Research article Special Issues

Do different stock indices volatility respond differently to Central bank digital currency signals?


  • Central bank digital currency (CBDC) signals affect the volatility of stock indices in different sectors differently. This paper aims to examine whether the CBDC signal plays a role on the volatility of different stock indices. First, we employ a text analysis to compile the CBDC signal index, which spans from January 4, 2013 to March 16, 2023. Then, based on the mixing frequency data, we construct generalized autoregressive conditional heteroskedasticity mixed data sampling (GARCH-MIDAS) models to explore the various impacts of CBDC signal on the volatility of stock indices in different sectors. The findings show the heterogeneous effect of CBDC signals on the volatility of stock indices across different sectors. Furthermore, CBDC signals have a heterogeneous effect on the volatility of stock indices in different sectors for different lag periods.

    Citation: Wenjie Li, Zimei Huang. Do different stock indices volatility respond differently to Central bank digital currency signals?[J]. Electronic Research Archive, 2023, 31(9): 5573-5588. doi: 10.3934/era.2023283

    Related Papers:

    [1] Jiaqi Chang, Xuhan Xu . Network structure of urban digital financial technology and its impact on the risk of commercial banks. Electronic Research Archive, 2022, 30(12): 4740-4762. doi: 10.3934/era.2022240
    [2] Zhenghui Li, Jinhui Zhu, Jiajia He . The effects of digital financial inclusion on innovation and entrepreneurship: A network perspective. Electronic Research Archive, 2022, 30(12): 4697-4715. doi: 10.3934/era.2022238
    [3] Yuxia Liu, Qi Zhang, Wei Xiao, Tianguang Chu . Characteristic period analysis of the Chinese stock market using successive one-sided HP filter. Electronic Research Archive, 2023, 31(10): 6120-6133. doi: 10.3934/era.2023311
    [4] Ping Yang, Min Fan, Zhiyi Li, Jianhong Cao, Xue Wu, Desheng Wu, Zhixi Lu . Digital finance, spatial spillover and regional innovation efficiency: New insights from China. Electronic Research Archive, 2022, 30(12): 4635-4656. doi: 10.3934/era.2022235
    [5] Yufei Duan, Xian-Ming Gu, Tingyu Lei . Application of machine learning in quantitative timing model based on factor stock selection. Electronic Research Archive, 2024, 32(1): 174-192. doi: 10.3934/era.2024009
    [6] Xin Tang, Zhiqiang Yuan, Xi Deng, Liping Xiang . Predicting secondary school mathematics teachers' digital teaching behavior using partial least squares structural equation modeling. Electronic Research Archive, 2023, 31(10): 6274-6302. doi: 10.3934/era.2023318
    [7] Changhai Wang, Jiaxi Ren, Hui Liang . MSGraph: Modeling multi-scale K-line sequences with graph attention network for profitable indices recommendation. Electronic Research Archive, 2023, 31(5): 2626-2650. doi: 10.3934/era.2023133
    [8] Liping Zheng, Jia Liao, Yuan Yu, Bin Mo, Yun Liu . The effect credit term structure of monetary policy on firms' "short-term debt for long-term investment" behavior: empirical evidence from China. Electronic Research Archive, 2023, 31(3): 1498-1523. doi: 10.3934/era.2023076
    [9] Yue Ma, Zhongfei Li . Robust portfolio choice with limited attention. Electronic Research Archive, 2023, 31(7): 3666-3687. doi: 10.3934/era.2023186
    [10] Yueyin Bai, Song Zhang, Zhiyuan Ma, Enhao Tang, Jun Yu . DSP-OPU: An FPGA-based overlay processor for digital signal processing. Electronic Research Archive, 2025, 33(5): 2698-2718. doi: 10.3934/era.2025119
  • Central bank digital currency (CBDC) signals affect the volatility of stock indices in different sectors differently. This paper aims to examine whether the CBDC signal plays a role on the volatility of different stock indices. First, we employ a text analysis to compile the CBDC signal index, which spans from January 4, 2013 to March 16, 2023. Then, based on the mixing frequency data, we construct generalized autoregressive conditional heteroskedasticity mixed data sampling (GARCH-MIDAS) models to explore the various impacts of CBDC signal on the volatility of stock indices in different sectors. The findings show the heterogeneous effect of CBDC signals on the volatility of stock indices across different sectors. Furthermore, CBDC signals have a heterogeneous effect on the volatility of stock indices in different sectors for different lag periods.



    The fact that you receive an invitation to edit a special issue of a scientific journal is extremely gratifying for researchers from any area of study or country. The theme selected for the journal AIMS Bioengineering was based on the importance at the moment of associating bioengineering with the pandemic by the new Coronavirus, currently called SARS-CoV-2 or COVID-19.

    The discovery at the end of 2019 of a severe acute respiratory syndrome, the evolution of which is still studied and uncertain, often leading to death, aroused worldwide interest in vaccines that prevent contagion or drugs that enable the treatment and recovery of those infected. Thus, science was challenged and at the same time evidenced by the relentless search for therapies.

    Bioengineering stands out in all stages of scientific events related to the disease, such as, for example, in diagnostic tests, hospital equipment such as respirators, new drugs and the long-awaited vaccine. The challenges, in order to be overcome, need constant integration of basic and applied sciences with professional clinical practice.

    “Science or translational medicine” has been talked about for some time, being that science that comes out of the laboratory benches and goes directly to the clinical bench, daily, from the fronts to cope with diseases. The term began to be used by the National Cancer Institute of the United States (NCI) and later disseminated by research around the world. What is the effectiveness of an experiment if it does not have a fast and effective direction for improving the health of the population?

    Since 2005, bioengineering has supported translational science with new discoveries and innovations in the areas of health in general, generating profound changes in the clinical research scenario. Pre-clinical research, integrated with the clinic, is one of the pillars of reliability of the results and an important step in the discoveries.

    The studies carried out in translational research are generally divided into four stages: the first stage involves the discovery of a new product and its possible application in health; the second stage aims at evidence-based clinical application; the third stage proposes to disseminate clinical practice in health; the fourth step is to use it in practice and assess the health impact.

    For translational science to take place, from the bench at the bedside, activities and professionals need interdisciplinarity and multiprofessionality. Only by breaking barriers of isolated action in health can the success so desired be achieved: the well-being and health of the world population.



    [1] Y. Tan, Z. H. Li, S. M. Liu, M. I. Nazir, M. Haris, Competitions in different banking markets and shadow banking: Evidence from China, Int. J.. Emerg. Mark., 17 (2022), 1465–1483. https://doi.org/10.1108/ijoem-04-2020-0401 doi: 10.1108/ijoem-04-2020-0401
    [2] Z. Li, H. Chen, B. Mo, Can digital finance promote urban innovation? Evidence from China, Borsa Istanbul Rev., 23 (2023), 285–296. https://doi.org/10.1016/j.bir.2022.10.006 doi: 10.1016/j.bir.2022.10.006
    [3] Z. H. Huang, G. K. Liao, Z. H. Li, Loaning scale and government subsidy for promoting green innovation, Technol. Forecasting Soc. Change, 144 (2019), 148–156. https://doi.org/10.1016/j.techfore.2019.04.023 doi: 10.1016/j.techfore.2019.04.023
    [4] Z. H. Li, Z. M. Huang, Y. Y. Su, New media environment, environmental regulation and corporate green technology innovation: Evidence from China, Energ. Econ., 119 (2023), 106545. https://doi.org/10.1016/j.eneco.2023.106545 doi: 10.1016/j.eneco.2023.106545
    [5] T. Li, X. Li; G. Liao, Business cycles and energy intensity. Evidence from emerging economies, Borsa Istanbul Rev., 22 (2021), 560–570. https://doi.org/10.1016/j.bir.2021.07.005 doi: 10.1016/j.bir.2021.07.005
    [6] Z. H. Huang, H. Dong, S. S. Jia, Equilibrium pricing for carbon emission in response to the target of carbon emission peaking, Energ. Econ., 112 (2022), 106160. https://doi.org/10.1016/j.eneco.2022.106160 doi: 10.1016/j.eneco.2022.106160
    [7] J. Barrdear, M. Kumhof, The macroeconomics of central bank digital currencies, J. Econ. Dyn. Control, 142 (2022), 104148. https://doi.org/10.1016/j.jedc.2021.104148 doi: 10.1016/j.jedc.2021.104148
    [8] Z. H. Li, B. Mo, H. Nie, Time and frequency dynamic connectedness between cryptocurrencies and financial assets in China, Int. Rev. Econ. Financ., 86 (2023), 46–57. https://doi.org/10.1016/j.iref.2023.01.015 doi: 10.1016/j.iref.2023.01.015
    [9] Z. H. Li, H. Dong, C. Floros, A. Charemis, P. Failler, Re-examining Bitcoin Volatility: A CAViaR-based Approach, Emerg. Mark. Financ. Trade, 19 (2021), 1320–1338. https://doi.org/10.1080/1540496x.2021.1873127 doi: 10.1080/1540496x.2021.1873127
    [10] E. Y. Oh, S. Zhang, Informal economy and central bank digital currency, Econ. Inq., 60 (2022), 1520–1539. https://doi.org/10.1111/ecin.13105 doi: 10.1111/ecin.13105
    [11] Y. S. Kim, O. Kwon, Central bank digital currency, credit supply, and financial stability, 55 (2023), 297–321. https://doi.org/https://doi.org/10.1111/jmcb.12913
    [12] D. Andolfatto, Assessing the impact of central bank digital currency on private banks, Econ. J., 131 (2021), 525–540. https://doi.org/10.1093/ej/ueaa073 doi: 10.1093/ej/ueaa073
    [13] B. Xin, K. Jiang, Central bank digital currency and the effectiveness of negative interest rate policy: A DSGE analysis, Res. Int. Bus. Financ., 634 (2023), 525–540. https://doi.org/10.1016/j.ribaf.2023.101901 doi: 10.1016/j.ribaf.2023.101901
    [14] W. Shen, L. Hou, China's central bank digital currency and its impacts on monetary policy and payment competition: Game changer or regulatory toolkit?, Comput. law Secur. Rev., 41 (2021), 105577. https://doi.org/10.1016/j.clsr.2021.105577 doi: 10.1016/j.clsr.2021.105577
    [15] Y. Wang, B. M. Lucey, S. A. Vigne, L. Yarovaya, The effects of central bank digital currencies news on financial markets, Tech. Forecast. Soc. Change, 180 (2022), 121715. https://doi.org/10.1016/j.techfore.2022.121715 doi: 10.1016/j.techfore.2022.121715
    [16] Z. H. Li, C. Y. Yang, Z. H. Huang, How does the fintech sector react to signals from central bank digital currencies?, Financ. Res. Lett., 50 (2022), 103308. https://doi.org/10.1016/j.frl.2022.103308 doi: 10.1016/j.frl.2022.103308
    [17] Z. H. Li, L. M. Chen, H. Dong, What are bitcoin market reactions to its-related events?, Int. Rev. Econ. Financ., 73 (2021), 1–10. https://doi.org/10.1016/j.iref.2020.12.020 doi: 10.1016/j.iref.2020.12.020
    [18] A. K. Bharti, Asymmetrical herding in cryptocurrency: Impact of COVID 19, Quant. Financ. Econ., 6 (2022), 326–341. https://doi.org/10.3934/qfe.2022014 doi: 10.3934/qfe.2022014
    [19] S. L. Chen, S. M. Liu, R. J. Cai, Y. Y. Zhang, The factors that influence exchange-rate risk: Evidence in China, Emerg. Mark. Financ. Trade, 56 (2020), 1275–1292. https://doi.org/10.1080/1540496x.2019.1636229 doi: 10.1080/1540496x.2019.1636229
    [20] Z. H. Li, Z. H. Huang, H. Dong, The influential factors on outward foreign direct investment: Evidence from the "The Belt and Road", Emerg. Mark. Financ. Trade, 55 (2019), 3211–3226. https://doi.org/10.1080/1540496x.2019.1569512 doi: 10.1080/1540496x.2019.1569512
    [21] S. A. Gyamerah, B. E. Owusu, E. K. Akwaa-Sekyi, Modelling the mean and volatility spillover between green bond market and renewable energy stock market, Green Financ., 4 (2022), 310–328. https://doi.org/10.3934/gf.2022015 doi: 10.3934/gf.2022015
    [22] S. Scharnowski, Central bank speeches and digital currency competition, Financ. Res. Lett., 49 (2022), 103072. https://doi.org/10.1016/j.frl.2022.103072 doi: 10.1016/j.frl.2022.103072
    [23] P. K. Ozili, Central bank digital currency and bank earnings management using loan loss provisions, Digit. Policy Regul. Governance J., 25 (2023), 206–220. https://doi.org/10.1108/DPRG-11-2022-0139 doi: 10.1108/DPRG-11-2022-0139
    [24] S. Rahman, I. H. Moral, M. Hassan, G. S. Hossain, R. Perveen, Review a systematic review of green finance in the banking industry: perspectives from a developing country, Green Financ., 4 (2022), 347–363. https://doi.org/10.3934/gf.2022017 doi: 10.3934/gf.2022017
    [25] C. C. Lee, C. W. Wang, H. Y. Hsieh, W. L. Chen, The impact of central bank digital currency variation on firm's implied volatility, Res. Int. Bus. Financ., 64 (2023), 101878. https://doi.org/10.1016/j.ribaf.2023.101878 doi: 10.1016/j.ribaf.2023.101878
    [26] W. H. You, Y. W. Guo, H. M. Zhu, Y. Tang, Oil price shocks, economic policy uncertainty and industry stock returns in China: Asymmetric effects with quantile regression, Energ. Econ., 68 (2017), 1–18. https://doi.org/10.1016/j.eneco.2017.09.007 doi: 10.1016/j.eneco.2017.09.007
    [27] L. Pastor, P. Veronesi, Uncertainty about government policy and stock prices, J. Financ., 67 (2012), 1219–1264. https://doi.org/10.1111/j.1540-6261.2012.01746.x doi: 10.1111/j.1540-6261.2012.01746.x
    [28] S. Chen, J. Zhong, P. Failler, Does China transmit financial cycle spillover effects to the G7 countries?, Econ. Res.-Ekon. Istraž., 35 (2022), 5184–5201. https://doi.org/10.1080/1331677x.2021.2025123 doi: 10.1080/1331677x.2021.2025123
    [29] T. H. Li, J. H. Zhong, Z. M. Huang, Potential dependence of financial cycles between emerging and developed countries: Based on ARIMA-GARCH copula model, Emerg. Mark. Financ. Trade, 56 (2020), 1237–1250. https://doi.org/10.1080/1540496x.2019.1611559 doi: 10.1080/1540496x.2019.1611559
    [30] S. Deniz, Volatility spillovers among MIST stock markets, Data Sci. Financ. Econ., 2 (2022), 80–95. https://doi.org/10.3934/DSFE.2022004 doi: 10.3934/DSFE.2022004
    [31] P. Maria, M. Annalisa, T. Giacomo, Z. Lea, The informative value of central banks talks: A topic model application to sentiment analysis, Data Sci. Financ. Econ., 2 (2022), 181–204. https://doi.org/10.3934/DSFE.2022009 doi: 10.3934/DSFE.2022009
    [32] J. Park, R. A. Ratti, Oil price shocks and stock markets in the US and 13 European countries, Energy Econ., 30 (2008), 2587–2608. https://doi.org/10.1016/j.eneco.2008.04.003 doi: 10.1016/j.eneco.2008.04.003
    [33] G. K. Liao, P. Hou, X. Y. Shen, K. Albitar, The impact of economic policy uncertainty on stock returns: The role of corporate environmental responsibility engagement, Int. J. Financ. Econ., 26 (2021), 4386–4392. https://doi.org/10.1002/ijfe.2020 doi: 10.1002/ijfe.2020
    [34] Z. H. Li, J. H. Zhong, Impact of economic policy uncertainty shocks on China's financial conditions, Financ. Res. Lett., 35 (2020), 101303. https://doi.org/10.1016/j.frl.2019.101303 doi: 10.1016/j.frl.2019.101303
    [35] Y. Jiang, G. Tian, Y. Wu, B. Mo, Impacts of geopolitical risks and economic policy uncertainty on Chinese tourism‐listed company stock, Int. J. Financ. Econ., 27 (2022), 320–333. https://doi.org/10.1002/ijfe.2155 doi: 10.1002/ijfe.2155
    [36] G. P. Shi, X. X. Liu, Stock price fluctuation and the business cycle in the BRICS countries: A nonparametric quantiles causality approach, Financ. Res. Lett., 33 (2020), 101223. https://doi.org/10.1016/j.frl.2019.06.021 doi: 10.1016/j.frl.2019.06.021
    [37] M. Arouri, C. Estay, C. Rault, D. Roubaud, Economic policy uncertainty and stock markets: Long-run evidence from the US, Financ. Res. Lett., 18 (2016), 136–141. https://doi.org/10.1016/j.frl.2016.04.011 doi: 10.1016/j.frl.2016.04.011
    [38] S. Chen, Y. Wang, K. Albitar, Z. Huang, Does ownership concentration affect corporate environmental responsibility engagement? The mediating role of corporate leverage, Borsa Istanbul Rev., 21 (2021), S13–S24. https://doi.org/10.1016/j.bir.2021.02.001 doi: 10.1016/j.bir.2021.02.001
    [39] Y. Liu, Z. H. Li, M. R. Xu, The influential factors of financial cycle spillover: Evidence from China, Emerg. Mark. Financ. Trade, 56 (2020), 1336–1350. https://doi.org/10.1080/1540496x.2019.1658076 doi: 10.1080/1540496x.2019.1658076
    [40] Z. Li, G. Liao, K. Albitar, Does corporate environmental responsibility engagement affect firm value? The mediating role of corporate innovation, Bus. Strategy Environ., 29 (2019), 1045–1055. https://doi.org/10.1002/bse.2416 doi: 10.1002/bse.2416
    [41] Y. H. Jiang, G. Y. Tian, B. Mo, Spillover and quantile linkage between oil price shocks and stock returns: new evidence from G7 countries, Financ. Innov., 6 (2020). https://doi.org/10.1186/s40854-020-00208-y doi: 10.1186/s40854-020-00208-y
    [42] J. K. Sra, A. L. Booth, R. A. K. Cox, Voluntary carbon information disclosures, corporate-level environmental sustainability efforts, and market value, Green Financ., 4 (2022), 179–206. https://doi.org/10.3934/gf.2022009 doi: 10.3934/gf.2022009
    [43] C. K. M. Lau, E. Demir, M. H. Bilgin, Experience-based corporate corruption and stock market volatility: Evidence from emerging markets, Emerg. Mark. Rev., 17 (2013), 1–13. https://doi.org/10.1016/j.ememar.2013.07.002 doi: 10.1016/j.ememar.2013.07.002
    [44] P. C. Tetlock, Giving content to investor sentiment: The role of media in the stock market, J. Financ., 62 (2007), 1139–1168. https://doi.org/10.1111/j.1540-6261.2007.01232.x doi: 10.1111/j.1540-6261.2007.01232.x
    [45] D. Zhang, J. Engelberg, P. J. Gao, The sum of All FEARS investor sentiment and asset prices, Rev. Financ. Stud., 28 (2015), 1–32. https://doi.org/10.1093/rfs/hhu072 doi: 10.1093/rfs/hhu072
    [46] G. Kaplanski, H. Levy, Sentiment and stock prices: The case of aviation disasters, J. Financ. Econ., 95 (2010), 174–201. https://doi.org/10.1016/j.jfineco.2009.10.002 doi: 10.1016/j.jfineco.2009.10.002
    [47] S. K. Agyei, A. Bossman, Investor sentiment and the interdependence structure of GⅡPS stock market returns: A multiscale approach, Quant. Financ. Econ., 7 (2023), 87–116. https://doi.org/10.3934/qfe.2023005 doi: 10.3934/qfe.2023005
    [48] Y. Chen, Z. Huang, Measuring the effects of investor attention on China's stock returns, Data Sci. Financ. Econ., 1 (2021), 327–344. https://doi.org/10.3934/DSFE.2021018 doi: 10.3934/DSFE.2021018
    [49] Z. Li, Z. Huang, P. Failler, Dynamic correlation between crude oil price and investor sentiment in China: Heterogeneous and asymmetric effect. Energies, 15 (2022), 687. https://doi.org/10.3390/en15030687 doi: 10.3390/en15030687
    [50] S. L. Chung, C. H. Hung, C. Y. Yeh, When does investor sentiment predict stock returns?, J. Empirical Financ., 19 (2012), 217–240. https://doi.org/10.1016/j.jempfin.2012.01.002 doi: 10.1016/j.jempfin.2012.01.002
    [51] R. F. Engle, J. G. Rangel, The Spline-GARCH model for low-frequency volatility and its global macroeconomic causes, Rev. Financ. Stud., 21 (2008), 1187–1222. https://doi.org/10.1093/rfs/hhn004 doi: 10.1093/rfs/hhn004
    [52] R. F. Engle, E. Ghysels, B. Sohn, Stock market volatility and macroeconomic fundamentals, Rev. Econ. Stat., 95 (2013), 776–797. https://doi.org/10.1162/REST_a_00300 doi: 10.1162/REST_a_00300
    [53] Z. Li, F. Zou, B. Mo, Does mandatory CSR disclosure affect enterprise total factor productivity?, Econ. Res.-Ekon. Istraž., 35 (2021), 1–20. https://doi.org/10.1080/1331677x.2021.2019596 doi: 10.1080/1331677x.2021.2019596
    [54] Y. Zheng, Z. Wang, Z. Huang, T. Jiang, Comovement between the Chinese business cycle and financial volatility: Based on a DCC-MIDAS model, Emerg. Mark. Financ. Trade, 56 (2020), 1181–1195. https://doi.org/10.1080/1540496x.2019.1620100 doi: 10.1080/1540496x.2019.1620100
    [55] S. Charfi, F. Mselmi, Modeling exchange rate volatility: application of GARCH models with a Normal Tempered Stable distribution, Quant. Financ. Econ., 6 (2022), 206–222. https://doi.org/10.3934/qfe.2022009 doi: 10.3934/qfe.2022009
  • This article has been cited by:

    1. Zheng Lü, Oguzhan Ozcelebi, Seong-Min Yoon, Impact of central bank digital currency uncertainty on international financial markets, 2025, 73, 02755319, 102627, 10.1016/j.ribaf.2024.102627
    2. Shah Fahad, Mehmet Bulut, Central bank digital currencies: a comprehensive systematic literature review on worldwide research emergence and methods used, 2024, 39, 1935-5181, 137, 10.1108/AJB-12-2023-0210
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1692) PDF downloads(64) Cited by(2)

Article outline

Figures and Tables

Figures(2)  /  Tables(6)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog