α1(umn+l+1um(n1)+l+1umn+um(n1)).

    In this subsection, we will provide a proof of Theorem 2.7.

    Proof. Let h be a positive integer. By (1.2), we have

    1umkumk+h=(αβ)2((αmkβmk)(αmk+hβmk+h))1=(αβ)2α2mk+h((1Bmkα2mk)(1Bmk+hα2mk+2h))1=(αβ)2α2mk+h(1Bmkα2mkBmk+hα2mk+2h+Bhα4mk+2h)1=(αβ)2α2mk+h(1η)1, (3.21)

    where

    η=Bmkα2mk+Bmk+hα2mk+2hBhα4mk+2h=Bmkα2mk+Bmk+hα2mk+2h+O(1α4mk).

    Then we have

    η2+η31η=O(1α4mk). (3.22)

    By (3.2b), (3.21), and (3.22), we have

    1umkumk+h=(αβ)2α2mk+h(1+η+η2+η31η)=(αβ)2α2mk+h(1+η+O(1α4mk))=(αβ)2α2mk+h(1+Bmkα2mk(1+Bhα2h)+O(1α4mk))=(αβ)2αh(1α2mk+Bmkα4mk(1+Bhα2h)+O(1α6mk)). (3.23)

    Let n be a positive integer. Then it follows from (3.23) that

    k=n1umkumk+h=(αβ)2αh(k=n1α2mk+(1+Bhα2h)k=nBmkα4mk)+O(1α6mn)=(αβ)2αh(α2mα2mn(α2m1)+(1+Bhα2h)Bmnα4mα4mn(α4mBm))+O(1α6mn)=(αβ)2α2mα2mn+h(α2m1)(1+(1+Bhα2h)Bmnα2m(α2m1)α2mn(α4mBm)+O(1α4mn))=(αβ)2α2mα2mn+h(α2m1)(1+ω), (3.24)

    where

    ω=(1+Bhα2h)Bmnα2m(α2m1)α2mn(α4mBm)+O(1α4mn).

    Then we have

    ω2ω31+ω=O(1α4mn). (3.25)

    By (3.2a), (3.24), and (3.25), we have

    (k=n1umkumk+h)1=((αβ)2α2mα2mn+h(α2m1))1(1+ω)1=α2mn+h(α2m1)(αβ)2α2m(1ω+ω2ω31+ω)=α2mn+h(α2m1)(αβ)2α2m(1ω+O(1α4mn))=α2mn+h(α2m1)(αβ)2α2m(1(1+Bhα2h)Bmnα2m(α2m1)α2mn(α4mBm)+O(1α4mn))=α2mn+hα2m(n1)+h(αβ)2(1+Bhα2h)Bmn(α2m1)2αh(αβ)2(α4mBm)+O(1α2mn). (3.26)

    (ⅰ) If we take h=2l, then it follows from (3.26) that

    (k=n1umkumk+2l)1=(αmn+lβmn+l+βmn+lαβ)2(αm(n1)+lβm(n1)+l+βm(n1)+lαβ)2(1+1α4l)Bmn(α2m1)2α2l(αβ)2(α4mBm)+O(1α2mn)=u2mn+lu2m(n1)+l+δ+O(1α2mn),

    where

    δ=2(Bmn+lBm(n1)+l)(αβ)2(1+1α4l)Bmn(α2m1)2α2l(αβ)2(α4mBm)=Bmn(α2m1)2α4mBm(α2l+β2l(αβ)22Bl(1Bm)(α4mBm)(αβ)2(α2m1)2)=Bmn(α2m1)2α4mBm(u2l+2Bl(αβ)22Bl(1Bm)(α4mBm)(αβ)2(α2m1)2)=Bmn(α2m1)2α4mBm(u2l+2Bl(αβ)2(1(1Bm)(α4mBm)(α2m1)2)).

    Let Cm,l=u2l+2Bl(αβ)2(1(1Bm)(α4mBm)(α2m1)2). Then

    limn((k=n1umkumk+2l)1(u2mn+lu2m(n1)+lBmn(α2m1)2α4mBmCm,l))=0.

    So we have

    (k=n1umkumk+2l)1u2mn+lu2m(n1)+lBmn(α2m1)2α4mBmCm,l,

    where Cm,l=u2l+2BlA24B(1(1Bm)(α4mBm)(α2m1)2).

    (ⅱ) If we take h=2l1, then it follows from (3.26) that

    (k=n1umkumk+2l1)1=α2mn+2l1α2m(n1)+2l1(αβ)2(1+Bα4l2)Bmn(α2m1)2α2l1(αβ)2(α4mBm)+O(1α2mn)=(ααβ2m)α2mn+2l2(αβ)2(1+Bα4l2)Bmn(α2m1)2α2l1(αβ)2(α4mBm)+O(1α2mn)=(ααβ2m)(α2mn+2l2β2mn+2l2+β2mn+2l2(αβ)2)(1+Bα4l2)Bmn(α2m1)2α2l1(αβ)2(α4mBm)+O(1α2mn)=(ααβ2m)u2mn+l1+δ+O(1α2mn),

    where

    δ=2Bmn+l1(ααβ2m)(αβ)2(1+B2l1α4l2)Bmn(α2m1)2α2l1(αβ)2(α4mBm)=Bmn(α2m1)2α4mBm(αlαl1+β2l1(αβ)22Bl1(ααβ2m)(α4mBm)(αβ)2(α2m1)2)=Bmn(α2m1)2α4mBm(ulul1+Bl1(α+β)(αβ)22Bl1(ααβ2m)(α4mBm)(αβ)2(α2m1)2)=Bmn(α2m1)2α4mBm(ulul1+Bl1(αβ)2((α+β)2(ααβ2m)(α4mBm)(α2m1)2)).

    Let Cm,l=ulul1+Bl1(αβ)2((α+β)2(ααβ2m)(α4mBm)(α2m1)2). Then

    So we have

    where .

    In this subsection, we will provide a proof of Theorem 2.8.

    Proof. By (1.2), we have

    (3.27)

    where

    Then we have

    (3.28)

    From (3.2a), (3.27), and (3.28), it follows that

    (3.29)

    Let be a positive integer. Then it follows from (3.29) that

    (3.30)

    where

    Then we have

    (3.31)

    By (3.2b), (3.30), and (3.31), we have

    Then

    So we have

    Let be the special Lucas -sequence defined by , where , , and is an integer such that . In this paper, we study the asymptotic behavior of the sequences involving . In Section 1, we give the definition of the asymptotic behavior and introduce the asymptotic behavior of some sequences. In Section 2, we give the asymptotic formulas for , where

    are positive integers, , and is any constant. In Section 3, we give the proof of these results.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    Hongjian Li was supported by the Project of Guangdong University of Foreign Studies (Grant No. 2024RC063). Pingzhi Yuan was supported by the National Natural Science Foundation of China (Grant No. 12171163) and the Basic and Applied Basic Research Foundation of Guangdong Province (Grant No. 2024A1515010589).

    The authors declare there are no conflicts of interest.



    [1] E. Marder, D. Bucher, Central pattern generators and the control of rhythmic movements, Curr. Biol., 11 (2001), R986–R996. https://doi.org/10.1016/S0960-9822(01)00581-4 doi: 10.1016/S0960-9822(01)00581-4
    [2] E. Marder, R. L. Calabrese, Principles of rhythmic motor pattern generation, Physiol. Rev., 76 (1996), 687–717. https://doi.org/10.1152/physrev.1996.76.3.687 doi: 10.1152/physrev.1996.76.3.687
    [3] A. Sakurai, C. A. Gunaratne, P. S. Katz, Two interconnected kernels of reciprocally inhibitory interneurons underlie alternating left-right swim motor pattern generation in the mollusk Melibe leonina, J. Neurophysiol., 112 (2014), 1317–1328. https://doi.org/10.1152/jn.00261.2014 doi: 10.1152/jn.00261.2014
    [4] D. Alaçam, A. Shilnikov, Making a swim central pattern generator out of latent parabolic bursters, Int. J. Bifurcation Chaos, 25 (2015), 1540003. https://doi.org/10.1142/S0218127415400039 doi: 10.1142/S0218127415400039
    [5] A. I. Selverston, Model Neural Networks and Behavior, New York, 1985. https://doi.org/10.1007/978-1-4757-5858-0
    [6] W. N. Frost, P. S. Katz, Single neuron control over a complex motor program, PNAS, 93 (1996), 422–426. https://doi.org/10.1073/pnas.93.1.422 doi: 10.1073/pnas.93.1.422
    [7] P. S. Katz, S. L. Hooper, Invertebrate central pattern generators, Cold Spring Harbor Monogr. Ser., 49 (2007), 251.
    [8] E. Marder, S. Kedia, E. O. Morozova, New insights from small rhythmic circuits, Curr. Opin. Neurobiol., 76 (2022), 102610. https://doi.org/10.1016/j.conb.2022.102610 doi: 10.1016/j.conb.2022.102610
    [9] E. Marder, Neuromodulation of neuronal circuits: back to the future, Neuron, 76 (2012), 1–11. https://doi.org/10.1016/j.neuron.2012.09.010 doi: 10.1016/j.neuron.2012.09.010
    [10] I. Belykh, A. Shilnikov, When weak inhibition synchronizes strongly desynchronizing networks of bursting neurons, Phys. Rev. Lett., 101 (2008), 078102. https://doi.org/10.1103/PhysRevLett.101.078102 doi: 10.1103/PhysRevLett.101.078102
    [11] T. Nowotny, M. I. Rabinovich, Dynamical origin of independent spiking and bursting activity in neural microcircuits, Phys. Rev. Lett., 98 (2007), 128106. https://doi.org/10.1103/PhysRevLett.98.128106 doi: 10.1103/PhysRevLett.98.128106
    [12] A. I. Selverston, Invertebrate central pattern generator circuits, Phil. Trans. R. Soc. B, 365 (2010), 2329–2345. https://doi.org/10.1098/rstb.2009.0270 doi: 10.1098/rstb.2009.0270
    [13] A. I. Selverston, M. I. Rabinovich, H. D Abarbanel, R. Elson, A. Szücs, R. D. Pinto, et al., Reliable circuits from irregular neurons: a dynamical approach to understanding central pattern generators, J. Physiol.-Paris, 94 (2000), 357–374. https://doi.org/10.1016/S0928-4257(00)01101-3 doi: 10.1016/S0928-4257(00)01101-3
    [14] R. Huerta, M. A. Sánchez-Montañés, F. Corbacho, J. A. Sigüenza, A central pattern generator to control a pyloric-based system, Biol. Cybern., 82 (2000), 85–94. https://doi.org/10.1007/PL00007963 doi: 10.1007/PL00007963
    [15] M. Lodi, A. L. Shilnikov, M. Storace, Design principles for central pattern generators with preset rhythms, IEEE Trans. Neural Networks Learn. Syst., 31 (2019), 3658–3669. https://doi.org/10.1109/TNNLS.2019.2945637 doi: 10.1109/TNNLS.2019.2945637
    [16] S. Chen, Y. Liu, T. Chen, J. Lou, Rhythm motion control in bio-inspired fishtail based on central pattern generator, IET Cyber-Syst. Robot., 3 (2021), 53–67. https://doi.org/10.1049/csy2.12007 doi: 10.1049/csy2.12007
    [17] J. Wojcik, J. Schwabedal, R. Clewley, A. L. Shilnikov, Key bifurcations of bursting polyrhythms in 3-cell central pattern generators, PLoS One, 9 (2014), e92918. https://doi.org/10.1371/journal.pone.0092918 doi: 10.1371/journal.pone.0092918
    [18] J. T. C. Schwabedal, A. B. Neiman, A. L. Shilnikov, Robust design of polyrhythmic neural circuits, Phys. Rev. E, 90 (2014), 022715. https://doi.org/10.1103/PhysRevE.90.022715 doi: 10.1103/PhysRevE.90.022715
    [19] R. Azodi-Avval, F. Bahrami, A mathematical model of arm movement during rhythmic motor activity, in 2011 18th Iranian Conference of Biomedical Engineering (ICBME), (2011), 304–308. https://doi.org/10.1109/ICBME.2011.6168578
    [20] M. B. Reyes, P. V. Carelli, J. C. Sartorelli, R. D. Pinto, A modeling approach on why simple central pattern generators are built of irregular neurons, PLoS One, 10 (2015), e0120314. https://doi.org/10.1371/journal.pone.0120314 doi: 10.1371/journal.pone.0120314
    [21] J. Dethier, G. Drion, A. Franci, R. Sepulchre, A positive feedback at the cellular level promotes robustness and modulation at the circuit level, J. Neurophysiol., 114 (2015), 2472–2484. https://doi.org/10.1152/jn.00471.2015 doi: 10.1152/jn.00471.2015
    [22] J. Collens, K. Pusuluri, A. Kelley, D. Knapper, T. Xing, S. Basodi, et al., Dynamics and bifurcations in multistable 3-cell neural networks, Chaos, 30 (2020), 072101. https://doi.org/10.1063/5.0011374 doi: 10.1063/5.0011374
    [23] Q. Lu, X. Wang, J. Tian, A new biological central pattern generator model and its relationship with the motor units, Cognit. Neurodyn., 16 (2022), 135–147. https://doi.org/10.1007/s11571-021-09710-0 doi: 10.1007/s11571-021-09710-0
    [24] Q. Lu, J. Tian, Synchronization and stochastic resonance of the small-world neural network based on the CPG, Cognit. Neurodyn., 8 (2014), 217–226. https://doi.org/10.1007/s11571-013-9275-8 doi: 10.1007/s11571-013-9275-8
    [25] Y. Zang, E. Marder, Neuronal morphology enhances robustness to perturbations of channel densities, PNAS, 120 (2023), e2219049120. https://doi.org/10.1073/pnas.2219049120 doi: 10.1073/pnas.2219049120
    [26] E. M. Izhikevich, Neural excitability, spiking, and bursting, Int. J. Bifurcation Chaos, 10 (2000), 1171–1266. https://doi.org/10.1142/S0218127400000840 doi: 10.1142/S0218127400000840
    [27] B. Lu, X. Jiang, Reduced and bifurcation analysis of intrinsically bursting neuron model, Electron. Res. Arch., 31 (2023), 5928–5945. https://doi.org/10.3934/era.2023301 doi: 10.3934/era.2023301
    [28] F. Zhan, S. Liu, X. Zhang, J. Wang, B. Lu, Mixed-mode oscillations and bifurcation analysis in a pituitary model, Nonlinear Dyn., 94 (2018), 807–826. https://doi.org/10.1007/s11071-018-4395-7 doi: 10.1007/s11071-018-4395-7
    [29] W. B. Kristan, Neuronal decision-making circuits, Curr. Biol., 18 (2008), R928–R932. https://doi.org/10.1016/j.cub.2008.07.081 doi: 10.1016/j.cub.2008.07.081
    [30] K. L. Briggman, W. B. Kristan, Multifunctional pattern-generating circuits, Annu. Rev. Neurosci., 31 (2008), 271–294. https://doi.org/10.1146/annurev.neuro.31.060407.125552 doi: 10.1146/annurev.neuro.31.060407.125552
    [31] A. A. A. Hill, J. Lu, M. A. Masino, O. H. Olsen, R. L. Calabrese, A model of a segmental oscillator in the leech heartbeat neuronal network, J. Comput. Neurosci., 10 (2001), 281–302. https://doi.org/10.1023/A:1011216131638 doi: 10.1023/A:1011216131638
    [32] R. L. Calabrese, Half-center oscillators underlying rhythmic movements, in The Handbook of Brain Theory and Neural Networks, (1998), 444–447.
    [33] Y. Zang, S. Hong, E. D. Schutter, Firing rate-dependent phase responses of Purkinje cells support transient oscillations, eLife, 9 (2020), e60692. https://doi.org/10.7554/eLife.60692 doi: 10.7554/eLife.60692
    [34] M. Liu, L. Duan, In-phase and anti-phase spikes synchronization within mixed Bursters of the pre-Bözinger complex, Electron. Res. Arch., 30 (2022), 961–977. https://doi.org/10.3934/era.2022050 doi: 10.3934/era.2022050
    [35] S. Li, G. Zhang, J. Wang, Y. Chen, B. Deng, Emergent central pattern generator behavior in chemical coupled two-compartment models with time delay, Physica A, 491 (2018), 177–187. https://doi.org/10.1016/j.physa.2017.08.121 doi: 10.1016/j.physa.2017.08.121
    [36] A. Doloc-Mihu, R. L. Calabrese, A database of computational models of a half-center oscillator for analyzing how neuronal parameters influence network activity, J. Biol. Phys., 37 (2011), 263–283. https://doi.org/10.1007/s10867-011-9215-y doi: 10.1007/s10867-011-9215-y
    [37] A. Doloc-Mihu, R. L. Calabrese, Analysis of family structures reveals robustness or sensitivity of bursting activity to parameter variations in a half-center oscillator (HCO) model, eNeuro, 3 (2016). https://doi.org/10.1523/ENEURO.0015-16.2016
    [38] I. Elices, P. Varona, Asymmetry factors shaping regular and irregular bursting rhythms in central pattern generators, Front. Comput. Neurosci., 11 (2017), 9. https://doi.org/10.3389/fncom.2017.00009 doi: 10.3389/fncom.2017.00009
    [39] A. J. White, Sensory feedback expands dynamic complexity and aids in robustness against noise, Biol. Cybern., 116 (2022), 267–269. https://doi.org/10.1007/s00422-021-00917-2 doi: 10.1007/s00422-021-00917-2
    [40] Z. Yu, P. J. Thomas, Dynamical consequences of sensory feedback in a half-center oscillator coupled to a simple motor system, Biol. Cybern., 115 (2021), 135–160. https://doi.org/10.1007/s00422-021-00864-y doi: 10.1007/s00422-021-00864-y
    [41] R. Huerta, P. Varona, M. I. Rabinovich, H. D. I. Abarbanel, Topology selection by chaotic neurons of a pyloric central pattern generator, Biol. Cybern., 84 (2001), L1–L8. https://doi.org/10.1007/PL00007976 doi: 10.1007/PL00007976
    [42] V. In, A. Kho, P. Longhini, J. D. Neff, A. Palacios, P. L. Buono, Meet ANIBOT: the first biologically-inspired animal robot, Int. J. Bifurcation Chaos, 32 (2022), 2230001. https://doi.org/10.1142/S0218127422300014 doi: 10.1142/S0218127422300014
    [43] A. S. Lele, Y. Fang, J. Ting, A. Raychowdhury, Learning to walk: bio-mimetic hexapod locomotion via reinforcement-based spiking central pattern generation, IEEE J. Emerging Sel. Top. Circuits Syst., 10 (2020), 536–545. https://doi.org/10.1109/JETCAS.2020.3033135 doi: 10.1109/JETCAS.2020.3033135
    [44] T. Sun, Z. Dai, P. Manoonpong, Distributed-force-feedback-based reflex with online learning for adaptive quadruped motor control, Neural Networks, 142 (2021), 410–427. https://doi.org/10.1016/j.neunet.2021.06.001 doi: 10.1016/j.neunet.2021.06.001
    [45] A. Espinal, H. Rostro-Gonzalez, M. Carpio, E. I. Guerra-Hernandez, M. Ornelas-Rodriguez, M. Sotelo-Figueroa, Design of spiking central pattern generators for multiple locomotion gaits in hexapod robots by christiansen grammar evolution, Front. Neurorobot., 10 (2016), 6. https://doi.org/10.3389/fnbot.2016.00006 doi: 10.3389/fnbot.2016.00006
    [46] F. Zhan, S. Liu, Response of electrical activity in an improved neuron model under electromagnetic radiation and noise, Front. Comput. Neurosci., 11 (2017), 107. https://doi.org/10.3389/fncom.2017.00107 doi: 10.3389/fncom.2017.00107
    [47] F. Zhan, S. Liu, J. Wang, B. Lu, Bursting patterns and mixed-mode oscillations in reduced Purkinje model, Int. J. Mod. Phys. B, 32 (2018), 1850043. https://doi.org/10.1142/S0217979218500431 doi: 10.1142/S0217979218500431
    [48] D. Terman, J. E. Rubin, A. C. Yew, C. J. Wilson, Activity patterns in a model for the subthalamopallidal network of the basal ganglia, J. Neurosci., 22 (2002), 2963–2976. https://doi.org/10.1523/JNEUROSCI.22-07-02963.2002 doi: 10.1523/JNEUROSCI.22-07-02963.2002
    [49] F. Su, J. Wang, S. Niu, H. Li, B. Deng, C. Liu, et al., Nonlinear predictive control for adaptive adjustments of deep brain stimulation parameters in basal ganglia–thalamic network, Neural Networks, 98 (2018), 283–295. https://doi.org/10.1016/j.neunet.2017.12.001 doi: 10.1016/j.neunet.2017.12.001
    [50] J. Song, S. Liu, H. Lin, Model-based quantitative optimization of deep brain stimulation and prediction of Parkinson's states, Neuroscience, 498 (2022), 105–124. https://doi.org/10.1016/j.neuroscience.2022.05.019 doi: 10.1016/j.neuroscience.2022.05.019
    [51] J. Song, H. Lin, S. Liu, Basal ganglia network dynamics and function: role of direct, indirect and hyper-direct pathways in action selection, Network: Comput. Neural Syst., 34 (2023), 84–121. https://doi.org/10.1080/0954898X.2023.2173816 doi: 10.1080/0954898X.2023.2173816
    [52] M. Valero, I. Zutshi, E. Yoon, G. Buzsáki, Probing subthreshold dynamics of hippocampal neurons by pulsed optogenetics, Science, 375 (2022), 570–574. https://doi.org/10.1126/science.abm1891 doi: 10.1126/science.abm1891
    [53] C. A. Tassinari, G. Cantalupo, B. Hoegl, P. Cortelli, L. Tassi, S. Francione, et al., Neuroethological approach to frontolimbic epileptic seizures and parasomnias: the same central pattern generators for the same behaviours, Rev. Neurol., 165 (2009), 762–768. https://doi.org/10.1016/j.neurol.2009.08.002 doi: 10.1016/j.neurol.2009.08.002
    [54] C. A. Tassinari, E. Gardella, G. Cantalupo, G. Rubboli, Relationship of central pattern generators with parasomnias and sleep-related epileptic seizures, Sleep Med. Clin., 7 (2012), 125–134. https://doi.org/10.1016/j.jsmc.2012.01.003 doi: 10.1016/j.jsmc.2012.01.003
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1443) PDF downloads(72) Cited by(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog