In the field of state-of-the-art object detection, the task of object localization is typically accomplished through a dedicated subnet that emphasizes bounding box regression. This subnet traditionally predicts the object's position by regressing the box's center position and scaling factors. Despite the widespread adoption of this approach, we have observed that the localization results often suffer from defects, leading to unsatisfactory detector performance. In this paper, we address the shortcomings of previous methods through theoretical analysis and experimental verification and present an innovative solution for precise object detection. Instead of solely focusing on the object's center and size, our approach enhances the accuracy of bounding box localization by refining the box edges based on the estimated distribution at the object's boundary. Experimental results demonstrate the potential and generalizability of our proposed method.
Citation: Peng Zhi, Haoran Zhou, Hang Huang, Rui Zhao, Rui Zhou, Qingguo Zhou. Boundary distribution estimation for precise object detection[J]. Electronic Research Archive, 2023, 31(8): 5025-5038. doi: 10.3934/era.2023257
[1] | Huo Tang, Shahid Khan, Saqib Hussain, Nasir Khan . Hankel and Toeplitz determinant for a subclass of multivalent $ q $-starlike functions of order $ \alpha $. AIMS Mathematics, 2021, 6(6): 5421-5439. doi: 10.3934/math.2021320 |
[2] | Khadeejah Rasheed Alhindi, Khalid M. K. Alshammari, Huda Ali Aldweby . Classes of analytic functions involving the q-Ruschweyh operator and q-Bernardi operator. AIMS Mathematics, 2024, 9(11): 33301-33313. doi: 10.3934/math.20241589 |
[3] | Muhammad Sabil Ur Rehman, Qazi Zahoor Ahmad, H. M. Srivastava, Nazar Khan, Maslina Darus, Bilal Khan . Applications of higher-order q-derivatives to the subclass of q-starlike functions associated with the Janowski functions. AIMS Mathematics, 2021, 6(2): 1110-1125. doi: 10.3934/math.2021067 |
[4] | İbrahim Aktaş . On some geometric properties and Hardy class of q-Bessel functions. AIMS Mathematics, 2020, 5(4): 3156-3168. doi: 10.3934/math.2020203 |
[5] | Chunhong Li, Dandan Yang, Chuanzhi Bai . Some Opial type inequalities in (p, q)-calculus. AIMS Mathematics, 2020, 5(6): 5893-5902. doi: 10.3934/math.2020377 |
[6] | Saqib Hussain, Shahid Khan, Muhammad Asad Zaighum, Maslina Darus . Certain subclass of analytic functions related with conic domains and associated with Salagean q-differential operator. AIMS Mathematics, 2017, 2(4): 622-634. doi: 10.3934/Math.2017.4.622 |
[7] | Muhammad Amer Latif, Mehmet Kunt, Sever Silvestru Dragomir, İmdat İşcan . Post-quantum trapezoid type inequalities. AIMS Mathematics, 2020, 5(4): 4011-4026. doi: 10.3934/math.2020258 |
[8] | Yue Wang, Ghulam Farid, Babar Khan Bangash, Weiwei Wang . Generalized inequalities for integral operators via several kinds of convex functions. AIMS Mathematics, 2020, 5(5): 4624-4643. doi: 10.3934/math.2020297 |
[9] | Mohammad Faisal Khan, Ahmad A. Abubaker, Suha B. Al-Shaikh, Khaled Matarneh . Some new applications of the quantum-difference operator on subclasses of multivalent $ q $-starlike and $ q $-convex functions associated with the Cardioid domain. AIMS Mathematics, 2023, 8(9): 21246-21269. doi: 10.3934/math.20231083 |
[10] | Ala Amourah, B. A. Frasin, G. Murugusundaramoorthy, Tariq Al-Hawary . Bi-Bazilevič functions of order $ \vartheta +i\delta $ associated with $ (p, q)- $ Lucas polynomials. AIMS Mathematics, 2021, 6(5): 4296-4305. doi: 10.3934/math.2021254 |
In the field of state-of-the-art object detection, the task of object localization is typically accomplished through a dedicated subnet that emphasizes bounding box regression. This subnet traditionally predicts the object's position by regressing the box's center position and scaling factors. Despite the widespread adoption of this approach, we have observed that the localization results often suffer from defects, leading to unsatisfactory detector performance. In this paper, we address the shortcomings of previous methods through theoretical analysis and experimental verification and present an innovative solution for precise object detection. Instead of solely focusing on the object's center and size, our approach enhances the accuracy of bounding box localization by refining the box edges based on the estimated distribution at the object's boundary. Experimental results demonstrate the potential and generalizability of our proposed method.
Let Ap denote the class of analytic and p-valent functions f(z) with the next form
f(z)=zp+∞∑n=1an+pzn+p,(p∈N={1,2,⋯}) | (1.1) |
in the open unit disk Δ={z∈C:∣z∣<1}.
For f∈Ap, its q-derivative or the q-difference Dqf(z) is given by
Dqf(z)=[p]qzp−1+∞∑n=1[n+p]qan+pzn+p−1,(0<q<1), |
where the q-derivative operator Dqf(z) (refer to [13] and [14]) of the function f is defined by
Dqf(z):={f(z)−f(qz)(1−q)z,(z≠0;0<q<1),f′(0),(z=0) |
provided that f′(0) exists, and the q-number [n]q is just [χ]q when χ=n∈N, here
[χ]q={1−qχ1−qforχ∈C,∑χ−1k=0qkforχ=n∈N. |
Note that Dqf(z)⟶f′(z) when q⟶1−, where f′ is the ordinary derivative of the function f.
Consider the generalized Bernardi integral operator Jηp,q:Ap⟶Ap with the next form
Jηp,qf(z)=[p+η]qzη∫z0tη−1f(t)dqt,(z∈Δ,ℜη>−1andf∈Ap). | (1.2) |
Then, for f∈Ap, we obtain that
Jηp,qf(z)=zp+∞∑n=1Lηp,q(n)an+pzn+p,(z∈Δ), | (1.3) |
where
Lηp,q(n)=[p+η]q[n+η]q:=Ln. | (1.4) |
Here we remark that if p=1, it is exactly q-Bernardi integral operator Jηq [21]. Further, if p=1 and q→1−, obviously it is the classical Bernardi integral operator Jη [5]. In fact, Alexander [1] and Libera [18] integral operators are special versions of Jη for η=0 and η=1, respectively.
For two analytic functions f and g, if there exists an analytic function h satisfying h(0)=0 and ∣h(z)∣<1 for z∈Δ so that f(z)=g(h(z)), then f is subordinate to g, i.e., f≺g.
Let Λ be the class of all analytic function ϕ via the form
ϕ(z)=1+∞∑n=1Anzn,(A1>0,z∈Δ). | (1.5) |
It is well known that the q-calculus [13,14], even the (p,q)-calculus [6], is a generalization of the ordinary calculus without the limit symbol, and its related theory has been applied into mathematical, physical and engineering fields (see [11,15,25]). Since Ismail et al.[12] firstly utilized the q-derivative operator to investigate the q-calculus of the class of starlike functions in disk, there had a great deal of work in this respect; for example, refer to Rehman et al. [24] for partial sums of generalized q-Mittag-Leffler functions, Srivastava et al. [31] for Fekete-Szegö inequality for classes of (p,q)-starlike and (p,q)-convex functions and [27] for close-to-convexity of a certain family of q-Mittag-Leffler functions, Seoudy and Aouf [26] for the coefficient estimates of q-starlike and q-convex functions and Uçar [33] for the coefficient inequality for q-starlike functions. Besides, by involving some special functions and operators or increasing the complexity of function classes, many new subclasses of analytic functions associated with q-calculus or (p,q)-calculus were considered. Here we may refer to [9,23], Ahmad et al. [2] for convolution properties for a family of analytic functions involving q-analogue of Ruscheweyh differential operator, Dweby and Darus [8] for subclass of harmonic univalent functions associated with q-analogue of Dziok-Srivastava operator, Mahmmod and Sokól [20] for new subclass of analytic functions in conical domain associated with Ruscheweyh q-differential operator, Srivastava et al. [28] for coefficient inequalities for q-starlike functions associated with the Janowski functions, [31] for Fekete-Szegö inequality for classes of (p,q)-starlike and (p,q)-convex functions using the q-Bernardi integral operator and [32] for some results on the q-analogues of the incomplete Fibonacci and Lucas polynomials. For the multivalent functions, Purohit [22] ever studied a new class of multivalently analytic functions associated with fractional q-calculus operators, while Shi et al. [29] investigated the multivalent q-starlike functions connected with circular domain. Moreover, Arif et al. [4] considered a q-analogue of the Ruscheweyh type operator, and Srivastava et al. [30] dealt with basic and fractional q-calculus and associated Fekete-Szegö problems for p-valently q-starlike functions and p-valently q-convex functions of complex order using certain integral operators, and Khan et al. [17] for a new integral operator in q-analog for multivalent functions. Stimulated by the previous results, in the paper we intend to introduce and investigate several new subclasses of q-starlike and q-convex type analytic and multivalent functions involving a generalized Bernardi integral operator, and establish the corresponding Fekete-Szegö type functional inequalities for these function classes. Besides, the corresponding bound estimates of the coefficients ap+1 and ap+2 are provided.
From now on we introduce some general subclasses of analytic and multivalent functions associated with the q-derivative operator and the generalized Bernardi integral operator.
Definition 1.1. Let f(z)∈Ap and μ,λ≥0. If the following subordination
(1−λ)(Jηp,qf(z)zp)μ+λDq(Jηp,qf)(z)[p]qzp−1(Jηp,qf(z)zp)μ−1≺ϕ(z) | (1.6) |
is satisfied for z∈Δ, then we call that f(z) belongs to the class LNηp,q(μ,λ;ϕ).
Definition 1.2. Let f(z)∈Ap and 0≤λ≤1. If the following subordination
(1−λ)zDq(Jηp,qf)(z)[p]qJηp,qf(z)+λ[p]q(1+qzDq[Dq(Jηp,qf)](z)Dq(Jηp,qf)(z))≺ϕ(z) | (1.7) |
is satisfied for z∈Δ, then we call that f(z) belongs to the class LMηp,q(λ;ϕ).
Definition 1.3. Let f(z)∈Ap and μ≥0. If the following subordination
(zDq(Jηp,qf)(z)[p]qJηp,qf(z))(Jηp,qf(z)zp)μ≺ϕ(z) | (1.8) |
is satisfied for z∈Δ, then we call that f(z) belongs to the class NSηp,q(μ;ϕ).
Remark 1.4. If we put
ϕ(z)=(1+z1−z)αfor0<α≤1 |
or
ϕ(z)=1+(1−2β)z1−zfor0≤β<1 |
in Definition (1.1–1.3), then the class LNηp,q(μ,λ;ϕ) (res. LMηp,q(λ;ϕ) and NSηp,q(μ;ϕ)) reduces to LNηp,q(μ,λ;α) (res. LMηp,q(λ;α) and NSηp,q(μ;α)) or LNηp,q(μ,λ;β) (res. LMηp,q(λ;β) and NSηp,q(μ;β)). Without the generalized Bernardi integral operator, the class LNηp,q(μ,λ;ϕ) (res. LMηp,q(λ;ϕ) and NSηp,q(μ;ϕ)) is the classical function class LN(μ,λ;ϕ) (res. LM(λ;ϕ) and NS(μ;ϕ)) when p=1 and q→1−.
Let Ω be the class of functions ω(z) denoted by
ω(z)=∞∑n=1Enzn,(z∈Δ) | (1.9) |
via the inequality |ω(z)|<1(z∈Δ). Now we recall some necessary Lemmas below.
Lemma 1.5 ([16]). Let the function ω∈Ω. Then
|E2−τE21|≤max{1,|τ|},(τ∈C). |
Specially, the sharp result holds for the next function
ω(z)=zorω(z)=z2,(z∈Δ). |
Lemma 1.6 ([7,10]). Let P be the class of all analytic functions h(z) of the following form
h(z)=1+∞∑n=1cnzn,(z∈Δ) |
satisfying ℜh(z)>0 and h(0)=1. Then there exist the sharp coefficient estimates ∣cn∣≤2(n∈N). In Particular, the equality holds for all n for the next function
h(z)=1+z1−z=1+∞∑n=12zn. |
Lemma 1.7 ([3,19]). Let the function ω∈Ω. Then
∣E2−κE21∣≤{−κifκ≤−1,1if−1≤κ≤1,κifκ≥1. |
For κ<−1 or κ>1, the inequality holds literally if and only if ω(z)=z or one of its rotations. If <κ<1, the inequality holds literally if and only if ω(z)=z2 or one of its rotations. In Particular, if κ=−1, then the sharp result holds for the next function
ω(z)=z(z+ξ)1+ξz,(0≤ξ≤1) |
or one of its rotations. If κ=1, then the sharp result holds for the next function
ω(z)=−z(z+ξ)1+ξz,(0≤ξ≤1) |
or one of its rotations. If −1<κ<1, then the upper bound is sharp as the followings
|E2−κE21|+(κ+1)|E1|2≤1,(−1<κ≤0) |
and
|E2−κE21|+(1−κ)|E1|2≤1,(0<κ<1). |
By (1.9) we give that
ϕ(ω(z))=1+A1E1z+(A1E2+A2E21)z2+(A1E3+2A2E1E2+A3E31)z3+…. | (2.1) |
In the section, with Lemma 1.5 we study Fekete-Szegö functional problem for the class LNηp,q(μ,λ;ϕ) and provide the following theorem.
Theorem 2.1. Let δ∈C. If f(z)∈Ap belongs to the class LNηp,q(μ,λ;ϕ), then
|ap+2−δa2p+1|≤A1[p]q|L2|[μ[p]q+λ([p+2]q−[p]q)]max{1;|A1[p]qΘ2L21[μ[p]q+λ([p+1]q−[p]q)]2−A2A1|}, |
where
Θ=2δL2[μ[p]q+λ([p+2]q−[p]q)]+L21[(μ−1)[μ−λ(λμ−μ+1)][p]q+2λ(2μ−λμ−1)[p+1]q]. |
Moreover, the sharp result holds for the next function
ω(z)=zorω(z)=z2,(z∈Δ). |
Proof. Assume that f(z)∈LNηp,q(μ,λ;ϕ). Then, from Definition 1.1, there exists an analytic function ω(z)∈Ω such that
(1−λ)(Jηp,qf(z)zp)μ+λDq(Jηp,qf)(z)[p]qzp−1(Jηp,qf(z)zp)μ−1=ϕ(ω(z)). | (2.2) |
Part case
(Jηp,qf(z)zp)μ−1=1+(μ−1)L1ap+1z+[(μ−1)L2ap+2+(μ−1)(μ−2)2L21a2p+1]z2+[(μ−1)L3ap+3+(μ−1)(μ−2)2L1L2ap+1ap+2+(μ−1)(μ−2)(μ−3)6L31a3p+1]z3+…, |
λDq(Jηp,qf)(z)[p]qzp−1=λ+λL1ap+1[p+1]q[p]qz+λL2ap+2[p+2]q[p]qz2+λL3ap+3[p+3]q[p]qz3+…, |
λDq(Jηp,qf)(z)[p]qzp−1(Jηp,qf(z)zp)μ−1=λ+λ[μ+([p+1]q[p]q−1)]L1ap+1z+λ{[μ+([p+2]q[p]q−1)]L2ap+2+(μ−1)[μ2+([p+1]q[p]q−1)]L21a2p+1}z2+…, |
(1−λ)(Jηp,qf(z)zp)μ=(1−λ)+(1−λ)μL1ap+1z+(1−λ)[μL2ap+2+μ(μ−1)2L21a2p+1]z2+(1−λ)[μL3ap+3+μ(μ−1)2L1L2ap+1ap+2+μ(μ−1)(μ−2)6L31a3p+1]z3+…. |
Since
(1−λ)(Jηp,qf(z)zp)μ+λDq(Jηp,qf)(z)[p]qzp−1(Jηp,qf(z)zp)μ−1=1+[μ+λ([p+1]q[p]q−1)]L1ap+1z+{[μ+λ([p+2]q[p]q−1)]L2ap+2+[(μ−1)2[μ−2λ(λμ−μ+1)]+λ(2μ−λμ−1)[p+1]q[p]q]L21a2p+1}z2+…, |
by (2.1) and (2.2) we see that
A1E1=[μ+λ([p+1]q[p]q−1)]L1ap+1, |
A1E2+A2E21=[μ+λ([p+2]q[p]q−1)]L2ap+2+[μ−12[μ−2λ(λμ−μ+1)]+λ(2μ−λμ−1)[p+1]q[p]q]L21a2p+1. |
Thereby
ap+1=A1E1[p]qL1[μ[p]q+λ([p+1]q−[p]q)] | (2.3) |
and
ap+2=(A1E2+A2E21)[p]qL2[μ[p]q+λ([p+2]q−[p]q)]−A21E21[p]2q{(μ−1)[μ−2λ(λμ−μ+1)][p]q+2λ(2μ−λμ−1)[p+1]q}2L2[μ[p]q+λ([p+1]q−[p]q)]2[μ[p]q+λ([p+2]q−[p]q)]. | (2.4) |
Further, with (2.3) and (2.4) we obtain that
ap+2−δa2p+1=A1[p]qL2[μ[p]q+λ([p+2]q−[p]q)][E2−ℏE21], |
where
ℏ={2δL2[μ[p]q+λ([p+2]q−[p]q)]+L21[(μ−1)[μ−λ(λμ−μ+1)][p]q+2λ(2μ−λμ−1)[p+1]q]}A1[p]q2L21[μ[p]q+λ([p+1]q−[p]q)]2−A2A1. |
Therefore, according to Lemma 1.5 we finish the proof of Theorem 2.1.
Corollary 2.2. If f(z)∈Ap belongs to the class LNηp,q(μ,λ;ϕ), then
|ap+2|≤A1[p]q|L2|[μ[p]q+λ([p+2]q−[p]q)]×max{1;|(μ−1)[μ−λ(λμ−μ+1)][p]q+2λ(2μ−λμ−1)[p+1]q2[μ[p]q+λ([p+1]q−[p]q)]2−A2A1|}. |
Moreover, the sharp result holds for the next function
ω(z)=zorω(z)=z2,(z∈Δ). |
When ϕ∈P, combining (2.3) and (2.4) with Lemma 1.6 we instantly establish the next corollary for the coefficient bounds of ap+1 and ap+2.
Corollary 2.3. If f(z)∈Ap belongs to the class LNηp,q(μ,λ;ϕ), then
|ap+1|≤2|E1|[p]q|L1|[μ[p]q+λ([p+1]q−[p]q)] |
and
|ap+2|≤2(|E2|+|E1|2)[p]q|L2|[μ[p]q+λ([p+2]q−[p]q)]+2E21[p]2q|(μ−1)[μ−λ(λμ−μ+1)][p]q+2λ(2μ−λμ−1)[p+1]q||L2|[μ[p]q+λ([p+1]q−[p]q)]2[μ[p]q+λ([p+2]q−[p]q)]. |
If we choose real δ and η, then by Lemma 1.7 we derive the next result for Fekete-Szegö problem.
Theorem 2.4. Let δ,η∈R and ϕ∈Λ satisfying
ϕ(z)=1+∞∑n=1Anzn,(A1,A2>0,z∈Δ). |
If f(z)∈Ap belongs to the class LNηp,q(μ,λ;ϕ), then
|ap+2−δa2p+1|≤{[p]qL2[μ[p]q+λ([p+2]q−[p]q)]{A2−A21[p]qΘ2L21|μ[p]q+λ([p+1]q−[p]q)]2},(δ≤Υ1);A1[p]qL2[μ[p]q+λ([p+2]q−[p]q)],(Υ1≤δ≤Υ2);[p]qL2[μ[p]q+λ([p+2]q−[p]q)]{−A2+A21[p]qΘ2L21|μ[p]q+λ([p+1]q−[p]q)]2},(δ≥Υ2), |
where
Υ1=(A2−A1)L21[μ[p]q+λ([p+1]q−[p]q)]2A21L2[p]q[μ[p]q+λ([p+2]q−[p]q)]−L21[(μ−1)[μ−λ(λμ−μ+1)][p]q+2λ(2μ−λμ−1)[p+1]q]2L2[μ[p]q+λ([p+2]q−[p]q)] |
and
Υ2=(A2+A1)L21[μ[p]q+λ([p+1]q−[p]q)]2A21L2[p]q[μ[p]q+λ([p+2]q−[p]q)]−L21[(μ−1)[μ−λ(λμ−μ+1)][p]q+2λ(2μ−λμ−1)[p+1]q]2L2[μ[p]q+λ([p+2]q−[p]q)]. |
Moreover, we take
Υ3=A2L21[μ[p]q+λ([p+1]q−[p]q)]2A21L2[p]q[μ[p]q+λ([p+2]q−[p]q)]−L21[(μ−1)[μ−λ(λμ−μ+1)][p]q+2λ(2μ−λμ−1)[p+1]q]2L2[μ[p]q+λ([p+2]q−[p]q)]. |
Then, each of the following results is true:
(A) For δ∈[Υ1,Υ3],
|ap+2−δa2p+1|+{2(A1−A2)L21[μ[p]q+λ([p+1]q−[p]q)]2+A21[p]qΘ}×|ap+1|22A21L2[p]q[μ[p]q+λ([p+2]q−[p]q)]≤A1[p]qL2[μ[p]q+λ([p+2]q−[p]q)]; |
(B) For δ∈[Υ3,Υ2],
|ap+2−δa2p+1|+{2(A1+A2)L21[μ[p]q+λ([p+1]q−[p]q)]2−A21[p]qΘ}×|ap+1|22A21L2[p]q[μ[p]q+λ([p+2]q−[p]q)]≤A1[p]qL2[μ[p]q+λ([p+2]q−[p]q)], |
where
Θ=2δL2[μ[p]q+λ([p+2]q−[p]q)]+L21[(μ−1)[μ−λ(λμ−μ+1)][p]q+2λ(2μ−λμ−1)[p+1]q]. |
Remark 2.5. Fixing the parameter p=1 in Theorems 2.1 and 2.4, we can state the new results for the univalent function classes LNη1,q(μ,λ;ϕ)=LNηq(μ,λ;ϕ). As Remark 1.4, we may consider LNηp,q(μ,λ;α) or LNηp,q(μ,λ;β) to establish latest results. On the other hand, for the different parameters μ and λ, we can deduce new results for LNηp,q(μ,λ;ϕ).
In the section we mainly consider Fekete-Szegö functional problem for the class LMηp,q(λ;ϕ) and establish the theorem as follows.
Theorem 3.1. Let δ∈C. If f(z)∈Ap belongs to the class LMηp,q(λ;ϕ), then
|ap+2−δa2p+1|≤A1[p]2q|L2|([p+2]q−[p]q)[λ([p+2]q−[p]q)+[p]q]×max{1;|A1[p]qΦL21([p+1]q−[p]q)2[λ([p+1]q−[p]q)+[p]q]2−A2A1|}, |
where
Φ=δL2[p]q([p+2]q−[p]q)[λ([p+2]q−[p]q)+[p]q]+L21([p+1]q−[p]q)[λ([p+1]2q−[p]2q)+[p]2q]. |
Moreover, the sharp result holds for the next function
ω(z)=zorω(z)=z2,(z∈Δ). |
Proof. If f∈LMηp,q(λ;ϕ), from Definition 1.2 there exists an analytic function ω(z)∈Ω such that
(1−λ)zDq(Jηp,qf)(z)[p]qJηp,qf(z)+λ[p]q(1+qzDq[Dq(Jηp,qf)](z)Dq(Jηp,qf)(z))=ϕ(ω(z)). | (3.1) |
Part case
zDq(Jηp,qf)(z)[p]qJηp,qf(z)=1+([p+1]q[p]q−1)L1ap+1z+[([p+2]q[p]q−1)L2ap+2−([p+1]q[p]q−1)L21a2p+1]z2+…, |
1[p]q(1+qzDq[Dq(Jηp,qf)](z)Dq(Jηp,qf)(z))=1+L1[p+1]q[p]q([p+1]q[p]q−1)ap+1z+[L2[p+2]q[p]q([p+2]q[p]q−1)ap+2−L21[p+1]2q[p]2q([p+1]q[p]q−1)a2p+1]z2+…. |
Since
(1−λ)zDq(Jηp,qf)(z)[p]qJηp,qf(z)+λ[p]q(1+qzDq[Dq(Jηp,qf)](z)Dq(Jηp,qf)(z))=1+([p+1]q[p]q−1)[λ([p+1]q[p]q−1)+1]L1ap+1z+{([p+2]q[p]q−1)[λ([p+2]q[p]q−1)+1]L2ap+2−([p+1]q[p]q−1)[λ([p+1]2q[p]2q−1)+1]L21a2p+1}z2+…, |
by (2.1) and (3.1) we note that
A1E1=([p+1]q[p]q−1)[λ([p+1]q[p]q−1)+1]L1ap+1 |
and
A1E2+A2E21=([p+2]q[p]q−1)[λ([p+2]q[p]q−1)+1]L2ap+2−([p+1]q[p]q−1)[λ([p+1]2q[p]2q−1)+1]L21a2p+1. |
Then, it leads to
ap+1=A1E1[p]2qL1([p+1]q−[p]q)[λ([p+1]q−[p]q)+[p]q] | (3.2) |
and
ap+2=[p]2qL2([p+2]q−[p]q)[λ([p+2]q−[p]q)+[p]q]×[(A1E2+A2E21)+A21E21[p]q{λ([p+1]2q−[p]2q)+[p]2q}([p+1]q−[p]q)[λ([p+1]q−[p]q)+[p]q]2]. | (3.3) |
Furthermore, in accordance with (3.2) and (3.3) we gain that
ap+2−δa2p+1=A1[p]2qL2([p+2]q−[p]q)[λ([p+2]q−[p]q)+[p]q][E2−ϱE21], |
where
ϱ=A1[p]qΦL21([p+1]q−[p]q)2[λ([p+1]q−[p]q)+[p]q]2−A2A1. |
Thus, from Lemma 1.5 we give the Fekete-Szegö functional inequality in Theorem 3.1.
Corollary 3.2. If f(z)∈Ap belongs to the class LMηp,q(λ;ϕ), then
|ap+2|≤A1[p]2q|L2|([p+2]q−[p]q)[λ([p+2]q−[p]q)+[p]q]×max{1;|A1[p]q[λ([p+1]2q−[p]2q)+[p]2q]([p+1]q−[p]q)[λ([p+1]q−[p]q)+[p]q]2−A2A1|}. |
Moreover, the sharp result holds for the next function
ω(z)=zorω(z)=z2,(z∈Δ). |
If ϕ∈P, by (3.2) and (3.3) we take Lemma 1.6 to prove the next corollary for the coefficient bounds of ap+1 and ap+2.
Corollary 3.3. If f(z)∈Ap belongs to the class LMηp,q(λ;ϕ), then
|ap+1|≤2|E1|[p]2q|L1|([p+1]q−[p]q)[λ([p+1]q−[p]q)+[p]q] |
and
|ap+2|≤2[p]2q|L2|([p+2]q−[p]q)[λ([p+2]q−[p]q)+[p]q]×[(|E2|+|E1|2)+2|E1|2[p]q{λ([p+1]2q−[p]2q)+[p]2q}([p+1]q−[p]q)[λ([p+1]q−[p]q)+[p]q]2]. |
On the other hand, if we take real δ and η, then by Lemma 1.7 we give the next result for Fekete-Szegö problem.
Theorem 3.4. Let δ,η∈R and ϕ∈Λ satisfying
ϕ(z)=1+∞∑n=1Anzn,(A1,A2>0,z∈Δ). |
If f(z)∈Ap belongs to the class LMηp,q(λ;ϕ), then
|ap+2−δa2p+1|≤ |
{[p]2q|L2|([p+2]q−[p]q)[λ([p+2]q−[p]q)+[p]q]{A2−A21[p]qΦL21([p+1]q−[p]q)2[λ([p+1]q−[p]q)+[p]q]2},(δ≤Γ1);A1[p]2q|L2|([p+2]q−[p]q)[λ([p+2]q−[p]q)+[p]q],(Γ1≤δ≤Γ2);[p]2q|L2|([p+2]q−[p]q)[λ([p+2]q−[p]q)+[p]q]{−A2+A21[p]qΦL21([p+1]q−[p]q)2[λ([p+1]q−[p]q)+[p]q]2},(δ≥Γ2), |
where
Γ1={(A2−A1)([p+1]q−[p]q){λ([p+1]q−[p]q)+[p]q}2−A21[p]q[λ([p+1]2q−[p]2q)+[p]2q)]}×L21([p+1]q−[p]q)L2A21[p]2q([p+2]q−[p]q)[λ([p+2]q−[p]q)+[p]q] |
and
Γ2={(A2+A1)([p+1]q−[p]q){λ([p+1]q−[p]q)+[p]q}2−A21[p]q[λ([p+1]2q−[p]2q)+[p]2q)]}×L21([p+1]q−[p]q)L2A21[p]2q([p+2]q−[p]q)[λ([p+2]q−[p]q)+[p]q]. |
Moreover, we choose
Γ3={A2([p+1]q−[p]q){λ([p+1]q−[p]q)+[p]q}2−A21[p]q[λ([p+1]2q−[p]2q)+[p]2q)]}×L21([p+1]q−[p]q)L2A21[p]2q([p+2]q−[p]q)[λ([p+2]q−[p]q)+[p]q]. |
Then, each of the following results is true:
(A) For δ∈[Γ1,Γ3],
|ap+2−δa2p+1|+(A1−A2)L21([p+1]q−[p]q)2[λ([p+1]q−[p]q)+[p]q]2+A21[p]qΦA21L2[p]2q([p+2]q−[p]q)[λ([p+2]q−[p]q)+[p]q]|ap+1|2≤A1[p]2qL2([p+2]q−[p]q)[λ([p+2]q−[p]q)+[p]q]; |
(B) For δ∈[Γ3,Γ2],
|ap+2−δa2p+1|+(A1+A2)L21([p+1]q−[p]q)2[λ([p+1]q−[p]q)+[p]q]2−A21[p]qΦA21L2[p]2q([p+2]q−[p]q)[λ([p+2]q−[p]q)+[p]q]|ap+1|2≤A1[p]2qL2([p+2]q−[p]q)[λ([p+2]q−[p]q)+[p]q], |
where
Φ=δL2[p]q([p+2]q−[p]q)[λ([p+2]q−[p]q)+[p]q]+L21[p+1]q([p+1]q−[p]q)[λ([p+1]q−[p]q)+[p]q]. |
Remark 3.5. Similarly, by taking the parameter p=1 in Theorems 3.1 and 3.4, we can obtain the new results for the univalent function classes LMη1,q(λ;ϕ)=LMηq(λ;ϕ). As Remark 1.4, we may consider LMηp,q(λ;α) or LMηp,q(λ;β) to establish latest results. Clearly, for special parameter λ, we can still imply new results for LMηp,q(λ;ϕ).
In the section we investigate Fekete-Szegö functional problem for the class NSηp,q(μ;ϕ) and obtain the corresponding theorem below.
Theorem 4.1. Let δ∈C. If f(z)∈Ap belongs to the class NSηp,q(μ;ϕ), then
|ap+2−δa2p+1|≤A1[p]q|L2|(μ[p]q+[p+2]q−[p]q)×max{1;|A1[p]qΨ2L21(μ[p]q+[p+1]q−[p]q)2−A2A1|}, |
where
Ψ=2δL2[p]q(μ[p]q+[p+2]q−[p]q)+(μ−1)[μ[p]q+2([p+1]q−[p]q)]L21. |
Moreover, the sharp result holds for the next function
ω(z)=zorω(z)=z2,(z∈Δ). |
Proof. Since f∈NSηp,q(μ;ϕ), from Definition 1.3 there exists an analytic function ω(z)∈Ω such that
(zDq(Jηp,qf)(z)[p]qJηp,qf(z))(Jηp,qf(z)zp)μ=ϕ(ω(z)). | (4.1) |
Part case
zDq(Jηp,qf)(z)[p]qJηp,qf(z)=1+([p+1]q[p]q−1)L1ap+1z+[([p+2]q[p]q−1)L2ap+2−([p+1]q[p]q−1)L21a2p+1]z2+…, |
(Jηp,qf(z)zp)μ=1+μL1ap+1z+[μL2ap+2+μ(μ−1)2L21a2p+1]z2+[μL3ap+3+μ(μ−1)2L1L2ap+1ap+2+μ(μ−1)(μ−2)6L31a3p+1]z3+…. |
Since
(zDq(Jηp,qf)(z)[p]qJηp,qf(z))(Jηp,qf(z)zp)μ=1+([p+1]q[p]q−1+μ)L1ap+1z |
+{([p+2]q[p]q−1+μ)L2ap+2+(μ−1)[([p+1]q[p]q−1)+μ2]L21a2p+1}z2+…, |
from (2.1) and (4.1) we know that
A1E1=([p+1]q[p]q−1+μ)L1ap+1 |
and
A1E2+A2E21=([p+2]q[p]q−1+μ)L2ap+2+(μ−1)[([p+1]q[p]q−1)+μ2]L21a2p+1. |
Thus it deduces that
ap+1=A1E1[p]qL1(μ[p]q+[p+1]q−[p]q) | (4.2) |
and
ap+2=(A1E2+A2E21)[p]qL2(μ[p]q+[p+2]q−[p]q)−(μ−1)A21E21[p]2q[μ[p]q+2([p+1]q−[p]q)]2L2(μ[p]q+[p+2]q−[p]q)(μ[p]q+[p+1]q−[p]q)2. | (4.3) |
Moreover, in the light of (4.2) and (4.3) we know that
ap+2−δa2p+1=A1[p]qL2(μ[p]q+[p+2]q−[p]q)[E2−ℵE21], |
where
ℵ=2δL2[p]q(μ[p]q+[p+2]q−[p]q)+(μ−1)[μ[p]q+2([p+1]q−[p]q)]L212L21(μ[p]q+[p+1]q−[p]q)2A1[p]q−A2A1. |
Hence, in view of Lemma 1.5 we get the Fekete-Szegö functional inequality in Theorem 4.1.
Corollary 4.2. If f(z)∈Ap belongs to the class NSηp,q(μ;ϕ), then
|ap+2|≤A1[p]q|L2|(μ[p]q+[p+2]q−[p]q)×max{1;|A1(μ−1)[p]q{μ[p]q+2([p+1]q−[p]q)}2(μ[p]q+[p+1]q−[p]q)2−A2A1|}. |
Moreover, the sharp result holds for the next function
ω(z)=zorω(z)=z2,(z∈Δ). |
Once ϕ∈P, together with (4.2) and (4.3) we apply Lemma 1.6 to prove the next corollary for the coefficient bounds of ap+1 and ap+2.
Corollary 4.3. If f(z)∈Ap belongs to the class NSηp,q(μ;ϕ), then
|ap+1|≤2E1[p]q|L1|(μ[p]q+[p+1]q−[p]q) |
and
|ap+2|≤2(|E2|+|E1|2)[p]q|L2|(μ[p]q+[p+2]q−[p]q)+2|μ−1||E1|2[p]2q[μ[p]q+2([p+1]q−[p]q)]|L2|(μ[p]q+[p+2]q−[p]q)(μ[p]q+[p+1]q−[p]q)2. |
Clearly, if we let δ and η be real, then from Lemma 1.7 we also show the following result for Fekete-Szegö problem.
Theorem 4.4. Let δ,η∈R and ϕ∈Λ satisfying
ϕ(z)=1+∞∑n=1Anzn,(A1,A2>0,z∈Δ). |
If f(z)∈Ap belongs to the class NSηp,q(μ;ϕ), then
|ap+2−δa2p+1|≤{[p]qL2(μ[p]q+[p+2]q−[p]q){A2−A21[p]qΨ2L21(μ[p]q+[p+1]q−[p]q)2},(δ≤Π1);A1[p]qL2(μ[p]q+[p+2]q−[p]q);[p]qL2(μ[p]q+[p+2]q−[p]q){−A2+A21[p]qΨ2L21(μ[p]q+[p+1]q−[p]q)2},(δ≥Π2), |
where
Π1=2(A2−A1)L21(μ[p]q+[p+1]q−[p]q)2−A21(μ−1)L21[p]q[μ[p]q+2([p+1]q−[p]q)]2L2A21[p]2q(μ[p]q+[p+2]q−[p]q) |
and
Π2=2(A2+A1)L21(μ[p]q+[p+1]q−[p]q)2−A21(μ−1)L21[p]q[μ[p]q+2([p+1]q−[p]q)]2L2A21[p]2q(μ[p]q+[p+2]q−[p]q). |
Moreover, we put
Π1=2A2L21(μ[p]q+[p+1]q−[p]q)2−A21(μ−1)L21[p]q[μ[p]q+2([p+1]q−[p]q)]2L2A21[p]2q(μ[p]q+[p+2]q−[p]q). |
Then, each of the following results is true:
(A) For δ∈[Π1,Π3],
|ap+2−δa2p+1|+2(A1−A2)L21(μ[p]q+[p+1]q−[p]q)2+A21[p]qΨ2L2A21[p]q[μ[p]q+([p+2]q−[p]q)]|ap+1|2≤A1[p]qL2(μ[p]q+[p+2]q−[p]q); |
(B) For δ∈[Π3,Π2],
|ap+2−δa2p+1|+2(A1+A2)L21(μ[p]q+[p+1]q−[p]q)2−A21[p]qΨ2L2A21[p]q[μ[p]q+([p+2]q−[p]q)]|ap+1|2≤A1[p]qL2(μ[p]q+[p+2]q−[p]q), |
where
Ψ=2δL2[p]q(μ[p]q+[p+2]q−[p]q)+(μ−1)[μ[p]q+2([p+1]q−[p]q)]L21. |
Remark 4.5. Similarly, by choose the parameter p=1 in Theorems 4.1 and 4.4, we can provide the new results for the univalent function classes NSη1,q(μ;ϕ)=NSηq(μ;ϕ). As Remark 1.4, we may consider NSηp,q(μ;α) or NSηp,q(μ;β) to establish latest results. Besides, for the fixed parameter μ, we can still infer new results for NSηp,q(μ;ϕ).
By involving a generalized Bernardi integral operator, several new subclasses of q-starlike and q-convex type analytic and multivalent functions are introduced to generalize the classical starlike and convex functions. Meanwhile, for these classes we may know integral operator and q-derivative as well as multivalency how to change the coefficients of functions. In our main results, we establish the Fekete-Szegö type functional inequalities for these function classes. Further, the corresponding bound estimates of the coefficients ap+1 and ap+2 are interpreted. In fact, if we use the other integral operators or take (p,q)-operator when certain function is univalent but not multivalent, we may get many similar results as in this article.
We thank the referees for their careful readings and using comments so that this manuscript is greatly improved. This work is supported by Institution of Higher Education Scientific Research Project in Ningxia of the People's Republic of China under Grant NGY2017011, Natural Science Foundation of Ningxia of the People's Republic of China under Grant 2020AAC03066, the Program for Young Talents of Science and Technology in Universities of Inner Mongolia Autonomous Region under Grant NJYT-18-A14, the Natural Science Foundation of Inner Mongolia of the People's Republic of China under Grant 2018MS01026, the Natural Science Foundation of the People's Republic of China under Grant 11561001, 42064004 and 11762016.
The authors declare no conflict of interest.
[1] |
R. Kaur, S. Singh, A comprehensive review of object detection with deep learning, Digital Signal Process., 132 (2023), 103812. https://doi.org/10.1016/j.dsp.2022.103812 doi: 10.1016/j.dsp.2022.103812
![]() |
[2] |
P. Jiang, D. Ergu, F. Liu, Y. Cai, B. Ma, A Review of Yolo algorithm developments, Proc. Comput. Sci., 199 (2022), 1066–1073. https://doi.org/10.1016/j.procs.2022.01.135 doi: 10.1016/j.procs.2022.01.135
![]() |
[3] |
W. Liu, G. Wu, F. Ren, X. Kang, DFF-ResNet: An insect pest recognition model based on residual networks, Big Data Min. Anal., 3 (2020), 300–310. https://doi.org/10.26599/BDMA.2020.9020021 doi: 10.26599/BDMA.2020.9020021
![]() |
[4] |
A. Mughees, L. Tao, Multiple deep-belief-network-based spectral-spatial classification of hyperspectral images, Tsinghua Sci. Technol., 24 (2019), 183–194. https://doi.org/10.26599/TST.2018.9010043 doi: 10.26599/TST.2018.9010043
![]() |
[5] | T. Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, et al., Microsoft COCO: Common objects in context, in European Conference on Computer Vision, (2014), 740–755. https://doi.org/10.1007/978-3-319-10602-1_48 |
[6] |
O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, et al., ImageNet large scale visual recognition challenge, Int. J. Comput. Vis., 115 (2015), 211–252. https://doi.org/10.1007/s11263-015-0816-y doi: 10.1007/s11263-015-0816-y
![]() |
[7] |
Y. Fan, D. Ni, H. Ma, HyperDB: a hyperspectral land class database designed for an image processing system, Tsinghua Sci. Technol., 22 (2017), 112–118. https://doi.org/10.1109/TST.2017.7830901 doi: 10.1109/TST.2017.7830901
![]() |
[8] |
M. Everingham, S. M. A. Eslami, L. Van Gool, C. K. I. Williams, J. Winn, A. Zisserman, The PASCAL visual object classes challenge: A retrospective, Int. J. Comput. Vis., 111 (2015), 98–136. https://doi.org/10.1007/s11263-014-0733-5 doi: 10.1007/s11263-014-0733-5
![]() |
[9] |
S. Ren, K. He, R. Girshick, J. Sun, Faster R-CNN: Towards real-time object detection with region proposal networks, IEEE Trans. Pattern Anal. Mach. Intell., 39 (2017), 1137–1149. https://doi.org/10.1109/TPAMI.2016.2577031 doi: 10.1109/TPAMI.2016.2577031
![]() |
[10] | T. Y. Lin, P. Goyal, R. Girshick, K. He, P. Dollár, Focal loss for dense object detection, in 2017 IEEE International Conference on Computer Vision (ICCV), (2017), 2999–3007. https://doi.org/10.1109/ICCV.2017.324 |
[11] | X. Zhou, D. Wang, P. Krähenbühl, Objects as points, preprint, arXiv: 1904.07850. |
[12] |
K. He, G. Gkioxari, P. Dollár, R. Girshick, Mask R-CNN, IEEE Trans. Pattern Anal. Mach. Intell., 42 (2020), 386–397. https://doi.org/10.1109/TPAMI.2018.2844175 doi: 10.1109/TPAMI.2018.2844175
![]() |
[13] | M. Chen, F. Bai, Z. Gerile, Special object detection based on Mask RCNN, in 2021 17th International Conference on Computational Intelligence and Security (CIS), (2021), 128–132. https://doi.org/10.1109/CIS54983.2021.00035 |
[14] |
Z. Ou, Z. Wang, F. Xiao, B. Xiong, H. Zhang, M. Song, et al., AD-RCNN: Adaptive dynamic neural network for small object detection, IEEE Int. Things J., 10 (2023), 4226–4238. https://doi.org/10.1109/JIOT.2022.3215469 doi: 10.1109/JIOT.2022.3215469
![]() |
[15] |
L. Yang, Y. Xu, S. Wang, C. Yang, Z. Zhang, B. Li, et al., PDNet: Toward better one-stage object detection with prediction decoupling, IEEE Trans. Image Process., 31 (2022), 5121–5133. https://doi.org/10.1109/TIP.2022.3193223 doi: 10.1109/TIP.2022.3193223
![]() |
[16] | J. Redmon, S. Divvala, R. Girshick, A. Farhadi, You only look once: Unified, real-time object detection, in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), (2016), 770–778. https://doi.ieeecomputersociety.org/10.1109/CVPR.2016.91 |
[17] | W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C. Y. Fu, et al., SSD: Single shot multiBox detector, in European Conference on Computer Vision, (2016), 21–37. https://doi.org/10.1007/978-3-319-46448-0_2 |
[18] | J. Redmon, A. Farhadi, YOLOv3: An incremental improvement, preprint, arXiv: 1804.02767. |
[19] |
G. Wang, J. Wu, B. Tian, S. Teng, L. Chen, D. Cao, et al., CenterNet3D: An anchor free object detector for point cloud, IEEE Trans. Intell. Transp. Syst., 23 (2022), 12953–12965. https://doi.org/10.1109/TITS.2021.3118698 doi: 10.1109/TITS.2021.3118698
![]() |
[20] | Z. Tian, C. Shen, H. Chen, T. He, FCOS: Fully convolutional one-stage object detection, in 2019 IEEE/CVF International Conference on Computer Vision (ICCV), (2019), 9626–9635. https://doi.ieeecomputersociety.org/10.1109/ICCV.2019.00972 |
[21] |
H. Law, J. Deng, CornerNet: Detecting objects as paired keypoints, Int. J. Comput. Vis., 128 (2020), 642–656. https://doi.org/10.1007/s11263-019-01204-1 doi: 10.1007/s11263-019-01204-1
![]() |
[22] |
J. Canny, A computational approach to edge detection, IEEE Trans. Pattern Anal. Mach. Intell., 8 (1986), 679–698. https://doi.org/10.1109/TPAMI.1986.4767851 doi: 10.1109/TPAMI.1986.4767851
![]() |
[23] |
D. Marr, E. Hildreth, Theory of edge detection, Proc. R. Soc. Lond. B, 207 (1980), 187–217. https://doi.org/10.1098/rspb.1980.0020 doi: 10.1098/rspb.1980.0020
![]() |
[24] |
J. Kittler, On the accuracy of the Sobel edge detector, Image Vis. Comput., 1 (1983), 37–42. https://doi.org/10.1016/0262-8856(83)90006-9 doi: 10.1016/0262-8856(83)90006-9
![]() |
[25] |
D. R. Martin, C. C. Fowlkes, J. Malik, Learning to detect natural image boundaries using local brightness, color, and texture cues, IEEE Trans. Pattern Anal. Mach. Intell., 26 (2004), 530–549. https://doi.org/10.1109/TPAMI.2004.1273918 doi: 10.1109/TPAMI.2004.1273918
![]() |
[26] |
P. Arbeláez, M. Maire, C. Fowlkes, J. Malik, Contour detection and hierarchical image segmentation, IEEE Trans. Pattern Anal. Mach. Intell., 33 (2011), 898–916. https://doi.org/10.1109/TPAMI.2010.161 doi: 10.1109/TPAMI.2010.161
![]() |
[27] | J. J. Lim, C. L. Zitnick, P. Dollár, Sketch tokens: A learned mid-level representation for contour and object detection, in 2013 IEEE Conference on Computer Vision and Pattern Recognitionn, (2013), 3158–3165. https://doi.org/10.1109/CVPR.2013.406 |
[28] | P. Dollár, C. L. Zitnick, Structured forests for fast edge detection, in 2013 IEEE International Conference on Computer Vision, (2013), 1841–1848. https://doi.org/10.1109/ICCV.2013.231 |
[29] | S. Xie, Z. Tu, Holistically-nested edge detection, in 2015 IEEE International Conference on Computer Vision (ICCV), (2015), 1395–1403. https://doi.org/10.1109/ICCV.2015.164 |
[30] | G. Bertasius, J. Shi, L. Torresani, DeepEdge: A multi-scale bifurcated deep network for top-down contour detection, in 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), (2015), 4380–4389. https://doi.org/10.1109/CVPR.2015.7299067 |
[31] | W. Shen, X. Wang, Y. Wang, X. Bai, Z. Zhang, DeepContour: A deep convolutional feature learned by positive-sharing loss for contour detection, in 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), (2015), 3982–3991. https://doi.org/10.1109/CVPR.2015.7299024 |
[32] | Z. Huang, L. Huang, Y. Gong, C. Huang, X. Wang, Mask scoring R-CNN, in 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), (2019), 6402–6411. https://doi.org/10.1109/CVPR.2019.00657 |
[33] | K. Chen, J. Pang, J. Wang, Y. Xiong, X. Li, S. Sun, et al., Hybrid task cascade for instance segmentation, in 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), (2019), 4974–4983. https://doi.org/10.1109/CVPR.2019.00511 |
[34] | C. L. Zitnick, P. Dollár, Edge boxes: Locating object proposals from edges, in European Conference on Computer Vision, (2014), 391–405. https://doi.org/10.1007/978-3-319-10602-1_26 |
[35] | J. Dai, H. Qi, Y. Xiong, Y. Li, G. Zhang, H. Hu, et al., Deformable convolutional networks, in 2017 IEEE International Conference on Computer Vision (ICCV), (2017), 764–773. https://doi.org/10.1109/ICCV.2017.89 |
[36] | Y. Kim, T. Kim, B. N. Kang, J. Kim, D. Kim, BAN: Focusing on boundary context for object detection, in Asian Conference on Computer Vision, (2018), 555–570. https://doi.org/10.1007/978-3-030-20876-9_35 |
[37] | J. Wang, W. Zhang, Y. Cao, K. Chen, J. Pang, T. Gong, et al., Side-aware boundary localization for more precise object detection, in European Conference on Computer Vision, (2020), 403–419. https://doi.org/10.1007/978-3-030-58548-8_24 |
[38] | C. Y. Fu, W. Liu, A. Ranga, A. Tyagi, A. C. Berg, DSSD: Deconvolutional single shot detector, preprint, arXiv: 1701.06659. |
[39] | R. Araki, T. Onishi, T. Hirakawa, T. Yamashita, H. Fujiyoshi, MT-DSSD: Deconvolutional single shot detector using multi task learning for object detection, segmentation, and grasping detection, in 2020 IEEE International Conference on Robotics and Automation (ICRA), (2020), 10487–10493. https://doi.org/10.1109/ICRA40945.2020.9197251 |
[40] | C. Y. Fu, M. Shvets, A. C. Berg, RetinaMask: Learning to predict masks improves state-of-the-art single-shot detection for free, preprint, arXiv: 1901.03353. |
[41] | R. K. Meleppat, M. V. Matham, L. K. Seah, Optical frequency domain imaging with a rapidly swept laser in the 1300nm bio-imaging window, in International Conference on Optical and Photonic Engineering, (2015), 721–729. https://doi.org/10.1117/12.2190530 |
[42] |
R. K. Meleppat, C. R. Fortenbach, Y. Jian, E. S. Martinez, K. Wagner, B. S. Modjtahedi, et al., In Vivo Imaging of Retinal and Choroidal Morphology and Vascular Plexuses of Vertebrates Using Swept-Source Optical Coherence Tomography, Transl. Vis. Sci. Technol., 11 (2022), 11. https://doi.org/10.1167/tvst.11.8.11 doi: 10.1167/tvst.11.8.11
![]() |
[43] | H. Huang, Research on Object Detection Based on Improved MASK R-CNN, Master's degree, Lanzhou University in Lanzhou, 2021. https://doi.org/10.27204/d.cnki.glzhu.2021.001818 |
1. | Pinhong Long, Jinlin Liu, Murugusundaramoorthy Gangadharan, Wenshuai Wang, Certain subclass of analytic functions based on $ q $-derivative operator associated with the generalized Pascal snail and its applications, 2022, 7, 2473-6988, 13423, 10.3934/math.2022742 | |
2. | H. M. Srivastava, Sarem H. Hadi, Maslina Darus, Some subclasses of p-valent $$\gamma $$-uniformly type q-starlike and q-convex functions defined by using a certain generalized q-Bernardi integral operator, 2023, 117, 1578-7303, 10.1007/s13398-022-01378-3 | |
3. | Ekram E. Ali, Georgia Irina Oros, Rabha M. El-Ashwah, Abeer M. Albalahi, Applications of fuzzy differential subordination theory on analytic $ p $ -valent functions connected with $ \mathfrak{q} $-calculus operator, 2024, 9, 2473-6988, 21239, 10.3934/math.20241031 | |
4. | Ekram E. Ali, Hari M. Srivastava, Abdel Moneim Y. Lashin, Abeer M. Albalahi, Applications of Some Subclasses of Meromorphic Functions Associated with the q-Derivatives of the q-Binomials, 2023, 11, 2227-7390, 2496, 10.3390/math11112496 |