A high spike-timing precision characterized by a small variation in interspike intervals of neurons is important for information processing in various brain functions. An experimental study on fast-spiking interneurons has shown that inhibitory autapses functioning as negative self-feedback can enhance spike-timing precision. In the present paper, bifurcation and negative self-feedback mechanisms for the enhanced spike-timing precision to stochastic modulations are obtained in two theoretical models, presenting theoretical explanations to the experimental finding. For stochastic spikes near both the saddle-node bifurcation on an invariant cycle (SNIC) and the subcritical Hopf (SubH) bifurcation with classes 1 and 2 excitabilities, respectively, enhanced spike-timing precision appears in large ranges of the conductance and the decaying rate of inhibitory autapses, closely matching the experimental observation. The inhibitory autaptic current reduces the membrane potential after a spike to a level lower than that in the absence of inhibitory autapses and the threshold to evoke the next spike, making it more difficult for stochastic modulations to affect spike timings, and thereby enhancing spike-timing precision. In addition, firing frequency near the SubH bifurcation is more robust than that near the SNIC bifurcation, resulting in a higher spike-timing precision for the SubH bifurcation. The bifurcation and negative self-feedback mechanisms for the enhanced spike-timing precision present potential measures to modulate the neuronal dynamics or the autaptic parameters to adjust the spike-timing precision.
Citation: Yanbing Jia, Huaguang Gu, Xianjun Wang, Yuye Li, Chunhuizi Zhou. Bifurcation and negative self-feedback mechanisms for enhanced spike-timing precision of inhibitory interneurons[J]. Electronic Research Archive, 2024, 32(1): 90-108. doi: 10.3934/era.2024005
[1] | Fatemah Mofarreh, S. K. Srivastava, Anuj Kumar, Akram Ali . Geometric inequalities of $ \mathcal{PR} $-warped product submanifold in para-Kenmotsu manifold. AIMS Mathematics, 2022, 7(10): 19481-19509. doi: 10.3934/math.20221069 |
[2] | Ibrahim Al-Dayel, Meraj Ali Khan . Ricci curvature of contact CR-warped product submanifolds in generalized Sasakian space forms admitting nearly Sasakian structure. AIMS Mathematics, 2021, 6(3): 2132-2151. doi: 10.3934/math.2021130 |
[3] | Amira A. Ishan, Meraj Ali Khan . Chen-Ricci inequality for biwarped product submanifolds in complex space forms. AIMS Mathematics, 2021, 6(5): 5256-5274. doi: 10.3934/math.2021311 |
[4] | Ali H. Alkhaldi, Akram Ali, Jae Won Lee . The Lawson-Simons' theorem on warped product submanifolds with geometric information. AIMS Mathematics, 2021, 6(6): 5886-5895. doi: 10.3934/math.2021348 |
[5] | Biswabismita Bag, Meraj Ali Khan, Tanumoy Pal, Shyamal Kumar Hui . Geometric analysis on warped product semi-slant submanifolds of a locally metallic Riemannian space form. AIMS Mathematics, 2025, 10(4): 8131-8143. doi: 10.3934/math.2025373 |
[6] | Fahad Sikander, Tanveer Fatima, Sharief Deshmukh, Ayman Elsharkawy . Curvature analysis of concircular trajectories in doubly warped product manifolds. AIMS Mathematics, 2024, 9(8): 21940-21951. doi: 10.3934/math.20241066 |
[7] | Özgür Boyacıoğlu Kalkan . On normal curves and their characterizations in Lorentzian n-space. AIMS Mathematics, 2020, 5(4): 3510-3524. doi: 10.3934/math.2020228 |
[8] | Ali H. Alkhaldi, Meraj Ali Khan, Shyamal Kumar Hui, Pradip Mandal . Ricci curvature of semi-slant warped product submanifolds in generalized complex space forms. AIMS Mathematics, 2022, 7(4): 7069-7092. doi: 10.3934/math.2022394 |
[9] | Andrea Ratto . Higher order energy functionals and the Chen-Maeta conjecture. AIMS Mathematics, 2020, 5(2): 1089-1104. doi: 10.3934/math.2020076 |
[10] | Mohammad Aamir Qayyoom, Rawan Bossly, Mobin Ahmad . On CR-lightlike submanifolds in a golden semi-Riemannian manifold. AIMS Mathematics, 2024, 9(5): 13043-13057. doi: 10.3934/math.2024636 |
A high spike-timing precision characterized by a small variation in interspike intervals of neurons is important for information processing in various brain functions. An experimental study on fast-spiking interneurons has shown that inhibitory autapses functioning as negative self-feedback can enhance spike-timing precision. In the present paper, bifurcation and negative self-feedback mechanisms for the enhanced spike-timing precision to stochastic modulations are obtained in two theoretical models, presenting theoretical explanations to the experimental finding. For stochastic spikes near both the saddle-node bifurcation on an invariant cycle (SNIC) and the subcritical Hopf (SubH) bifurcation with classes 1 and 2 excitabilities, respectively, enhanced spike-timing precision appears in large ranges of the conductance and the decaying rate of inhibitory autapses, closely matching the experimental observation. The inhibitory autaptic current reduces the membrane potential after a spike to a level lower than that in the absence of inhibitory autapses and the threshold to evoke the next spike, making it more difficult for stochastic modulations to affect spike timings, and thereby enhancing spike-timing precision. In addition, firing frequency near the SubH bifurcation is more robust than that near the SNIC bifurcation, resulting in a higher spike-timing precision for the SubH bifurcation. The bifurcation and negative self-feedback mechanisms for the enhanced spike-timing precision present potential measures to modulate the neuronal dynamics or the autaptic parameters to adjust the spike-timing precision.
In the year 2003, Shaikh [18] introduced a fascinating mathematical concept known as (LCS)n-manifold, which stands for Lorentzian concircular structure manifold. This concept has profound implications in the field of general relativity. It was subsequently discovered that (LCS)n-spacetimes are intricately connected to generalized Robertson Walker spacetimes [10], a well-established framework in cosmology.
The (LCS)n-structure has garnered considerable attention due to its wide-ranging applications in the general theory of relativity. Researchers, as evidenced by studies such as [19,20], have explored the various implications and consequences of this structure within the framework of Einstein's theory.
One intriguing property of the (LCS)n-structure is its invariance under conformal transformations. This means that the structure remains unaltered when subjected to a conformal transformation, a mathematical operation that preserves angles but alters distances.
The concept of slant submanifolds was first introduced in the seminal work by Chen [3]. Building upon this notion, the idea of slant immersions of Riemannian manifolds into almost contact metric manifolds was further developed by Lotta [9]. Pointwise slant submanifolds, another variant of this concept, were introduced and investigated by Etayo [7]. For more comprehensive information on these topics, one may read [13,17].
To explore additional classes of submanifolds within this manifold framework, researchers are suggested to go through Atehui [1] and Hui et al. [8].
The notion of warped product manifolds, on the other hand, originated from the pioneering work of Bishop and O'Neill [2] and has since been extensively studied in the literature, see [4,5,6,8,14,22,24]. The existence or non-existence of such product manifolds holds great significance, as it contributes to our understanding of the geometric structures and properties of these manifolds.
Let (ˉΣ,g) be an n-dimensional Lorentzian manifold with Lorentzian metric g and ˉ∇ be the Levi-Civita connection for g. The (LCS)n-manifold is defined as an n-dimensional Lorentzian manifold equipped with
● ξ, a unit timelike concircular vector field,
● η, ξ's associated 1-form,
● an (1,1) tensor field ϕ,
such that
ˉ∇Pξ=αϕP, | (2.1) |
for some non-zero scalar function α which satisfies
ˉ∇Pα=Pα=dα(P)=ρη(P), | (2.2) |
where ρ=−(ξα) is also a scalar and P∈Γ(TˉΣ). A (LCS)n-manifold becomes a LP-Sasakian manifold when α=1 [11,12].
From [18], we get some basic relations in a (LCS)n-manifold (n>2) ˉΣ:
η(ξ)=−1, ϕξ=0, η(ϕP)=0, g(ϕP,ϕQ)=g(P,Q)+η(P)η(Q), | (2.3) |
ϕ2P=P+η(P)ξ, | (2.4) |
(ˉ∇Pϕ)Q=α{g(P,Q)ξ+2η(P)η(Q)ξ+η(Q)P}, | (2.5) |
for all P, Q, Z∈Γ(TˉΣ). Throughout the paper, we denote a (LCS)n-manifold by ˉΣ.
We consider a submanifold Σ↪ˉΣ with induced metric g and suppose that ∇, ∇⊥ denotes the induced connections on TΣ and T⊥Σ of Σ, respectively. In this regard, the Gauss and Weingarten formulae are
ˉ∇PQ=∇PQ+ζ(P,Q), | (2.6) |
and
ˉ∇PV=−AVP+∇⊥PV, | (2.7) |
for all P,Q∈Γ(TΣ) and V∈Γ(T⊥Σ), where the second fundamental form is denoted by ζ and AV denotes the shape operator (corresponding to V) for the immersion Σ↪ˉΣ such that g(ζ(P,Q),V)=g(AVP,Q).
For P∈Γ(TΣ), the gradient ∇i of a differentiable function i on Σ is defined by
g(∇i,P)=Pi. | (2.8) |
We also have
(a) ϕP=hP+kP, (b) ϕV=lV+fV, | (2.9) |
for any P∈Γ(TΣ) and V∈Γ(T⊥Σ), where hP, lV are the tangential components and kP, fV are the normal components.
A submanifold Σ↪ˉΣ is said to be invariant if ϕ(TpΣ)⊆TpΣ and anti-invariant if ϕ(TpΣ)⊆T⊥pΣ for every p∈Σ.
A submanifold Σ↪ˉΣ is said to be slant if for each non-zero vector P∈TpΣ, the angle β(0≤β≤π2) between ϕP and TpΣ is a constant, i.e., it is independent of the choice of p∈Σ. Again Σ is said to be pointwise slant of ˉΣ if β depends on P.
From [21], we find that a submanifold Σ↪ˉΣ with ξ∈Γ(TΣ) is pointwise slant if and only if
h2=cos2β(I+η⊗ξ), | (2.10) |
for some real valued function β defined on TΣ. Also if Dβ is a pointwise slant distribution on pointwise slant submanifold Σ with ξ∈Γ(TΣ), then
g(hZ,hW)=cos2β{g(Z,W)+η(Z)η(W)}, | (2.11) |
g(kZ,kW)=sin2β{g(Z,W)+η(Z)η(W)}, | (2.12) |
for any Z, W∈Γ(Dβ).
Let (N1,g1) and (N2,g2) be two semi-Riemannian manifolds and i be a positive smooth function on N1. The warped product of (N1,g1) and (N2,g2) is denoted by N1×iN2:=(N1×N2,g), where
g=g1+i2g2, | (2.13) |
and i is the warping function. From [16], we have
∇UP=∇PU=(Plni)U,∀P∈Γ(TN1) and U∈Γ(TN2). | (2.14) |
We consider ΣI, Σ⊥, Σβ, and Σψ as invariant, anti-invariant, proper slant, and proper pointwise slant submanifolds of ˉΣ. In this paper, we study the following two different classes of warped product submanifolds of ˉΣ.
First Class: Σ=Σ1×iΣ⊥ with ξ tangent to Σ1, where Σ1=ΣI×Σβ. This class of submanifolds are known as warped product skew-CR submanifolds [15].
Second Class: Σ=Σ2×iΣψ with ξ tangent to Σ2, where Σ2=ΣI×Σ⊥. This class of submanifolds are known as warped product CR-slant submanifolds [23,25].
Throughout this paper, we consider the tangent spaces of ΣI, Σ⊥, Σβ, and Σψ as DI, D⊥, Dβ, and Dψ, respectively.
First, we construct an example of a submanifold of the { First Class}.
Example 1. Consider the Euclidean space R13 with the cartesian coordinates (u1,v1,⋯,u6,v6,t) and para contact structure
ϕ(∂∂ui)=∂∂vi,ϕ(∂∂vj)=∂∂uj,ϕ(∂∂t)=0,1≤i,j≤6. |
It is clear that R13 is a Lorentzian manifold with usual semi-Euclidean metric tensor. For any non-zero λ,τ, and β∈[0,π2], let Σ be a submanifold of R13 defined by the immersion map χ:R6→R13 as
χ(λ,τ,β,μ,ϱ,t)=(λcosβ,λsinβ,τcosβ,τsinβ,4λ+3τ,3λ+4τ,−τcosβ,τsinβ,−λcosβ,λsinβ,μ,ϱ,t). |
Then the tangent space of Σ is spanned by the following vectors
J1=cosβ∂∂u1+sinβ∂∂v1+4∂∂u3+3∂∂v3−cosβ∂∂u5+sinβ∂∂v5,J2=cosβ∂∂u2+sinβ∂∂v2+3∂∂u3+4∂∂v3−cosβ∂∂u4+sinβ∂∂v4,J3=−λsinβ∂∂u1+λcosβ∂∂v1−τsinβ∂∂u2+τcosβ∂∂v2+τsinβ∂∂u4+τcosβ∂∂v4+λsinβ∂∂u5+λcosβ∂∂v5,J4=∂∂u6, J5=∂∂v6, and J6=∂∂t. |
Then we have
ϕJ1=cosβ∂∂v1+sinβ∂∂u1+4∂∂v3+3∂∂u3−cosβ∂∂v5+sinβ∂∂u5,ϕJ2=cosβ∂∂v2+sinβ∂∂u2+3∂∂v3+4∂∂u3−cosβ∂∂v4+sinβ∂∂u4, |
ϕJ3=−λsinβ∂∂v1+λcosβ∂∂u1−τsinβ∂∂v2+τcosβ∂∂u2+τsinβ∂∂v4+τcosβ∂∂u4+λsinβ∂∂v5+λcosβ∂∂u5,ϕJ4=∂∂v6,ϕJ5=∂∂u6, andϕJ6=0. |
Therefore, it is clear that DI=span{J4, J5, J6} is an invariant distribution, Dβ=span{J1, J2} is a slant distribution with slant angle cos−1(2527), and D⊥=span{J3} is an anti-invaiant distribution. Hence Σ is a skew CR-submanifold. Denote the integral manifolds of DI, D⊥, and Dβ by ΣI,Σ⊥, and Σβ, respectively. Then the product metric g of Σ is given by
g=−dt2+27(dλ2+dτ2)+(dμ2+dϱ2)+2(λ2+τ2)dβ2. |
Consequently Σ is a warped product skew CR-submanifold of type Σ1×iΣ⊥ of R13, where Σ1=ΣI×Σβ with warping function i=√2(λ2+τ2).
We take dimΣI=2a+1, dimΣ⊥=b, dimΣβ=2c and their corresponding tangent spaces are DI⊕{ξ}, D⊥, and Dβ, respectively.
Assume that {x1,x2,⋯,xa,xa+1=ϕx1, ⋯,x2a=ϕxa,x2a+1=ξ}, {x2a+2=x∗1,⋯,x2a+b+1=x∗b}, and {x2a+b+2=ˆx1,x2a+b+3=ˆx2,⋯, x2a+b+c+1=ˆxc,x2a+b+c+2=ˆxc+1=secβhˆx1, ⋯,x2a+b+2c+1(=xm)=ˆx2c=secβhˆxc} are local orthonormal frames of DI⊕{ξ}, D⊥, and Dβ, respectively.
Then the local orthonormal frames for ϕD⊥ and kDβ are {xm+1=~x1=ϕx∗1,⋯,xm+b=~xb=ϕx∗b} and {xm+b+1=˜xb+1=cscβkˆx1,⋯, xm+b+c=˜xb+c=cscβkˆxc,xm+b+c+1=˜xb+c+1=cscβsecβkhˆx1, ⋯,xm+b+2c=˜xb+2c=cscβsecβkhˆxc}, respectively. Also {xm+b+2c+1,⋯,xn} is a normal subbundle. We denote it by ν. Clearly ν is ϕ invariant and dim ν=(n−m−b−2c).
First, we prove the following lemmas:
Lemma 1. Let Σ=Σ1×iΣ⊥ be a warped product submanifold of ˉΣ such that ξ is tangent to Σ1=ΣI×Σβ. Then we have
g(ζ(P,Q),ϕZ)=g(ζ(P,Z),kU)=g(ζ(P,U),ϕZ)=0, | (3.1) |
and
g(ζ(U,Z),kV)+g(ζ(U,V),ϕZ)=0, | (3.2) |
for every P, Q∈Γ(ΣI), Z∈Γ(Σ⊥), and U,V∈Γ(Σβ).
Proof. For P, Q∈Γ(ΣI), Z∈Γ(Σ⊥), and U,V∈Γ(Σβ), we find
g(ζ(P,Q),ϕZ)=g(∇QϕP,Z)−g((ˉ∇Qϕ)P,Z), | (3.3) |
g(ζ(P,Z),kU)=−g(∇ZϕP,U)−g((ˉ∇Zϕ)P,U)+g(P,∇ZhU), | (3.4) |
and
g(ζ(P,U),ϕZ)=g(∇UϕP,Z)−g((ˉ∇Uϕ)P,Z). | (3.5) |
Using (2.5) and (2.14) in (3.3)–(3.5), we get (3.1).
Also we have
g(ζ(U,V),ϕZ)=−g(hV,∇UZ)−g((ˉ∇Uϕ)V,Z)+g(ˉ∇UkV,Z). | (3.6) |
Using (2.5) and (2.14) in (3.6), we get (3.2).
Lemma 2. Let Σ=Σ1×iΣ⊥ be a warped product submanifold of ˉΣ such that ξ is tangent to Σ1=ΣI×Σβ. Then we have
g(ζ(P,Z),ϕW)={(ϕPlni)−αη(P)}g(Z,W), | (3.7) |
g(ζ(ϕP,Z),ϕW)={(Plni)+αη(P)}g(Z,W), | (3.8) |
and
g(ζ(Z,U),ϕW)+g(ζ(Z,W),kU)={(hUlni)−αη(U)}g(Z,W), | (3.9) |
for every P∈Γ(ΣI), Z, W∈Γ(Σ⊥), and U∈Γ(Σβ).
Proof. For P∈Γ(ΣI), Z, W∈Γ(Σ⊥), and U∈Γ(Σβ), we find
g(ζ(P,Z),ϕW)=−g(ˉ∇ZϕP,W)−g((ˉ∇Zϕ)P,W). | (3.10) |
Using (2.5) and (2.14) in (3.10), we get (3.7). Replacing P by ϕP and applying (ξlni)=α in (3.7), we get (3.8).
Also we have
g(ζ(Z,U),ϕW)=−g(ˉ∇ZhU,W)+g(ˉ∇ZkU,W)−g((ˉ∇Zϕ)U,W). | (3.11) |
Using (2.5) and (2.14) in (3.11), we get (3.9).
Corollary 1. Let Σ=Σ1×iΣ⊥ be a D⊥−Dθ warped product submanifold of ˉΣ such that ξ is tangent to Σ1=ΣI×Σβ, then we have
g(ζ(Z,W),kU)={(hUlni)−αη(U)}g(Z,W), | (3.12) |
and
g(ζ(Z,W),khU)=cos2θ[(Ulni)−αη(U)]g(Z,W), | (3.13) |
for every Z, W∈Γ(Σ⊥), and U∈Γ(Σβ).
Now we establish an inequality on a submanifold Σ of the First Class of ˉΣ.
Theorem 1. Let Σ=Σ1×iΣ⊥ be a D⊥−Dβ mixed geodesic warped product submanifold of ˉΣ such that ξ is tangent to ΣI, where Σ1=ΣI×Σβ. Then the squared norm of the second fundamental form satisfies
‖ζ‖2≥b[{2(∥∇Ilni∥2)}+cot2β∥∇βlni∥2], | (3.14) |
where ∇Ilni and ∇βlni are the gradient of lni along ΣI and Σβ, respectively, and for the case of equality, Σ1 becomes totally geodesic and Σ⊥ becomes totally umbilical in ˉΣ.
Proof. From (2.8), we have
‖ζ‖2=m∑p,q=1g(ζ(xp,xq),ζ(xp,xq))=n∑r=m+1g(ζ(xp,xq),xr)2. |
Decomposing the above relation for our constructed frames, we get
‖ζ‖2=n∑r=m+12a+1∑p,q=1g(ζ(xp,xq),xr)2+n∑r=m+1b∑p,q=1g(ζ(x∗p,x∗q),xr)2+n∑r=m+12c∑i,j=1g(ζ(^xp,^xq),xr)2+2n∑r=m+1b∑p=12c∑q=1g(ζ(x∗p,^xq),xr)2+2n∑r=m+1b∑p=12a+1∑q=1g(ζ(x∗p,xq),xr)2+2n∑r=m+12c∑p=12a+1∑q=1g(ζ(^xp,xq),xr)2. | (3.15) |
Now, again decomposing (3.15) along the normal subbundles ϕD⊥, kDβ, and ν, we get
‖ζ‖2=m+b∑r=m+12a+1∑p,q=1g(ζ(xp,xq),xr)2+m+b+2c∑r=m+b+12a+1∑p,q=1g(ζ(xp,xq),xr)2+n∑r=m+b+2c+12a+1∑p,q=1g(ζ(xp,xq),xr)2+m+b∑r=m+1b∑p,q=1g(ζ(x∗p,x∗q),xr)2+m+b+2c∑r=m+b+1b∑p,q=1g(ζ(x∗p,x∗q),xr)2+n∑r=m+b+2c+1b∑p,q=1g(ζ(x∗p,x∗q),xr)2+m+b∑r=m+12c∑p,q=1g(ζ(ˆxp,ˆxq),xr)2+m+b+2c∑r=m+b+12c∑p,q=1g(ζ(ˆxp,ˆxq),xr)2+n∑r=m+b+2c+12c∑p,q=1g(ζ(ˆxp,ˆxq),xr)2+2m+b∑r=m+1b∑p=12c∑q=1g(ζ(x∗p,ˆxq),xr)2+2m+b+2c∑r=m+b+1b∑p=12c∑q=1g(ζ(x∗p,ˆxq),xr)2+2n∑r=m+b+2c+1b∑p=12c∑q=1g(ζ(x∗p,ˆxq),xr)2+2m+b∑r=m+12a+1∑p=1b∑q=1g(ζ(xp,∗xq),xr)2+2m+b+2c∑r=m+b+12a+1∑p=1b∑q=1g(ζ(xp,∗xq),xr)2+2n∑r=m+b+2c+12a+1∑p=1b∑q=1g(ζ(xp,∗xq),xr)2+2m+b∑r=m+12a+1∑p=12c∑q=1g(ζ(xp,ˆxq),xr)2+2m+b+2c∑r=m+b+12a+1∑p=12c∑q=1g(ζ(xp,ˆxq),xr)2+2n∑r=m+b+2c+12a+1∑p=12c∑q=1g(ζ(xp,ˆxq),xr)2. | (3.16) |
Now, we can not find any relation for a warped product in the form g(ζ(E,F),ν) for any E,F∈Γ(TΣ). So, we leave the positive third, sixth, ninth, twelfth, fifteenth, and eighteenth terms of (3.16). Also, using Lemma 3.1 and the D⊥−Dβ mixed geodesic property of Σ in (3.16), we get
|ζ‖2≥b∑r=1b∑p,q=2a+1g(ζ(xp,xq),kˆxr)2+b∑r=1b∑p,q=1g(ζ(x∗p,x∗q),ϕx∗r)2+2c∑r=1b∑p,q=1g(ζ(x∗p,x∗q),kˆxr)2+2c∑r=12c∑p,q=1g(ζ(ˆxp,ˆxq),kˆxr)2+2b∑r=12a+1∑p=1b∑q=1g(ζ(xp,x∗q),ϕx∗r)2+22c∑r=12a+1∑p=12c∑q=1g(ζ(xp,ˆxq),kˆxr)2. | (3.17) |
Also, we have no relation for a warped product of the forms g(ζ(Z,W),ϕD⊥), g(ζ(P,Q),kDβ), g(ζ(P,U),kDβ), and g(ζ(U,V),kDβ) for any P, Q∈Γ(DI) Z, W∈Γ(D⊥), U, V∈Γ(Dβ⊕{ξ}). So, we leave these terms from (3.17) and obtain
‖ζ‖2≥2c∑r=1b∑p,q=1g(ζ(x∗p,x∗q),kˆxr)2+2b∑r=12a+1∑p=1b∑q=1g(ζ(xp,x∗q),ϕx∗r)2. | (3.18) |
Now
2c∑r=1b∑p,q=1g(ζ(x∗p,x∗q),kˆxr)2=csc2βc∑r=1b∑p,q=1g(ζ(x∗p,x∗q),kˆxr)2+csc2βsec2βc∑r=1b∑p,q=1g(ζ(x∗p,x∗q),khˆxr)2. |
Using Corollary 3.1, the above relation reduces to
2c∑r=1b∑p,q=1g(ζ(x∗p,x∗q),kˆxr)2=bcsc2β2c∑r=1[h(ˆxrlni)−η(ˆxr)]2+bcot2β[2c∑r=1[(ˆxrlni)+αη(ˆxr)]2. | (3.19) |
Now, since η(ˆxr=0), for every r=1,2,⋯2c. So (3.19) turns into
2c∑r=1b∑p,q=1g(ζ(x∗p,x∗q),kˆxr)2=bcot2β‖∇βlni‖2. | (3.20) |
On the other hand
b∑r=12a+1∑p=1b∑q=1g(ζ(xp,x∗q),ϕx∗r)2=b∑r=1a∑p=1b∑q=1g(ζ(xp,x∗q),ϕx∗r)2+b∑r=1a∑p=1b∑q=1g(ζ(ϕxp,x∗q),ϕx∗r)2+b∑r=1g(ζ(ξ,x∗q),ϕx∗r)2. |
Using Lemma 3.2 in the above relation, we obtain
b∑r=12a+1∑p=1b∑q=1g(ζ(xp,x∗q),ϕx∗r)2=ba∑p=1[(ϕxplni)−η(xp)]2+ba∑p=1[(xplni)+αη(xp)]2+bα. |
Since η(xp)=0 for every p=1,2,⋯,a, using the relation ξ(lni)=α, the above equation reduces to
b∑r=12a+1∑p=1b∑q=1g(ζ(xp,x∗q),ϕx∗r)2=b‖∇Ilni‖2. | (3.21) |
Using (3.20) and (3.21) in (3.18), we get the inequality (3.14).
If the equality of (3.14) holds, then after omitting ν component terms of (3.16), we get ζ(DI,DI)⊥ν, ζ(D⊥,D⊥)⊥ν, ζ(Dβ,Dβ)⊥ν, ζ(D⊥,Dβ)⊥ν, ζ(DI,D⊥)⊥ν, and ζ(DI,Dβ)⊥ν. Also, for the neglected terms of (3.17), we get ζ(DI,DI)⊥kDβ, ζ(D⊥,D⊥)⊥ϕD⊥, ζ(Dβ,Dβ)⊥kDβ, ζ(DI,Dβ)⊥kDβ. Next, for Dβ−D⊥ mixed geodesicness and Lemma 3.1, we get ζ(DI,DI)⊥ϕD⊥ and ζ(Dβ,Dβ)⊥ϕD⊥.
Thus, we get ζ(DI,DI)=0, ζ(Dβ,Dβ)=0, ζ(DI,Dβ)=0 and ζ(D⊥,D⊥)⊂kDβ.
Therefore Σ1 is totally geodesic in Σ and hence in ˉΣ [2]. Again, since Σ⊥ is totally umbilical in Σ [2], with the fact that ζ(D⊥,D⊥)⊂kDβ, we conclude that Σ⊥ is totally umbilical in ˉΣ.
Theorem 2. Let Σ=Σ1×iΣ⊥ be a D⊥−Dβ mixed geodesic warped product submanifold of ˉΣ such that ξ is tangent to Σ⊥, where Σ1=Σ⊥×Σβ. Then the squared norm of the second fundamental form satisfies
‖ζ‖2≥b[2(∥∇Ilni∥2)+cot2β{∥∇βlni∥2−α2}], | (3.22) |
where ∇Ilni and ∇βlni are the gradient of lni along ΣI and Σβ, respectively, and for the case of equality, Σ1 becomes totally geodesic and Σ⊥ becomes totally umbilical in ˉΣ.
First, we construct an example of a submanifold of the Second Class.
Example 2. Consider the semi-Euclidean space R21 with the cartesian coordinates (u1,v1,u2,v2,⋯,u10,v10,t) and para contact structure
ϕ(∂∂ui)=∂∂vi,ϕ(∂∂vj)=∂∂uj,ϕ(∂∂t)=0,1≤i,j≤10. |
It is clear that R21 is a Lorentzian manifold with usual semi-Euclidean metric tensor. For any non-zero λ,τ, and β,ψ∈[0,π2], let Σ be a submanifold of R21 defined by the immersion map χ:R7→R21 as
χ(λ,τ,β,ψ,μ,ϱ,t)=(λcosβ,λsinβ,τcosβ,τsinβ,λcosψ,λsinψ,τcosψ,τsinψ,4β+3ψ,3β+4ψ,−τcosβ,τsinβ,−λcosβ,λsinβ,−τcosψ,τsinψ−λcosψ,λsinψ,μ,ϱ,t). |
Then the tangent space of Σ is spanned by the following vectors
J1=cosβ∂∂u1+sinβ∂∂v1+cosψ∂∂u3+sinψ∂∂v3−cosβ∂∂u7+sinβ∂∂v7−cosψ∂∂u9+sinψ∂∂v9,J2=cosβ∂∂u2+sinβ∂∂v2+cosψ∂∂u4+sinψ∂∂v4−cosβ∂∂u6+sinβ∂∂v6−cosψ∂∂u8+sinψ∂∂v8,J3=−λsinβ∂∂u1+λcosβ∂∂v1−τsinβ∂∂u2+τcosβ∂∂v2+4∂∂u5+3∂∂v5+τsinβ∂∂u6+τcosβ∂∂v6+λsinβ∂∂u7+λcosβ∂∂v7,J4=−λsinψ∂∂u3+λcosψ∂∂v3−τsinψ∂∂u4+τcosψ∂∂v4+3∂∂u5+4∂∂v5+τsinψ∂∂u8+τcosψ∂∂v8+λsinψ∂∂u9+λcosψ∂∂v9,J5=∂∂u10,J6=∂∂v10, andJ7=∂∂t. |
Then we have
ϕJ1=cosβ∂∂v1+sinβ∂∂u1+cosψ∂∂v3+sinψ∂∂u3−cosβ∂∂v7+sinβ∂∂u7−cosψ∂∂v9+sinψ∂∂u9,ϕJ2=cosβ∂∂v2+sinβ∂∂u2+cosψ∂∂v4+sinψ∂∂u4−cosβ∂∂v6+sinβ∂∂u6−cosψ∂∂v8+sinψ∂∂u8, |
ϕJ3=−λsinβ∂∂v1+λcosβ∂∂u1−τsinβ∂∂v2+τcosβ∂∂u2+4∂∂v5+3∂∂u5+τsinβ∂∂v6+τcosβ∂∂u6+λsinβ∂∂v7+λcosβ∂∂u7,ϕJ4=−λsinψ∂∂v3+λcosψ∂∂u3−τsinψ∂∂v4+τcosψ∂∂u4+3∂∂v5+4∂∂u5+τsinψ∂∂v8+τcosψ∂∂u8+λsinψ∂∂v9+λcosψ∂∂u9,ϕJ5=∂∂v10,ϕJ6=∂∂u10, andϕJ7=0. |
Therefore, it is clear that DI=span{J5, J6, J7} is an invariant distribution, Dψ=span{J3, J4} is a pointwise slant distribution with pointwise slant function cos−1(252λ2+2τ2+25), and D⊥=span{J3,J4} is an anti-invaiant distribution. Hence Σ is a CR-slant submanifold. Denote the integral manifolds of DI, D⊥, and Dψ by ΣI,Σ⊥, and Σβ, respectively. Then the product metric g of Σ is given by
g=−dt2+4(dλ2+dτ2)+(dμ2+dϱ2)+(4λ2+4τ2+25)(dβ2+dψ2). |
Consequently Σ is a warped product CR-slant submanifold of type Σ2×iΣβ of R21, where Σ2=ΣI×Σψ with warping function i=√4λ2+4τ2+25.
Now we prove the following lemmas:
Lemma 3. Let Σ=Σ2×iΣψ be a warped product submanifold of ˉΣ such that ξ is tangent to Σ2=ΣI×Σ⊥. Then we have
g(ζ(P,Q),kU)=g(ζ(P,U),ϕZ)=g(ζ(P,Z),kU)=0, | (4.1) |
and
g(ζ(Z,PU),ϕW)+g(ζ(Z,W),khU)=0, | (4.2) |
for every P, Q∈Γ(ΣI), Z, W∈Γ(Σ⊥), and U∈Γ(Σψ).
Proof. For P, Q∈Γ(ΣI), Z, W∈Γ(Σ⊥), and U∈Γ(Σψ), we find
g(ζ(P,Q),kU)=−g(ϕP,∇QU)−g((ˉ∇Qϕ)P,U), | (4.3) |
g(ζ(P,U),ϕZ)=−g(ˉ∇UϕP,Z)−g((ˉ∇Uϕ)P,Z)+g(P,ˉ∇U,Z), | (4.4) |
and
g(ζ(P,Z),kU)=g(ϕP,ˉ∇ZU)−g((ˉ∇Zϕ)P,U). | (4.5) |
Using (2.5) and (2.14) in (4.3)–(4.5), we get (4.1).
Also,
g(ζ(U,V),ϕZ)=−g(hV,ˉ∇UZ)−g((ˉ∇Uϕ)V,Z)+g(ˉ∇UkV,Z). | (4.6) |
Using (2.5) and (2.14) in (3.6), we get (3.2).
Lemma 4. Let Σ=Σ2×iΣβ be a warped product CR-slant submanifold of ˉΣ such that ξ is tangent to Σ2=ΣI×Σ⊥. Then we have
g(ζ(P,U),kV)={(ϕPlni)−αη(P)}g(U,V)−(Plni)g(U,hV), | (4.7) |
g(ζ(ϕP,U),kV)={(Plni)+αη(P)}g(U,V)−(ϕPlni)g(U,hV), | (4.8) |
and
g(ζ(U,hV),ϕZ)+g(ζ(U,Z),khV)=−cos2ψ(Zlni)g(U,V)−η(Z)g(U,hV), | (4.9) |
for every P∈Γ(ΣI), Z∈Γ(Σ⊥), and U, V∈Γ(Σψ).
Proof. For P∈Γ(ΣI), Z∈Γ(Σ⊥), and U, V∈Γ(Σψ), we find
g(ζ(P,U),kV)=−g(ˉ∇UϕP,V)−g((ˉ∇Uϕ)P,V). | (4.10) |
Using (2.5) and (2.14) in (4.10), we get (4.7) and replacing P by ϕP in (4.7), we get (4.8).
Also we have
g(ζ(U,hV),ϕZ)=−g(ˉ∇UZ,hV)+g(ˉ∇UkhV,Z)−g((ˉ∇Uϕ)hV,Z). | (4.11) |
Using (2.5) and (2.14) in (4.11), we get (4.9).
Corollary 2. Let Σ=Σ2×iΣψ be a D⊥−Dψ mixed geodesic warped product submanifold of ˉΣ such that ξ is tangent to Σ2=ΣI×Σ⊥, then we have
g(ζ(U,hV),ϕZ)=−cos2ψ(Zlni)g(U,V)−αη(Z)g(U,hV), | (4.12) |
and
g(ζ(U,V),ϕZ)=−(Zlni)g(U,hV)−αη(Z)g(U,V). | (4.13) |
Now we establish the following inequality on a warped product submanifold Σ of ˉΣ of the Second Class.
Theorem 3. Let Σ=Σ2×iΣψ be a D⊥−Dψ mixed geodesic warped product submanifold of ˉΣ such that ξ is tangent to ΣI, where Σ2=ΣI×Σ⊥. Then the squared norm of the second fundamental form satisfies
‖ζ‖2≥2c[{(csc2β+cot2β)∥∇Ilni∥2}+cos2ψ∥∇⊥lni∥2], | (4.14) |
where ∇Ilni and ∇⊥lni are the gradient of lni along ΣI and Σ⊥, respectively, and for the case of equality, Σ2 becomes totally geodesic and Σψ becomes totally umbilical in ˉΣ.
Proof. For our constructed frame field, the second fundamental form ζ satisfies the relation (3.16). Now, similar to Theorem 1, we leave the positive third, sixth, ninth, twelfth, fifteenth, and eighteenth terms of (3.16).
Also, using Lemma 4.1 and the D⊥−Dβ mixed geodesic property of Σ, from (3.16), we get
|ζ‖2≥b∑r=12a+1∑p,q=1g(ζ(xp,xq),kˆxr)2+b∑r=1b∑p,q=1g(ζ(x∗p,x∗q),ϕx∗r)2+b∑r=12c∑p,q=1g(ζ(ˆxp,ˆxq),ϕx∗r)2+2c∑r=12c∑p,q=1g(ζ(ˆxp,ˆxq),kˆxr)2+2b∑r=12a+1∑p=1b∑q=1g(ζ(xp,x∗q),ϕx∗r)2+22c∑r=12a+1∑p=12c∑q=1g(ζ(xp,ˆxq),kˆxr)2. | (4.15) |
Also, we have no relation for a warped product of the forms g(ζ(Z,W),ϕD⊥), g(ζ(P,Q),kDψ), g(ζ(P,Z),ϕD⊥), and g(ζ(U,V),kDψ) for any P, Q∈Γ(DI⊕{ξ}), Z, W∈Γ(D⊥), U, V∈Γ(Dψ). So, we leave these terms from (4.15) and obtain
‖ζ‖2≥b∑r=12c∑p,q=1g(ζ(ˆxp,ˆxq),ϕx∗r)2+22c∑r=12a+1∑p=12c∑q=1g(ζ(xp,ˆxq),kˆxr)2. | (4.16) |
Now
b∑r=12c∑p,q=1g(ζ(ˆxp,ˆxq),ϕx∗r)2=b∑r=1c∑p,q=1g(ζ(ˆxp,ˆxq),ϕx∗r)2+2sec2ψb∑r=1c∑p,q=1g(ζ(ˆxp,hˆxq),ϕx∗r)2+sec4ψb∑r=1c∑p,q=1g(ζ(hˆxp,hˆxq),ϕx∗r)2. |
Using Corollary 4.1, the above relation reduces to
b∑r=12c∑p,q=1g(ζ(ˆxp,ˆxq),ϕx∗r)2=2cb∑r=1[η(x∗r)]2+2ccos2ψb∑r=1[(x∗rlni)]2. | (4.17) |
Now, since η(x∗r)=0, for every r=1,2,⋯b, (4.17) turns into
b∑r=12c∑p,q=1g(ζ(ˆxp,ˆxq),ϕx∗r)2=2ccos2ψ[‖∇⊥lni‖2]. | (4.18) |
On the other hand
2c∑r,q=12a+1∑p=1g(ζ(xp,ˆxq),kˆxr)2=csc2ψc∑r,q=1a∑p=1g(ζ(xp,ˆxq),kˆxr)2+csc2ψc∑r,q=12a∑p=1g(ζ(ϕxp,ˆxq),kˆxr)2+csc2ψsec2ψc∑r,q=1a∑p=1g(ζ(xp,hˆxq),kˆxr)2+csc2ψc∑r,q=1g(ζ(ξ,ˆxq),kˆxr)2+csc2ψsec2ψc∑r,q=1a∑p=1g(ζ(ϕxp,hˆxq),kˆxr)2+csc2ψsec2ψc∑r,q=1g(ζ(ξ,hˆxq),kˆxr)2+csc2ψsec2ψc∑r,q=1a∑p=1g(ζ(xp,hˆxq),khˆxr)2+csc2ψsec2ψc∑r,q=12a∑p=1g(ζ(ϕxp,hˆxq),khˆxr)2+csc2ψsec2ψc∑r,q=1g(ζ(ξ,hˆxq),kˆxr)2+csc2ψsec4ψc∑r,q=1a∑p=1g(ζ(xp,hˆxq),khˆxr)2+csc2ψsec4ψc∑r,q=1g(ζ(ξ,hˆxq),khˆxr)2+csc2ψsec4ψc∑r,q=1a∑p=1g(ζ(xp,hˆxq),khˆxr)2. |
Using Lemma 4.4 in the above relation, we obtain
2c∑r,q=12a+1∑p=1g(ζ(xp,ˆxq),kˆxr)2=ccsc2ψa∑p=1[(ϕxplni)−η(xp)]2+ccsc2ψa∑p=1[(xplni)+αη(xp)]2+2cα2csc2ψ+ccot2ψa∑p=1(xplni)2+ccot2ψa∑p=1(ϕxplni)2+ccot2ψa∑p=1(xplni)2+ccot2ψa∑p=1(ϕxplni)2+ccsc2ψa∑p=1[(ϕxplni)−η(xp)]2+ccsc2ψa∑p=1[(xplni)+αη(xp)]2+2cα2cot2ψ. |
Since η(xp)=0 for every p=1,2,⋯,a, the above equation reduces to
2c∑r,q=12a+1∑p=1g(ζ(xp,ˆxq),kˆxr)2=2c(cos2ψ+cot2ψ)‖∇Ilni‖2. | (4.19) |
Using (4.18) and (4.19) in (4.17), we get the inequality (4.14).
Proof of the equalty case is similar to the proof of the equality case of Theorem 3.1.
Theorem 4. Let Σ=Σ2×iΣψ be a D⊥−Dψ mixed geodesic warped product submanifold of ˉΣ such that ξ is tangent to Σ⊥, where Σ2=ΣI×Σ⊥. Then the squared norm of the second fundamental form satisfies
‖ζ‖2≥2c[(csc2ψ+cot2ψ)∥∇Ilni∥2+cos2ψ{∥∇⊥lni∥2−α2}], | (4.20) |
where ∇Ilni and ∇⊥lni are the gradient of lni along ΣI and Σ⊥, respectively, and for the case of equality, Σ2 becomes totally geodesic and Σψ becomes totally umbilical in ˉΣ.
This paper investigated different types of submanifolds in the context of a Lorentzian concircular structure manifold. We examined invariant, anti-invariant, proper slant, and pointwise slant submanifolds, and further explored two distinct categories of warped product submanifolds.
In the first category, we considered the fiber submanifold as an anti-invariant submanifold, while in the second category, the fiber submanifold was treated as a pointwise slant submanifold. Throughout our analysis, we established several fundamental results and derived important inequalities for the squared norm of the second fundamental form.
Our research not only provided a theoretical framework for understanding the properties and characteristics of these submanifold classes but also demonstrated the existence of such submanifold classes through specific examples. By examining these examples, we gained valuable insights into the behavior and geometric structures of the submanifolds within the Lorentzian concircular structure manifold.
Overall, this study contributes to the field of differential geometry by expanding our understanding of submanifolds and their relationships within a Lorentzian concircular structure manifold. The results and inequalities derived in this paper can serve as valuable tools for future research in this area, and we hope that they will inspire further investigations into the geometric properties of submanifolds in related contexts.
Tanumoy Pal: Conceptualization, Methodology, Investigation, Writing-original draft preparation, Writing-review and editing; Ibrahim Al-Dayel: Investigation, Writing-original draft preparation; Meraj Ali Khan: Conceptualization, Writing-review and editing; Biswabismita Bag: Methodology, Investigation, Writing-original draft preparation, Writing-review and editing; Shyamal Kumar Hui: Conceptualization, Methodology, Writing-review and editing, Foued Aloui: Investigation, Writing-original draft preparation. All authors have read and approved the final version of the manuscript for publication.
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
This work was supported and funded by the Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University (IMSIU) (grant number IMSIU-RP23074).
The authors are thankful to the reviewers for their invaluable suggestions toward the improvement of the paper.
The authors declare that they have no conflicts of interest.
[1] |
K. W. Latimer, J. L. Yates, M. L. R. Meister, A. C. Huk, J. W. Pillow, Single-trial spike trains in parietal cortex reveal discrete steps during decision-making, Science, 349 (2015), 184–187. https://doi.org/10.1126/science.aaa4056 doi: 10.1126/science.aaa4056
![]() |
[2] |
A. A. Faisal, L. P. J. Selen, D. M. Wolpert, Noise in the nervous system, Nat. Rev. Neurosci., 9 (2008), 292–303. https://doi.org/10.1038/nrn2258 doi: 10.1038/nrn2258
![]() |
[3] |
P. Tiesinga, J. Fellous, T. J. Sejnowski, Regulation of spike timing in visual cortical circuits, Nat. Rev. Neurosci., 9 (2008), 97–107. https://doi.org/10.1038/nrn2315 doi: 10.1038/nrn2315
![]() |
[4] |
A. Bacci, J. R. Huguenard, Enhancement of spike-timing precision by autaptic transmission in neocortical inhibitory interneurons, Neuron, 49 (2006), 119–130. https://doi.org/10.1016/j.neuron.2005.12.014 doi: 10.1016/j.neuron.2005.12.014
![]() |
[5] |
H. Sun, H. Zhang, A. Ross, T. T. Wang, A. Al-Chami, S. H. Wu, Developmentally regulated rebound depolarization enhances spike timing precision in auditory midbrain neurons, Front. Cell. Neurosci., 14 (2020). https://doi.org/10.3389/fncel.2020.00236 doi: 10.3389/fncel.2020.00236
![]() |
[6] |
Z. Yang, Q. Tan, D. Cheng, L. Zhang, J. Zhang, E. Gu, The changes of intrinsic excitability of pyramidal neurons in anterior cingulate cortex in neuropathic pain, Front. Cell. Neurosci., 12 (2018). https://doi.org/10.3389/Fncel.2018.00436 doi: 10.3389/Fncel.2018.00436
![]() |
[7] |
N. Hajos, J. Palhalmi, E. O. Mann, B. Nemeth, O. Paulsen, T. F. Freund, Spike timing of distinct types of GABAergic interneuron during hippocampal gamma oscillations in vitro, J. Neurosci., 24 (2004), 9127–9137. https://doi.org/10.1523/Jneurosci.2113-04.2004 doi: 10.1523/Jneurosci.2113-04.2004
![]() |
[8] |
P. Antonoudiou, Y. L. Tan, G. Kontou, A. L. Upton, E. O. Mann, Parvalbumin and somatostatin interneurons contribute to the generation of hippocampal gamma oscillations, J. Neurosci., 40 (2020), 7668–7687. https://doi.org/10.1523/Jneurosci.0261-20.2020 doi: 10.1523/Jneurosci.0261-20.2020
![]() |
[9] |
P. J. Kammermeier, Endogenous momer proteins regulate metabotropic glutamate receptor signaling in neurons, J. Neurosci., 28 (2008), 8560–8567. https://doi.org/10.1523/Jneurosci.1830-08.2008 doi: 10.1523/Jneurosci.1830-08.2008
![]() |
[10] |
V. Szegedi, M. Paizs, J. Baka, P. Barzo, G. Molnar, G. Tamas, et al., Robust perisomatic GABAergic self-innervation inhibits basket cells in the human and mouse supragranular neocortex, Elife, 9 (2020), 51691. https://doi.org/10.7554/eLife.51691 doi: 10.7554/eLife.51691
![]() |
[11] |
R. A. Tikidji-Hamburyan, J. J. Martinez, J. A. White, C. C. Canavier, Resonant interneurons can increase robustness of gamma oscillations, J. Neurosci., 35 (2015), 15682–15695. https://doi.org/10.1523/Jneurosci.2601-15.2015 doi: 10.1523/Jneurosci.2601-15.2015
![]() |
[12] |
J. Ma, X. Song, W. Jin, C. Wang, Autapse-induced synchronization in a coupled neuronal network, Chaos, Solitons Fractals, 80 (2015), 31–38. https://doi.org/10.1016/j.chaos.2015.02.005 doi: 10.1016/j.chaos.2015.02.005
![]() |
[13] |
E. Yilmaz, M. Ozer, V. Baysal, M. Perc, Autapse-induced multiple coherence resonance in single neurons and neuronal networks, Sci. Rep., 6 (2016), 30914. https://doi.org/10.1038/Srep30914 doi: 10.1038/Srep30914
![]() |
[14] |
D. Guo, S. Wu, M. Chen, M. Perc, Y. Zhang, J. Ma, et al., Regulation of irregular neuronal firing by autaptic transmission, Sci. Rep., 6 (2016), 26096. https://doi.org/10.1038/Srep26096 doi: 10.1038/Srep26096
![]() |
[15] |
X. Yang, Y. Yu, Z. Sun, Autapse-induced multiple stochastic resonances in a modular neuronal network, Chaos, 27 (2017), 083117. https://doi.org/10.1063/1.4999100 doi: 10.1063/1.4999100
![]() |
[16] |
C. Yao, Z. He, T. Nakano, Y. Qian, J. Shuai, Inhibitory-autapse-enhanced signal transmission in neural networks, Nonlinear Dyn., 97 (2019), 1425–1437. https://doi.org/10.1007/s11071-019-05060-z doi: 10.1007/s11071-019-05060-z
![]() |
[17] |
L. Li, Z. G. Zhao, Inhibitory autapse with time delay induces mixed-mode oscillations related to unstable dynamical behaviors near subcritical Hopf bifurcation, Electron. Res. Arch., 30 (2022), 1898–1917. https://doi.org/10.3934/era.2022096 doi: 10.3934/era.2022096
![]() |
[18] |
Z. Zhao, L. Li, H. Gu, Y. Gao, Different dynamics of repetitive neural spiking induced by inhibitory and excitatory autapses near subcritical Hopf bifurcation, Nonlinear Dyn., 99 (2020), 1129–1154. https://doi.org/10.1007/s11071-019-05342-6 doi: 10.1007/s11071-019-05342-6
![]() |
[19] |
C. Qi, Y. Li, H. Gu, Y. Yang, Nonlinear mechanism for the enhanced bursting activities induced by fast inhibitory autapse and reduced activities by fast excitatory autapse, Cogn. Neurodyn., 17 (2023), 1093–1113. https://doi.org/10.1007/s11571-022-09872-5 doi: 10.1007/s11571-022-09872-5
![]() |
[20] |
X. Ding, H. Gu, Y. Li, Y. Jia, Paradoxical roles of inhibitory autapse and excitatory synapse in formation of counterintuitive anticipated synchronization, Chin. Phys. B., 32 (2023), 088701. https://doi.org/10.1088/1674-1056/Acc450 doi: 10.1088/1674-1056/Acc450
![]() |
[21] |
Y. Jia, H. Gu, Y. Li, X. Ding, Inhibitory autapses enhance coherence resonance of a neuronal network, Commun. Nonlinear Sci. Numer. Simul., 95 (2021), 105643. https://doi.org/10.1016/J.Cnsns.2020.105643 doi: 10.1016/J.Cnsns.2020.105643
![]() |
[22] |
Y. Jia, H. Gu, Y. Li, Influence of inhibitory autapses on synchronization of inhibitory network gamma oscillations, Cogn. Neurodyn., 17 (2023), 1131–1152. https://doi.org/10.1007/s11571-022-09856-5 doi: 10.1007/s11571-022-09856-5
![]() |
[23] |
E. M. Izhikevich, Neural excitability, spiking and bursting, Int. J. Bifurcation Chaos, 10 (2000), 1171–1266. https://doi.org/10.1142/S0218127400000840 doi: 10.1142/S0218127400000840
![]() |
[24] |
J. Mikiel-Hunter, V. Kotak, J. Rinzel, High-frequency resonance in the gerbil medial superior olive, Plos Comput. Biol., 12 (2016), 1005166. https://doi.org/10.1371/journal.pcbi.1005166 doi: 10.1371/journal.pcbi.1005166
![]() |
[25] |
X. Ding, H. Gu, B. Jia, Y. Li, Anticipated synchronization of electrical activity induced by inhibitory autapse in coupled Morris-Lecar neuron model, Acta. Phys. Sin., 70 (2021), 218701. https://doi.org/10.7498/Aps.70.20210912 doi: 10.7498/Aps.70.20210912
![]() |
[26] |
B. Jia, H. Gu, Identifying type I excitability using dynamics of stochastic neural firing patterns, Cogn. Neurodyn., 6 (2012), 485–497. https://doi.org/10.1007/s11571-012-9209-x doi: 10.1007/s11571-012-9209-x
![]() |
[27] |
B. Jia, H. Gu, Dynamics and physiological roles of stochastic firing patterns near bifurcation points, Int. J. Bifurcation Chaos, 27 (2017), 1750113. https://doi.org/10.1142/S0218127417501139 doi: 10.1142/S0218127417501139
![]() |
[28] |
X. Wang, Neurophysiological and computational principles of cortical rhythms in cognition, Physiol. Rev., 90 (2010), 1195–1268. https://doi.org/10.1152/physrev.00035.2008 doi: 10.1152/physrev.00035.2008
![]() |
[29] | C. Borgers, An Introduction to Modeling Neuronal Dynamics, Springer, Cham, 2017. https://doi.org/10.1007/978-3-319-51171-9 |
[30] |
X. Wang, G. Buzsaki, Gamma oscillation by synaptic inhibition in a hippocampal interneuronal network model, J. Neurosci., 17 (1996), 6402–6413. https://doi.org/10.1523/jneurosci.16-20-06402.1996 doi: 10.1523/jneurosci.16-20-06402.1996
![]() |
[31] | B. Ermentrout, Simulating, Analyzing, and Animating Dynamical Systems: A Guide to XPPAUT for Researchers and Students, SIAM, Philadelphia, 2002. https://doi.org/10.1137/1.9780898718195 |
[32] |
C. Deleuze, G. S. Bhumbra, A. Pazienti, J. Lourenco, C. Mailhes, A. Aguirre, et al., Strong preference for autaptic self-connectivity of neocortical PV interneurons facilitates their tuning to gamma-oscillations, PLoS Biol., 17 (2019), 3000419. https://doi.org/10.1371/journal.pbio.3000419 doi: 10.1371/journal.pbio.3000419
![]() |
[33] |
A. Bacci, J. R. Huguenard, D. A. Prince, Functional autaptic neurotransmission in fast-spiking interneurons: A novel form of feedback inhibition in the neocortex, J. Neurosci., 23 (2003), 859–866. https://doi.org/10.1523/jneurosci.23-03-00859.2003 doi: 10.1523/jneurosci.23-03-00859.2003
![]() |