Loading [MathJax]/jax/element/mml/optable/Latin1Supplement.js
Research article Special Issues

On the distribution of primitive roots and Lehmer numbers

  • In this paper, we study the number of the Lehmer primitive roots solutions of a multivariate linear equation and the number of 1xp1 such that for f(x)Fp[x], k polynomials f(x+c1),f(x+c2),,f(x+ck) are Lehmer primitive roots modulo prime p, and obtain asymptotic formulae for these utilizing the properties of Gauss sums and the generalized Kloosterman sums.

    Citation: Jiafan Zhang. On the distribution of primitive roots and Lehmer numbers[J]. Electronic Research Archive, 2023, 31(11): 6913-6927. doi: 10.3934/era.2023350

    Related Papers:

    [1] Li Rui, Nilanjan Bag . Fourth power mean values of one kind special Kloosterman's sum. Electronic Research Archive, 2023, 31(10): 6445-6453. doi: 10.3934/era.2023326
    [2] Hongjian Li, Kaili Yang, Pingzhi Yuan . The asymptotic behavior of the reciprocal sum of generalized Fibonacci numbers. Electronic Research Archive, 2025, 33(1): 409-432. doi: 10.3934/era.2025020
    [3] Dmitry Krachun, Zhi-Wei Sun . On sums of four pentagonal numbers with coefficients. Electronic Research Archive, 2020, 28(1): 559-566. doi: 10.3934/era.2020029
    [4] Xiuyun Guo, Xue Zhang . Determinants and invertibility of circulant matrices. Electronic Research Archive, 2024, 32(7): 4741-4752. doi: 10.3934/era.2024216
    [5] Zhefeng Xu, Xiaoying Liu, Luyao Chen . Hybrid mean value involving some two-term exponential sums and fourth Gauss sums. Electronic Research Archive, 2025, 33(3): 1510-1522. doi: 10.3934/era.2025071
    [6] Li Wang, Yuanyuan Meng . Generalized polynomial exponential sums and their fourth power mean. Electronic Research Archive, 2023, 31(7): 4313-4323. doi: 10.3934/era.2023220
    [7] Chen Wang . Two congruences concerning Apéry numbers conjectured by Z.-W. Sun. Electronic Research Archive, 2020, 28(2): 1063-1075. doi: 10.3934/era.2020058
    [8] Jianghua Li, Zepeng Zhang, Tianyu Pan . On two-term exponential sums and their mean values. Electronic Research Archive, 2023, 31(9): 5559-5572. doi: 10.3934/era.2023282
    [9] Zhefeng Xu, Jiankang Wang, Lirong Zhu . On an exponential D. H. Lehmer problem. Electronic Research Archive, 2024, 32(3): 1864-1872. doi: 10.3934/era.2024085
    [10] Jin Zhang, Xiaoxue Li . The sixth power mean of one kind generalized two-term exponential sums and their asymptotic properties. Electronic Research Archive, 2023, 31(8): 4579-4591. doi: 10.3934/era.2023234
  • In this paper, we study the number of the Lehmer primitive roots solutions of a multivariate linear equation and the number of 1xp1 such that for f(x)Fp[x], k polynomials f(x+c1),f(x+c2),,f(x+ck) are Lehmer primitive roots modulo prime p, and obtain asymptotic formulae for these utilizing the properties of Gauss sums and the generalized Kloosterman sums.



    Let q be a power of odd prime. Several researchers have looked into a variety of properties about the primitive roots modulo q. Let g1,g2 represent two primitive roots modulo q, a, b and c represent arbitrary non-zero elements in Fq. Is there some q0 such that for all q>q0, there is always one representation

    a=bg1+cg2 ? (1.1)

    For b=1 and c=1, Vegh [1] considered a specific form of Eq (1.1), which is known as Vegh's Conjecture, (see [2,§ F9] for further details). Cohen [3] demonstrated Vegh's Conjecture for all q>7.

    For b=1 and c=1, Golomb [4] proposed another specific form of Eq (1.1). This was proved by Sun [5] for q>2601.15×1018.

    Moreover, Cohen et al. [6] studied linear sums of primitive roots and their inverses in finite fields Fq and showed that if q>13, then for arbitrary non-zero a,bFq, there is a pair of primitive elements (g1, g2) of Fq such that both ag1+bg2 and ag11+bg12 are primitive.

    Let p be an odd prime. Carlitz [7] relied on some results of Davenport and obtained for any k1 fixed integers c1,c2,,ck1 with ci1(i=1,2,,k1). Let g,g1,,gk1 be primitive roots modulo p and Nk denote the number of gmodp such that g1g=c1,,gk1g=ck1. Then

    Nkϕk(p1)pk1 (p).

    More results of the primitive roots distribution can be found in [8,9,10,11].

    Lehmer [2,§ F12] proposed the definition of Lehmer  number, according to which a is a Lehmer  number if and only if a and ˉa have opposite parity, i.e., (2,a+ˉa)=1, where ˉa is the multiplicative inverse of a modulo p. It is simple to demonstrate that there are no Lehmer numbers modulo p when p=3 or 7. Zhang [12] established that if Mp denotes the number of Lehmer numbers modulo p, then

    Mp=p12+O(p12ln2p).

    A Lehmer number that is also a primitive root modulo p will be called a Lehmer  primitive  root or an LPR. The inverse of an LPR is also an LPR. We assume that p>3 because there is no Lehmer number modulo 3. Wang and Wang [13] investigated the distribution of LPRs involving Golomb's conjecture. Let Gp denote the number of Golomb pairs (a,b) (i.e., a+b1(modp)) are LPRs. They showed

    Gp=14ϕ2(p1)p1+O(ϕ2(p1)p544ω(p1)ln2p).

    Let Np denote the number of LPRs modulo p. For odd integers m3, define the positive number Tm by

    Tm=2mlnm(m1)/2j=1tan(πjm).

    Cohen and Trudgian [14] improved the result of Wang and Wang [13] and showed

    |Npϕ(p1)2|<T2pϕ(p1)p12ω(p1)p12ln2p

    and

    |Gpϕ2(p1)4(p1)2(p2)|<ϕ2(p1)4(p1)2T2p[22ω(p1)(9ln2p+1)1]p12,

    where 2π(1+0.548lnp)<Tp<2π(1+1.549lnp).

    Specifically, they obtained that for an odd prime p(3,7), there exists an LPR modulo p.

    Inspired by the results of Cohen and Trudgian [14] and Wang and Wang [13], we mainly studied the distribution of LPRs modulo p related to the Golomb's conjecture in two aspects. On the one hand, we extend Eq (1.1) to the case involving k>1 variables. Let R be set of LPRs modulo p that is a subset of Fp. a1,a2,,ak,c are non-zero elements in Fp and N(R,p) denotes the number of solutions of the equation

    a1g1+a2g2++akgk=c, g1,g2,,gkR.

    We consider the distribution properties of N(R,p), and obtain the following:

    Theorem 1. Let p>3 be an odd prime. Then we have

    N(R,p)=ϕk(p1)2kp+O(ϕk(p1)p322kω(p1)ln2kp),

    where the symbol O is dependent on k.

    When k=2, we can obtain the number of the Golomb pairs that are LPRs.

    On the other hand, we consider the distribution of k consecutive LPRs and generalize it to a more general form.

    Let f(x)Fp[x]. Define

    M(f(x),R,p)=#{x:1xp1,f(x+c1),f(x+c2),,f(x+ck)R}.

    Then we have:

    Theorem 2. Let f(x)Fp[x] with degree l1. c1,c2,,ck are distinct elements in Fp. Suppose that one of the following conditions holds:

    (i) f(x) is irreducible,

    (ii) f(x) has no multiple zero in ˉFp and k=2,

    (iii) f(x) has no multiple zero in ˉFp and (4k)l<p.

    Then we have

    M(f(x),R,p)=12kϕk(p1)(p1)k1+O(ϕk(p1)pk122kω(p1)ln2kp),

    where the symbol O is dependent on k and l.

    Take f(x)=x, ck=0 in Theorem 2. Then we can get the number of k consecutive primitive roots x,x+c1,,x+ck1 are Lehmer numbers, which is:

    Corollary 1. Let p be an odd prime. Then for any 1 x(p1) that is an LPR modulo p, we have

    M(x,R,p)=12kϕk(p1)(p1)k1+O(ϕk(p1)pk122kω(p1)ln2kp),

    where the symbol O is dependent on k.

    When k=1,2, we can easily deduce the Theorem 1 and Theorem 6 in Cohen and Trudgian [14], respectively.

    Notation: Throughout this paper, Fq denotes a finite field of characteristic p, ˉFq denotes the algebraic closure of Fq, ϕ(n) is reserved for the Euler function, μ(n) is the M¨obius function. We use ω(n) to denote the number of all distinct prime divisors of n. Write χd to denote a sum over all ϕ(d) multiplicative characters χd of order d over Fp, and denote by pn=1 the summation of 1np with (n,p)=1. τ(χ) is the classical Gauss sums associated with character χ mudulo p. fg means |f|cg with some positive constant c, f=O(g) means fg.

    To complete the proof of the theorems, we need following several lemmas. The proofs of these lemmas require some basic knowledge of analytic number theory, which can be found in [15].

    Lemma 1. Let p be an odd prime. Then for any integer a coprime to p (i.e., (a,p)=1), we have the identity

    ϕ(p1)p1dp1μ(d)ϕ(d)χdχd(a)={1, if  a  is  a  primitive  root  mod  p;0, if  a  is  not  a  primitive  root  mod  p.

    Proof. See Proposition 2.2 of Narkiewicz [16].

    Lemma 2. Let p be an odd prime, χ be a nonprincipal multiplicative character modulo p of order d. Suppose g(x)Fp[x] has precisely m distinct ones among its zeros, and suppose that g(x) is not the constant multiple of a d-th power over Fq. Then

    |xFpχ(g(x))|(m1)p12.

    Proof. See Theorem 2C in Chapter 2 of Schmidt [17].

    Lemma 3. Let Fq be a finite field of characteristic p, ψ be a nontrivial additive character and χ be a nonprincipal multiplicative character on Fq of order d. For two rational functions f(x),g(x)Fq[x], define K(ψ,f;χ,g)=xFqSχ(g(x))ψ(f(x)), where S denotes the set of poles of f(x) and g(x). Suppose the following conditions hold:

    (i) g(x) is not the constant multiple of a d-th power over Fq.

    (ii) f(x) is not of the form (h(x))ph(x) with a rational function h(x) over Fq.

    Then we have

    |K(ψ,f;χ,g)|(deg(f)+m1)q,

    where m is the number of distinct roots and (noninfinite) poles of g(x) in Fq.

    Proof. See Theorem 2G in Chapter 2 of Schmidt [17].

    Lemma 4. Let p be an odd prime. Let c1,,ck be distinct elements in Fp. Assume that f(x)Fp[x] with deg(f)=l. Define the polynomial

    h(x)=f(x+c1)f(x+ck).

    Suppose one of the following conditions holds:

    (i) f(x) is irreducible,

    (ii) f(x) has no multiple zero in ˉFp and k=2,

    (iii) f(x) has no multiple zero in ˉFp and (4k)l<p.

    Then h(x) has at least one simple root in ˉFp.

    Proof. Suppose that f(x) is irreducible. Then f(x+c1),,f(x+ck) are distinct irreducible polynomials, and h(x) has at least k simple roots in ˉFp. The cases of (ii) and (iii) can be proved by Theorem 2 and Lemma 2 of [18], for k=2 or (4k)l<p, (l,k,p) is "admissible triple, " then f(x+c1)f(x+ck) has at least one simple root.

    Lemma 5. Let p be an odd prime, m1,,mk,n1,,nk be integers with (m1mkn1nk,p)=1, and polynomials g(x),f1(x),,fk(x)Fp[x]. Let χ be a Dirichlet character modulo p of order d. Define

    K(χ,g,f1,,fk;p)=px=1(f1(x)fk(x),p)=1χ(g(x))e(m1f1(x)++mkfk(x)+n1¯f1(x)++nk¯fk(x)p).

    Suppose the following conditions hold:

    (i) g(x) can not be the constant multiple of a d-th power over Fp.

    (ii) F(x)=f1(x)fk(x) has at least one simple root in ˉFp.

    Then we have

    |K(χ,g,f1,,fk;p)|(max(deg(f1),,deg(fk))+l)p,

    where e(x)=e2πix and l is the number of distinct roots of g(x) in ˉFp.

    Proof. It is clear that

    m1f1(x)++mkfk(x)+n1¯f1(x)++nk¯fk(x)=F(x)(m1f1(x)++mkfk(x))+n1F(x)f1(x)++nkF(x)fk(x)F(x):=G(x)F(x).

    Condition (i) is the same as Lemma 3. So our goal is to prove the rational function G(x)/F(x) satisfies condition (ii) in Lemma 3 if F(x) has a simple root in ˉFp. Assume that there are polynomials K(x),L(x)Fp[x] with (K(x),L(x))=1 such that

    G(x)F(x)=(K(x)L(x))p(K(x)L(x)).

    Then we have

    G(x)L(x)p=(K(x)pK(x)L(x)p1)F(x). (2.1)

    Since F(x)=f1(x)fk(x) has at least one simple root in ˉFp, then there exists an irreducible polynomial w(x)Fp[x] such that w(x)F(x) and w(x)2F(x). Assume that w(x)f1(x), then we have

    w(x)F(x)f1(x), w(x)F(x)fi(x)(i=2,,k).

    Hence, from Eq (2.1)

    w(x)G(x)w(x)L(x)pw(x)L(x)
    w(x)2L(x)p1w(x)2K(x)pF(x)w(x)K(x),

    which contradicts to (K(x),L(x))=1. Therefore, from Lemma 3 we get

    |K(χ,g,f1,,fk;p)|(max(deg(f1),,deg(fk))+l)p,

    where l is the number of distinct roots of g(x) in ˉFp.

    Lemma 6. Let χ be a primitive character modulo p, χdi be character modulo p of order di. There exist some 1sidi with (si,di)=1, i=1,2,,k. Then we have

    χd1χdkχd1(f(x+c1))χdk(f(x+ck))=d1s1=1 dksk=1 χ((f(x+c1))s1(p1)d1(f(x+ck))sk(p1)dk).

    Proof. From the definition of the Dirichlet character modulo p, we can get

    χd1χdkχd1(f(x+c1))χdk(f(x+ck))=d1s1=1 dksk=1 e(s1ind(f(x+c1))d1)e(skind(f(x+ck))dk)=d1s1=1 dksk=1 e(s1(p1)d1ind(f(x+c1))++sk(p1)dkind(f(x+ck))p1)=d1s1=1 dksk=1 e(ind(f(x+c1))s1(p1)d1++ind(f(x+ck))sk(p1)dkp1)=d1s1=1 dksk=1 e(ind((f(x+c1))s1(p1)d1(f(x+ck))sk(p1)dk)p1)=d1s1=1 dksk=1 χ(f(x+c1))s1(p1)d1(f(x+ck))sk(p1)dk),

    where ind(a) denotes an index of a with base g of modulo p, and g is a positive primitive root of modulo p.

    Firstly, we prove the Theorem 1. Let p be an odd prime, k be any fixed positive integer. Then for any k different integers a1, a2,,akFp, from Lemma 1 and the definition of Lehmer number we have

    N(R,p)=1pp1b=0p1g1=1p1g2=1p1gk=1g1,g2,,gkRe(b(a1g1++akgkc)p)=1pϕk(p1)2k(p1)kki=1(dip1μ(di)ϕ(di)χdip1gi=1χdi(gi)(1(1)gi+¯gi))p1b=0e(b(a1g1++akgkc)p)=1pϕk(p1)2k(p1)kki=1(dip1μ(di)ϕ(di)χdip1gi=1χdi(gi))p1b=0e(b(a1g1++akgkc)p)+1pϕk(p1)2k(p1)kki=1(dip1μ(di)ϕ(di)χdip1gi=1χdi(gi))kt=1(1)tki1=1ki2=1kit=1i1<i2<<itli1li2litp1b=0e(b(a1g1++akgkc)p)=A1+A2, (3.1)

    where li=(1)gi+¯gi,i=1,2,,k.

    A1=1pϕk(p1)2k(p1)kki=1(dip1μ(di)ϕ(di)χdip1gi=1χdi(gi))p1b=0e(b(a1g1++akgkc)p)=1pϕk(p1)2k(p1)k[p1g1=1p1gk=1p1b=0e(b(a1g1++akgkc)p)+d1p1dkp1d1dk>1μ(d1)ϕ(d1)μ(dk)ϕ(dk)χd1χdkp1g1=1p1gk=1χd1(g1)χdk(gk)p1b=0e(b(a1g1++akgkc)p)]=1pϕk(p1)2k(p1)k[(p1)k+(1)k+1+d1p1dkp1d1dk>1μ(d1)ϕ(d1)μ(dk)ϕ(dk)χd1χdkp1g1=1p1gk=1χd1(g1)χdk(gk)p1b=0e(b(a1g1++akgkc)p)]. (3.2)

    From Eq (3.2), let

    A11=d1p1dkp1d1dk>1μ(d1)ϕ(d1)μ(dk)ϕ(dk)χd1χdkp1g1=1p1gk=1χd1(g1)χdk(gk)p1b=0e(b(a1g1+a2g2++akgkc)p)=d1p1dkp1d1dk>1μ(d1)ϕ(d1)μ(dk)ϕ(dk)χd1χdkp1g1=1p1gk=1χd1(g1)χdk(gk)+d1p1dkp1d1dk>1μ(d1)ϕ(d1)μ(dk)ϕ(dk)χd1χdkp1b=1p1g1=1χd1(g1)e(ba1g1p)p1gk=1χdk(gk)e(bakgkp)e(bcp)=d1p1dkp1d1dk>1μ(d1)ϕ(d1)μ(dk)ϕ(dk)χd1χdkp1b=1p1g1=1χd1(g1)e(ba1g1p)p1gk=1χdk(gk)e(bakgkp)e(bcp).

    Using the properties of Gauss sums we can get

    |A11|=|d1p1dkp1d1dk>1μ(d1)ϕ(d1)μ(dk)ϕ(dk)χd1χdkp1b=1p1g1=1χd1(g1)e(ba1g1p)p1gk=1χdk(gk)e(bakgkp)e(bcp)|=|d1p1d1>1dkp1dk>1μ(d1)ϕ(d1)μ(dk)ϕ(dk)χd1χdkp1b=1p1g1=1χd1(g1)e(ba1g1p)p1gk=1χdk(gk)e(bakgkp)e(bcp)+d1p1d1>1dk1p1dk1>1μ(d1)ϕ(d1)μ(dk1)ϕ(dk1)χd1χdk1p1b=1p1g1=1χd1(g1)e(ba1g1p)p1gk1=1χdk1(gk1)e(bak1gk1p)p1gk=1e(bakgkp)e(bcp)++d1p1d1>1μ(d1)ϕ(d1)χd1p1b=1p1g1=1χd1(g1)e(ba1g1p)p1g2=1e(ba2g2p)p1gk=1e(bakgkp)e(bcp)|2kω(p1)pk+12,

    where we have used the fact that d|n|μ(d)|=2ω(n).

    Hence, Eq (3.2) and the above formulae yield that

    A1=ϕk(p1)2kp+O(ϕk(p1)pk+122kω(p1)). (3.3)

    Then we compute A2 in Eq (3.1). For simplicity, let

    Um(u)=p1u=1(1)ue(mup),

    noting that

    p1u=1(1)ue(mup)=1e(mp)1+e(mp)=isin(πm/p)cos(πm/p),
    p1m=1|sin(πm/p)cos(πm/p)|=Tpplnp.

    Hence,

    |p1m=1Um(u)|p1m=1|p1u=1(1)ue(mup)|=Tpplnp. (3.4)

    Noting that, if m=0, then p1u=1(1)ue(mup)=p1u=1(1)u=0, since p is odd. Hence,

    li=(1)gi+¯gi=1pp1mi=0p1ui=1(1)uie(mi(giui)p)1pp1ni=0p1vi=1(1)vie(ni(¯givi)p)=1p2p1mi,ni=0e(migi+ni¯gip)p1ui=1(1)uie(miuip)p1vi=1(1)vie(nivip)=1p2p1mi,ni=1e(migi+ni¯gip)Umi(ui)Uni(vi). (3.5)

    From the above discussion and Eq (3.1), we can obtain

    |A2|=|1pϕk(p1)2k(p1)kki=1(dip1μ(di)ϕ(di)χdip1gi=1χdi(gi))kt=1(1)tki1=1kit=1i1<<itli1litp1b=0e(b(a1g1+a2g2++akgkc)p)|1pϕk(p1)2k(p1)kkt=1(kt)T2tpln2tpd1p1dkp1|μ(d1)|ϕ(d1)|μ(dk)|ϕ(dk)χd1χdk|p1b=0p1g1=1p1gk=1χd1(g1)χdk(gk)e(m1g1+n1¯g1++mtgt+nt¯gtp)e(b(a1g1++akgkc)p)|=1pϕk(p1)2k(p1)kkt=1(kt)T2tpln2tp[d1p1d1>1dkp1dk>1|μ(d1)|ϕ(d1)|μ(dk)|ϕ(dk)χd1χdk|p1b=0p1g1=1p1gk=1χd1(g1)χdk(gk)e(m1g1+n1¯g1++mtgt+nt¯gtp)e(b(a1g1++akgkc)p)|+d1p1d1>1dk1p1dk1>1|μ(d1)|ϕ(d1)|μ(dk1)|ϕ(dk1)χd1χdk1|p1b=0p1g1=1p1gk=1χd1(g1)χdk1(gk1)e(m1g1+n1¯g1++mtgt+nt¯gtp)e(b(a1g1++akgkc)p)|++d1p1d1>1|μ(d1)|ϕ(d1)χd1|p1b=0p1g1=1p1gk=1χd1(g1)e(m1g1+n1¯g1++mtgt+nt¯gtp)e(b(a1g1++akgkc)p)|+|p1b=0p1g1=1p1gk=1e(m1g1+n1¯g1++mtgt+nt¯gtp)e(b(a1g1++akgkc)p)|]. (3.6)

    Summing the above formula for t from 1 to k, then the last term of Eq (3.6) is

    1pϕk(p1)2k(p1)kkt=1(kt)T2tpln2tp|p1b=0p1g1=1p1gk=1e(m1g1+n1¯g1++mtgt+nt¯gtp)e(b(a1g1++akgkc)p)|=1pϕk(p1)2k(p1)k[kT2pln2p|p1b=0p1g1=1p1gk=1e(m1g1+n1¯g1p)e(b(a1g1++akgkc)p)|++(kk1)T2(k1)pln2(k1)p|p1b=0p1g1=1p1gk=1e(m1g1+n1¯g1++mk1gk1+nk1¯gk1p)e(b(a1g1++akgkc)p)|+T2kpln2kp|p1b=0p1g1=1p1gk=1e(m1g1+n1¯g1++mkgk+nk¯gkp)e(b(a1g1++akgkc)p)|]ϕk(p1)pk+1ln2kp(pk12++pk+12)ϕk(p1)pk+1ln2kppk12=ϕk(p1)p32ln2kp,

    here we have utilized T2p<4π2(1+1.549lnp)2<2.4 and the results in Wang and Wang (see Lemma 2.2 of [13]) that

    |p1a=1χd(a)e(ma+n¯ap)|p12.

    Similarly, note that d|n|μ(d)|=2ω(n) and we can get the estimate of the other terms of Eq (3.6). Then we have

    A2ϕk(p1)p322kω(p1)ln2kp. (3.7)

    Inserting Eqs (3.3) and (3.7) into (3.1), we can deduce that

    N(R,p)=ϕk(p1)2kp+O(ϕk(p1)pk+122kω(p1))+O(ϕk(p1)p322kω(p1)ln2kp)=ϕk(p1)2kp+O(ϕk(p1)p322kω(p1)ln2kp).

    This proves the Theorem 1.

    Now we prove the Theorem 2. Let A denote the set of integers 1xp such that

    ki=1f(x+ci)0(modp).

    By the definition of primitive roots and Lehmer number, it follows that

    M(f(x),R,p)=12kϕk(p1)(p1)kki=1(dip1μ(di)ϕ(di)χdipx=1xAχdi(f(x+ci))(1(1)f(x+ci)+¯f(x+ci)))=12kϕk(p1)(p1)kki=1(dip1μ(di)ϕ(di)χdipx=1xAχdi(f(x+ci)))+12kϕk(p1)(p1)kki=1(dip1μ(di)ϕ(di)χdipx=1xAχdi(f(x+ci)))kt=1(1)tki1=1kit=1i1<<itgi1git=12kϕk(p1)(p1)k(B1+B2), (3.8)

    where gi=(1)f(x+ci)+¯f(x+ci),i=1,2,,k.

    B1=ki=1(dip1μ(di)ϕ(di)χdipx=1xAχdi(f(x+ci)))=px=1xA1+ki=1(dip1ki=1di>1μ(di)ϕ(di)χdipx=1xAχdi(f(x+ci))).

    Obviously,

    |px=1xA1p|kl.

    From Lemma 6 we have

    χd1χd2χdkpx=1xAχd1(f(x+c1))χd2(f(x+c2))χdk(f(x+ck))=d1s1=1 dksk=1 px=1xAχ((f(x+c1))s1(p1)d1(f(x+ck))sk(p1)dk).

    Due to d1d2dk>1, and

    si(p1)di<p1 for di>1(i=1,2,,k),

    from Lemma 4 we can get that the polynomial

    (f(x+c1))s1(p1)d1(f(x+ck))sk(p1)dk

    has a root in ˉFp with multiples less than p1, thus it can not be multiple of a (p1)-th power of polynomial over Fp. Take g(x)=(f(x+c1))s1(p1)d1(f(x+ck))sk(p1)dk, in Lemma 2 we have

    |px=1xAχ(f(x+c1)s1(p1)d1f(x+ck)sk(p1)dk)|<(kl1)p12.

    Hence, we have

    |B1(pkl)|<(2kω(p1)1)(kl1)p122kω(p1)(kl1)p12. (3.9)

    Using the methods in the proof of Theorem 1 we have

    gi=1p2p1mi,ni=1e(mi(f(x+ci))+ni¯f(x+ci)p)Umi(ui)Uni(vi).

    From the above discussion and Lemma 5, we can obtain

    |B2|<|ki=1(dip1μ(di)ϕ(di)χdipx=1xAχdi(f(x+ci)))kt=1(1)tki1=1ki2=1kit=1i1<i2<<itgi1gi2git|<ki=1(dip1|μ(di)|ϕ(di)χdi)kt=1(kt)T2tpln2tp|px=1xAχdi(f(x+ci))e(m1(f(x+c1))+n1¯(f(x+c1))++mt(f(x+ct))+nt¯(f(x+ct))p)|<2kω(p1)kt=1(kt)T2tpln2tp(kl+l)p12. (3.10)

    Combing Eqs (3.8), (3.9) and (3.10) we have

    |M(f(x),R,p)12kϕk(p1)(p1)k(pkl)|<12kϕk(p1)(p1)k[2kω(p1)(kl1)p12+2kω(p1)kt=1(kt)T2tpln2tp(kl+l)p12]=12kϕk(p1)(p1)k2kω(p1)p12[(kl1)+((k+1)l)kt=1(kt)T2tpln2tp]. (3.11)

    Then we have

    M(f(x),R,p)=12kϕk(p1)(p1)k1+O(ϕk(p1)pk122kω(p1)ln2kp).

    This complete the proof of Theorem 2.

    From two perspectives, this paper consider the distribution of LPRs that are related to the generalized Golomb's conjecture. Theorem 1 extends the binary linear equation ag1+bg2=c to the multivariate linear equation a1g1+a2g2++akgk=c, and uses the properties of Gauss sums to derive an asymptotic formula for the number of its solutions g1,g2,,gk that are LPRs. Theorem 2 considers k consecutive LPRs and employs the upper bound estimation of the generalized Kloosterman sums to provide a more general result that for f(x)Fp[x], k polynomials f(x+c1),f(x+c2),,f(x+ck) are Lehmer primitive roots modulo p.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    The author gratefully appreciates the referees and academic editor for their helpful and detailed comments.

    This work is supported by the N. S. F. (12126357) of P. R. China and the Natural Science Basic Research Plan in Shaanxi Province of China (2023-JC-QN-0050).

    The author declare there are no conflicts of interest.



    [1] E. Vegh, A note on the distribution of the primitive roots of a prime, J. Number Theory, 3 (1971), 13–18. https://doi.org/10.1016/0022-314X(71)90046-1 doi: 10.1016/0022-314X(71)90046-1
    [2] R. Guy, Unsolved Problems in Number Theory, 3rd ed., Problem Books in Mathematics, Springer-Verlag, New York, 2004. https://doi.org/10.1007/978-0-387-26677-0_2
    [3] S. Cohen, Consecutive primitive roots in a finite field, Proc. Amer. Math. Soc., 93 (1985), 189–197. https://doi.org/10.1090/S0002-9939-1985-0770516-9 doi: 10.1090/S0002-9939-1985-0770516-9
    [4] S. Golomb, Algebraic constructions for Costas arrays, J. Combin. Theory Ser. A, 37 (1984), 13–21. https://doi.org/10.1016/0097-3165(84)90015-3 doi: 10.1016/0097-3165(84)90015-3
    [5] Q. Sun, On primitive roots in a finite field (Chinese, with English summary), Sichuan Daxue Xuebao, 25 (1988), 133–139.
    [6] S. Cohen, T. Oliveira e Silva, N. Sutherland, T. Trudgian, Linear combinations of primitive elements of a finite field, Finite Fields Appl., 51 (2018), 388–406. https://doi.org/10.1016/j.ffa.2018.02.009 doi: 10.1016/j.ffa.2018.02.009
    [7] L. Carlitz, Sets of primitive roots, Compos. Math., 13 (1958), 65–70.
    [8] E. Vegh, Pairs of consecutive primitive roots modulo a prime, Proc. Amer. Math. Soc., 19 (1968), 1169–1170. https://doi.org/10.1090/S0002-9939-1968-0230680-7 doi: 10.1090/S0002-9939-1968-0230680-7
    [9] W. Zhang, T. Wang, The primitive roots and a problem related to the Golomb conjecture, AIMS Math., 5 (2020), 3899–3905. https://doi.org/10.3934/math.2020252 doi: 10.3934/math.2020252
    [10] L. Carlitz, Distribution of primitive roots in a finite field, Quart. J. Math., 4 (1953), 4–10. https://doi.org/10.1093/qmath/4.1.4 doi: 10.1093/qmath/4.1.4
    [11] C. Cobeli, A. Zaharescu, On the distribution of primitive roots mod p, Acta Arith., 83 (1998), 143–153. https://doi.org/10.4064/aa-83-2-143-153 doi: 10.4064/aa-83-2-143-153
    [12] W. Zhang, A problem of D.H.Lehmer and its generalization, Compos. Math., 91 (1994), 47–51. https://doi.org/10.1007/s10114-004-0329-z doi: 10.1007/s10114-004-0329-z
    [13] T. Wang, X. Wang, On Golomb's conjecture and Lehmer's numbers, Open Math., 15 (2017), 1003–1009. https://doi.org/10.1515/math-2017-0083 doi: 10.1515/math-2017-0083
    [14] S. Cohen, T. Trudgian, Lehmer numbers and primitive roots modulo a prime, J. Number Theory, 203 (2019), 68–79. https://doi.org/10.1016/j.jnt.2019.03.004 doi: 10.1016/j.jnt.2019.03.004
    [15] T. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, New York, 1976. https://doi.org/10.1007/978-1-4757-5579-4
    [16] W. Narkiewicz, Classical Problems in Number Theory, Polish Scientifc Publishers, 1986.
    [17] W. Schmidt, Equations over finite fields, An elementary approach. Lecture Notes in Math. 536, Springer, New York, 1976. https://doi.org/10.1007/BFb0080437
    [18] L. Goubin, C. Mauduit, A. Sˊark¨ozy, Construction of large families of pseudorandom binary sequences, J. Number Theory, 106 (2004), 56–69. https://doi.org/10.1016/j.jnt.2003.12.002 doi: 10.1016/j.jnt.2003.12.002
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1232) PDF downloads(57) Cited by(0)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog