In this paper, all simple Yetter-Drinfeld modules and indecomposable projective Yetter-Drinfeld modules over the 2-rank Taft algebra ˉA are construted and classified by Radford's method of constructing Yetter-Drinfeld modules over a Hopf algebra. Furthermore, the projective class ring of the category of Yetter-Drinfeld modules over ˉA is described explicitly by generators and relations.
Citation: Yaguo Guo, Shilin Yang. Projective class rings of the category of Yetter-Drinfeld modules over the 2-rank Taft algebra[J]. Electronic Research Archive, 2023, 31(8): 5006-5024. doi: 10.3934/era.2023256
[1] | Shengxiang Wang, Xiaohui Zhang, Shuangjian Guo . The Hom-Long dimodule category and nonlinear equations. Electronic Research Archive, 2022, 30(1): 362-381. doi: 10.3934/era.2022019 |
[2] | Dong Su, Shilin Yang . Representation rings of extensions of Hopf algebra of Kac-Paljutkin type. Electronic Research Archive, 2024, 32(9): 5201-5230. doi: 10.3934/era.2024240 |
[3] | Zhaoyong Huang . On the $ C $-flatness and injectivity of character modules. Electronic Research Archive, 2022, 30(8): 2899-2910. doi: 10.3934/era.2022147 |
[4] | Rongmin Zhu, Tiwei Zhao . The construction of tilting cotorsion pairs for hereditary abelian categories. Electronic Research Archive, 2025, 33(5): 2719-2735. doi: 10.3934/era.2025120 |
[5] | Juxiang Sun, Guoqiang Zhao . Gorenstein invariants under right Quasi-Frobenius extensions. Electronic Research Archive, 2025, 33(6): 3561-3570. doi: 10.3934/era.2025158 |
[6] | Dongxing Fu, Xiaowei Xu, Zhibing Zhao . Generalized tilting modules and Frobenius extensions. Electronic Research Archive, 2022, 30(9): 3337-3350. doi: 10.3934/era.2022169 |
[7] | Agustín Moreno Cañadas, Isaías David Marín Gaviria, Pedro Fernando Fernández Espinosa . Brauer configuration algebras and Kronecker modules to categorify integer sequences. Electronic Research Archive, 2022, 30(2): 661-682. doi: 10.3934/era.2022035 |
[8] | Francisco Javier García-Pacheco, María de los Ángeles Moreno-Frías, Marina Murillo-Arcila . On absolutely invertibles. Electronic Research Archive, 2024, 32(12): 6578-6592. doi: 10.3934/era.2024307 |
[9] | Dong Su, Fengxia Gao, Zhenzhen Gao . Module algebra structures of nonstandard quantum group $ X_{q}(A_{1}) $ on the quantum plane. Electronic Research Archive, 2025, 33(6): 3543-3560. doi: 10.3934/era.2025157 |
[10] | Daniel Sanchez, David Alfaya, Jaime Pizarroso . Motives meet SymPy: studying $ \lambda $-ring expressions in Python. Electronic Research Archive, 2025, 33(4): 2118-2147. doi: 10.3934/era.2025093 |
In this paper, all simple Yetter-Drinfeld modules and indecomposable projective Yetter-Drinfeld modules over the 2-rank Taft algebra ˉA are construted and classified by Radford's method of constructing Yetter-Drinfeld modules over a Hopf algebra. Furthermore, the projective class ring of the category of Yetter-Drinfeld modules over ˉA is described explicitly by generators and relations.
In 1998, Andruskiewitsch and Schneider (see [1]) introduced the liftingmethod which was extensively used in the classification of finite dimensional pointed and copointed Hopf algebras. In this process, Yetter-Drinfeld modules over a Hopf algebra (see [2]) play important roles. See for example [3,4,5,6,7,8,9,10,11,12]. Therefore, constructing Yetter-Drinfeld modules over a particular interesting Hopf algebra is very important.
In 2003, Radford [13] introduced a general technique to construct simple Yetter-Drinfeld modules. By this idea, one can get all simple Yetter-Drinfeld modules over a finite dimensional Hopf algebra. For example, Zhu and Chen [14] described all simple Yetter-Drinfeld modules over the Hopf Ore extension of the dihedral group Dn. Xiong [15] (see also Zhang [16] in somewhat different idea) constructed all simple (resp. indecomposable projective) Yetter-Drinfeld modules and then described their corresponding projective class rings over a non-semisimple and non-pointed Hopf algebra H4n which was firstly introduced in [17] and reconstructed via Hopf Ore extension of automorphism type in [18] by Yang and Zhang. It is remarked that all finite dimensional Hopf algebras over H8 and H12 were given in [7] and [8] respectively. In [19], all Yetter-Drinfeld modules and their corresponding Grothendieck rings for a 2n2-dimensional semisimple Hopf algebra H2n2 of Kac-Paljutkin type were constructed. In [20], all simple (resp. indecomposable projective) Yetter-Drinfeld modules and their corresponding projective class rings for a family of non-semisimple 8m-dimensional Hopf algebra H8m of tame type with even number m≥2.
Motivated by the above works, we will firstly construct and classify all simple (resp. indecomposable projective) Yetter-Drinfeld modules over ˉA by the Radford technique where ˉA is the 2-rank Taft algebra which Green ring was constructed in [21]. It is remarked that ˉA is isomorphic to H2(0,−1) as Hopf algebras given by f(x1)=b,f(x2)=c,f(y1)=ab,f(y2)=cd where a,b,c,d are generators of Hn(p,q). Here, Hn(p,q) is firstly constructed in [22] which is a family of n4-dimensional Hopf algebras where n≥2 is an integer, p and q are scalars in the ground field and q is a primitive n-th root of unity. The second task of this paper is to describe the projective class rings of the category of the Yetter-Drinfeld modules over ˉA. It is pointed that the projective class rings of Hn(0,q) and Hn(1,q) for n>2 in [23] are desribed. Also, we note that the n-rank Taft algebra ˉAq(n) based on the work in [24] was firstly introdcued in [25] in which its Drinfeld double D(ˉAq(n)) as well as all simple modules of D(ˉAq(n)) by the different method from the Radford technique, were constructed.
We organize the paper as follows. In Section 2, we recall some definitions and results. In Section 3, all simple (or indecomposable projective) Yetter-Drinfeld modules over ˉA are constructed. In Section 4, the indecomposable projective Yetter-Drinfeld modules corresponding to the simple Yetter-Drinfeld modules of ˉA are constructed and the tensor products of arbitrary simple and indecomposable projective Yetter-Drinfeld modules are established. Furthermore, the projective class ring of the category of the Yetter-Drinfeld modules over ˉA is described.
We firstly fix some notations. Throughout the paper, K is assumed to be an algebraically closed field of characteristic zero and [[a,b]]={a,a+1,⋯,b} for a≤b∈Z. The Sweedler notation
Δ(h)=∑(h)h(1)⊗h(2) |
for a Hopf algebra is used and some other notations are referred to [26].
The 2-rank Taft algebra ˉA was introduced in [21,22] which is generated by xi,yj,i,j=1,2, subject to the relations
x2i=1,y2j=0,x1x2=x2x1,y1y2=−y2y1,xiyj=−yjxi. |
ˉA is a Hopf algebra with the coalgebra structure and the antipode given by
Δ(xi)=xi⊗xi,ϵ(xi)=1,S(xi)=xi,Δ(yi)=yi⊗1+xi⊗yi,ϵ(yi)=0,S(yi)=yixi. |
Note that dimˉA=16 and {xk1xl2ys1yt2|k,l,s,t=0,1} forms a K-basis for ˉA.
For the definition of n-rank Taft algebra ˉAq(n), the authors are referred to [25]. It is well-known that among n-rank Taft algebras, the only 2-rank one is of tame type. From the viewpoint of representation theory, we are more interested in describing all simple (resp. indecomposable projective) modules in ˉAˉAYD. Note that ˉA=ˉA−1(2).
Lemma 2.1. [21] There are 4 non-isomorphic 1-dimensional simple ˉA-modules S(s1,s2) with the basis {υs1,s2}. The actions are given by
xi⋅υs1,s2=siυs1,s2,yi⋅υs1,s2=0 |
where i=1,2 and s1,s2=±1.
Let HM be the category of left H-modules. Recall that a left Yetter-Drinfeld H-module M for a finite dimensional Hopf algebra H is a left H-module (M,⋅) and a left H-comodule (M,ρ) satisfying
ρ(h⋅m)=∑h(1)m(−1)S(h(3))⊗h(2)⋅m(0),∀m∈M,h∈H |
where S is the antipode of H and ρ(m)=∑(m)m(−1)⊗m(0).
The category of left Yetter-Drinfeld H-modules is denoted by HHYD, whose morphisms are both H-linear and H-colinear maps (see [2]). Let V∈HHYD, the left dual V∗ is defined by
⟨h⋅f,v⟩=⟨f,S(h)v⟩,f(−1)⟨f(0),v⟩=S−1(v(−1))⟨f,v(0)⟩. | (2.1) |
According to Radford's results in [13], we have the following results.
Proposition 2.2. [13] If V,W∈HHYD then V⊗W∈HHYD. The actions and coactions are as follows:
h⋅(υ⊗ω)=∑(h)h(1)⋅υ⊗h(2)⋅ω,ρ(υ⊗ω)=∑(υ),(ω)υ(−1)ω(−1)⊗υ(0)⊗ω(0) |
where υ∈V,ω∈W,h∈H.
Lemma 2.3. [13] Let L∈HM. Then, we have
(1) H⊗L∈HHYD; the module and comodule actions are given by
g⋅(h⊗l)=∑(g)g(1)hS(g(3))⊗g(2)⋅l, | (2.2) |
ρ(h⊗l)=∑(h)h(1)⊗h(2)⊗l,∀h,g∈H,l∈L. | (2.3) |
(2) If M is a simple Yetter-Drinfeld H-module, then M=H⋅N for some simple subcomodule N of H⊗L where L is a simple left H-module.
Applying Proposition 2.2 and Lemma 2.3, we can construct all simple Yetter-Drinfeld modules over a specific Hopf algebra H, in particular, for H=ˉA.
Let U(k,l,s1,s2):=K{xk1xl2⊗υs1,s2} where s1,s2=±1,k,l∈Z2. We have
Lemma 3.1. For s1,s2=±1, the set
{U(k,l,s1,s2)|k,l∈Z2} |
forms a complete set of all simple subcomodules of ˉA⊗S(s1,s2).
Proof. Since dim(S(s1,s2))=1, ˉA⊗S(s1,s2)≅ˉA as (left) ˉA-comodules. Since ˉA is pointed, any simple subcomodule of ˉA is equal to Kg for some group-like element g in ˉA by [26, Corollary 5.1.8]. Thus, the lemma follows.
Let
I={(k,l,s1,s2)|k,l∈Z2,s1,s2=±1} |
and
I0={(k,l,s1,s2)|(k,l,s1,s2)∈I,s1=s2=(−1)k+l},I1={(k,l,s1,s2)|(k,l,s1,s2)∈I,s1=−s2=(−1)k+l},I2={(k,l,s1,s2)|(k,l,s1,s2)∈I,s1=−s2=(−1)k+l+1},I3={(k,l,s1,s2)|(k,l,s1,s2)∈I,s1=s2=(−1)k+l+1}. |
It's easy to see that I=3⋃t=0It.
Now, we consider the Yetter-Drinfeld module ˉA⋅U(k,l,s1,s2) by the rules given in Lemma 2.3 where (k,l,s1,s2)∈I.
(a) Assume that (k,l,s1,s2)∈I0. In this case
xi(xk1xl2⊗υs1,s2)=sixk1xl2⊗υs1,s2,yi(xk1xl2⊗υs1,s2)=0,ρ(xk1xl2⊗υs1,s2)=xk1xl2⊗xk1xl2⊗υs1,s2. |
We get 1-dimensional Yetter-Drinfeld modules M0(k,l):=K{θk,l} where θk,l=xk1xl2⊗υ(−1)k+l,(−1)k+l,k,l∈Z2. The actions and the coactions are given by
xi⋅θk,l=(−1)k+lθk,l,yi⋅θk,l=0,ρ(θk,l)=xk1xl2⊗θk,l |
where i=1,2.
(b) Assume that (k,l,s1,s2)∈I1. In this case
xi(xk1xl2⊗υs1,s2)=(−1)k+l+i−1xk1xl2⊗υs1,s2,yi(xk1xl2⊗υs1,s2)=(1+(−1)i)(−1)k+lxk1xl2yi⊗υs1,s2,xi(xk1xl2y2⊗υs1,s2)=(−1)k+l+ixk1xl2y2⊗υs1,s2,yi(xk1xl2y2⊗υs1,s2)=0,ρ(xk1xl2⊗υs1,s2)=xk1xl2⊗xk1xl2⊗υs1,s2,ρ(xk1xl2y2⊗υs1,s2)=xk1xl2y2⊗xk1xl2⊗υs1,s2+xk1xl+12⊗xk1xl2y2⊗υs1,s2. |
We get 2-dimensional Yetter-Drinfeld modules M1(k,l):=K{μk,l0,μk,l1} where μk,l0=xk1xl2⊗υs1,s2,μk,l1=xk1xl2y2⊗υs1,s2, s1=−s2=(−1)k+l,k,l∈Z2. The actions and the coactions are given by
xi⋅μk,l0=(−1)k+l+i−1μk,l0,yi⋅μk,l0=2δi,2(−1)k+lμk,l1,xi⋅μk,l1=(−1)k+l+iμk,l1,yi⋅μk,l1=0,ρ(μk,l0)=xk1xl2⊗μk,l0,ρ(μk,l1)=xk1xl2y2⊗μk,l0+xk1xl+12⊗μk,l1 |
where i=1,2.
Similarly, assume that (k,l,s1,s2)∈I2 and we get 2-dimensional Yetter-Drinfeld modules M2(k,l):=K{νk,l0,νk,l1} where νk,l0=xk1xl2⊗υs1,s2,νk,l1=xk1xl2y1⊗υs1,s2, s1=−s2=(−1)k+l+1,k,l∈Z2. The actions and the coactions are given by
xi⋅νk,l0=(−1)k+l+iνk,l0,yi⋅νk,l0=2δi,1(−1)k+lνk,l1,xi⋅νk,l1=(−1)k+l+i−1νk,l1,yi⋅νk,l1=0,ρ(νk,l0)=xk1xl2⊗νk,l0,ρ(νk,l1)=xk1xl2y1⊗νk,l0+xk+11xl2⊗νk,l1 |
where i=1,2.
(c) Assume that (k,l,s1,s2)∈I3. In this case
xi(xk1xl2⊗υs1,s2)=(−1)k+l+1xk1xl2⊗υs1,s2,yi(xk1xl2⊗υs1,s2)=2(−1)k+lxk1xl2yi⊗υs1,s2,xi(xk1xl2y1⊗υs1,s2)=(−1)k+lxk1xl2y1⊗υs1,s2,yi(xk1xl2y1⊗υs1,s2)=2(−1)k+l+1xk1xl2y1yi⊗υs1,s2,xi(xk1xl2y2⊗υs1,s2)=(−1)k+lxk1xl2y2⊗υs1,s2,yi(xk1xl2y2⊗υs1,s2)=2(−1)k+lxk1xl2yiy2⊗υs1,s2,xi(xk1xl2y1y2⊗υs1,s2)=(−1)k+l+1xk1xl2y1y2⊗υs1,s2,yi(xk1xl2y1y2⊗υs1,s2)=0,ρ(xk1xl2⊗υs1,s2)=xk1xl2⊗xk1xl2⊗υs1,s2,ρ(xk1xl2y1⊗υs1,s2)=xk1xl2y1⊗xk1xl2⊗υs1,s2+xk+11xl2⊗xk1xl2y1⊗υs1,s2,ρ(xk1xl2y2⊗υs1,s2)=xk1xl2y2⊗xk1xl2⊗υs1,s2+xk1xl+12⊗xk1xl2y2⊗υs1,s2,ρ(xk1xl2y1y2⊗υs1,s2)=xk1xl2y1y2⊗xk1xl2⊗υs1,s2−xk1xl+12y1⊗xk1xl2y2⊗υs1,s2+xk+11xl2y2⊗xk1xl2y1⊗υs1,s2+xk+11xl+12⊗xk1xl2y1y2⊗υs1,s2. |
We get 4-dimensional Yetter-Drinfeld modules M3(k,l):=K{ηk,l0,ηk,l1,ηk,l2,ηk,l3} where ηk,l0=xk1xl2⊗υs1,s1,ηk,l1=xk1xl2y1⊗υs1,s1,ηk,l2=xk1xl2y2⊗υs1,s1,ηk,l3=xk1xl2y1y2⊗υs1,s1, s1=(−1)k+l+1,k,l∈Z2. The actions and the coactions are given by
xi⋅ηk,l0=(−1)k+l+1ηk,l0,yi⋅ηk,l0=2(−1)k+lηk,li,xi⋅ηk,l1=(−1)k+lηk,l1,yi⋅ηk,l1=2δi,2(−1)k+l+1ηk,l3,xi⋅ηk,l2=(−1)k+lηk,l2,yi⋅ηk,l2=2δi,1(−1)k+lηk,l3,xi⋅ηk,l3=(−1)k+l+1ηk,l3,yi⋅ηk,l3=0,ρ(ηk,l0)=xk1xl2⊗ηk,l0,ρ(ηk,l1)=xk1xl2y1⊗ηk,l0+xk+11xl2⊗ηk,l1,ρ(ηk,l2)=xk1xl2y2⊗ηk,l0+xk1xl+12⊗ηk,l2,ρ(ηk,l3)=xk1xl2y1y2⊗ηk,l0+xk+11xl2y2⊗ηk,l1−xk1xl+12y1⊗ηk,l2+xk+11xl+12⊗ηk,l3 |
where i=1,2.
In summary, we have
Theorem 3.2. The set
{Mt(k,l)|k,l∈Z2,t∈[[0,3]]} |
forms a complete list of non-isomorphic simple Yetter-Drinfeld modules over ˉA.
Proof. (1) Let f0:M0(k,l)→M0(k′,l′),θk,l↦aθk′,l′ be a Yetter-Drinfeld module isomorphism where k,l,k′,l′∈Z2 and 0≠a∈K. Then, for i=1,2 we have
xi⋅f0(θk,l)=(−1)k′+l′aθk′,l′=f0(xi⋅θk,l)=(−1)k+laθk′,l′,(id⊗f0)ρ(θk,l)=axk1xl2⊗θk′,l′=ρ(f0(θk,l))=axk′1xl′2⊗θk′,l′. |
Hence, k=k′,l=l′. Therefore, M0(k,l)≅M0(k′,l′) if and only if k=k′,l=l′.
(2) Let 0≠L be a simple Yetter-Drinfeld submodule of M1(k,l) and 0≠v=a0μk,l0+a1μk,l1∈L where k,l∈Z2,a0,a1∈K. Then, we have
ρ(v)=(a0xk1xl2+a1xk1xl2y2)⊗μk,l0+a1xk1xl+12⊗μk,l1. |
Since a0xk1xl2+a1xk1xl2y2 and xk1xl+12 are linearly independent, μk,l0∈L. Moreover,
y2⋅μk,l0=2(−1)k+lμk,l1∈L. |
Thus, L=M1(k,l). Therefore, M1(k,l) is a simple Yetter-Drinfeld module. Similarly, M2(k,l) is also a simple Yetter-Drinfeld module.
Let
f1:M1(k,l)→M1(k′,l′)μk,l0↦b0μk′,l′0+b1μk′,l′1μk,l1↦b2μk′,l′0+b3μk′,l′1 |
be a Yetter-Drinfeld module isomorphism where k,l,k′,l′=0,1 and b0,b1,b2, b3∈K. Then, we have
y2⋅f1(μk,l1)=2(−1)k′+l′b2μk′,l′1=f1(y2⋅μk,l1)=0,(id⊗f1)ρ(μk,l0)=xk1xl2⊗(b0μk′,l′0+b1μk′,l′1)=ρ(f1(μk,l0))=(b0xk′1xl′2+b1xk′1xl′2y2)⊗μk′,l′0+b1xk′1xl′+12⊗μk′,l′1. |
Hence, b1=b2=0,b0,b3≠0,k=k′,l=l′. Therefore, M1(k,l)≅M1(k′,l′) if and only if k=k′,l=l′. Similarly, we have M2(k,l)≅M2(k′,l′) if and only if k=k′,l=l′.
Let
f2:M1(k,l)→M2(k′,l′)μk,l0↦c0νk′,l′0+c1νk′,l′1μk,l1↦c2νk′,l′0+c3νk′,l′1 |
be a Yetter-Drinfeld module isomorphism where k,l,k′,l′=0,1 and c0,c1,c2, c3∈K. Then, for i=1,2 we have
y1⋅f2(μk,l1)=2(−1)k′+l′c2νk′,l′1=f2(y1⋅μk,l1)=0,(id⊗f2)ρ(μk,l0)=xk1xl2⊗(c0νk′,l′0+c1νk′,l′1)=ρ(f2(μk,l0))=(c0xk′1xl′2+c1xk′1xl′2y1)⊗νk′,l′0+c1xk′+11xl′2⊗νk′,l′1. |
Hence, c1=c2=0 and
(id⊗f2)ρ(μk,l1)=c0xk1xl2y2⊗νk′,l′0+c3xk1xl+12⊗νk′,l′1=ρ(f2(μk,l1))=c3(xk′1xl′2y1⊗νk′,l′0+xk′+11xl′2⊗νk′,l′1). |
Then, c0=c3=0. Therefore, M1(k,l)≆M2(k′,l′) for k,l,k′,l′∈Z2.
(3) Let 0≠U be a simple Yetter-Drinfeld submodule of M3(k,l) and 0≠u=3∑t=0dtηk,lt∈U where d0,d1,d2,d3∈K,k,l=0,1. Then,
ρ(u)=(d0xk1xl2+d1xk1xl2y1+d2xk1xl2y2+d3xk1xl2y1y2)⊗ηk,l0+(d1xk+11xl2+d3xk+11xl2y2)⊗ηk,l1+(d2xk1xl+12−d3xk1xl+12y1)⊗ηk,l2+d3xk+11xl+12⊗ηk,l3. |
Since u≠0, the vector (d0,d1,d2,d3)≠0, we have ηk,l0∈U. Hence for i=1,2, yi⋅ηk,l0=2(−1)k+lηk,li∈U and y1⋅ηk,l2=2(−1)k+lηk,l3∈U. Therefore, U=M3(k,l) and M3(k,l) is a simple Yetter-Drinfeld module.
Let f3:M3(k,l)→M3(k′,l′),ηk,ls↦3∑t=0cs,tηk′,l′t be a Yetter-Drinfeld module isomorphism where s∈[[0,3]], k,l,k′,l′∈Z2 and cs,t∈K. Hence, for i=1,2 we have
yi⋅f3(ηk,l0)=f3(yi⋅ηk,l0), | (3.1) |
yi⋅f3(ηk,l1)=f3(yi⋅ηk,l1), | (3.2) |
(id⊗f3)ρ(ηk,l1)=ρ(f3(ηk,l1)). | (3.3) |
By (3.1) we have
yif3(ηk,l0)=yi3∑t=0c0,tηk′,l′t=c0,02(−1)k′+l′ηk′,l′i+(c0,12(−1)k′+l′+1(i−1)+c0,22(−1)k′+l′(2−i))ηk′,l′3=f3(yi⋅ηk,l0)=2(−1)k+l3∑t=0ci,tηk′,l′t. |
Then,
c1,0=c1,2=c2,0=c2,1=0,c0,0(−1)k′+l′=c1,1(−1)k+l=c2,2(−1)k+l,c0,2(−1)k′+l′=c1,3(−1)k+l,c0,1(−1)k′+l′+1=c2,3(−1)k+l. |
By (3.2) we have
yi⋅f3(ηk,l1)=c1,12(−1)k′+l′+1(i−1)ηk′,l′3=f3(yi⋅ηk,l1)=2(−1)k+l+1(i−1)3∑t=0ηk′,l′t. |
Then,
c3,0=c3,1=c3,2=0,c1,1(−1)k′+l′=c3,3(−1)k+l. |
By (3.3) we have
(id⊗f3)ρ(ηk,l1)=c0,0xk1xl2y1⊗ηk′,l′0+(c0,1xk1xl2y1+c1,1xk+11xl2)⊗ηk′,l′1+c0,2xk1xl2y1⊗ηk′,l′2+(c0,3xk1xl2y1+c1,3xk+11xl2)⊗ηk′,l′3=ρ(f3(ηk,l1))=(c1,1xk′1xl′2y1+c1,3xk′1xl′2y1y2)⊗ηk′,l′0+(c1,1xk′+11xl′2+c1,3xk′+11xl′2y2)⊗ηk′,l′1−c1,3xk′1xl′+12y1⊗ηk′,l′2+c1,3xk′+11xl′+12⊗ηk′,l′3. |
Then, c0,1=c0,2=c0,3=c1,3=c2,3=0,c0,0=c1,1=c2,2=c3,3≠0,k=k′,l=l′. Therefore, M3(k,l)≅M3(k′,l′) if and only if k=k′,l=l′.
By (1)–(3), the set
{Mt(k,l)|k,l∈Z2,t∈[[0,3]]} |
forms a complete list of non-isomorphic simple Yetter-Drinfeld modules over ˉA.
Corollary 3.3. (1) M0(k,l)∗=M0(k,l),Mi(k,l)∗=Mi(k+i−1,l+i) for k,l∈Z2,i=1,2.
(2) M3(k,l)∗=M3(k+1,l+1) for k,l∈Z2.
Proof. We only give the proof of (2), the other cases are similar.
Let {φk,lt|t∈[[0,3]]} be the dual basis of {ηk,lt|t∈[[0,3]]} such that
φk,l0(ηk,l0)=0,φk,l0(ηk,l1)=0,φk,l0(ηk,l2)=0,φk,l0(ηk,l3)=1,φk,l1(ηk,l0)=0,φk,l1(ηk,l1)=0,φk,l1(ηk,l2)=(−1)k+l,φk,l1(ηk,l3)=0,φk,l2(ηk,l0)=0,φk,l2(ηk,l1)=(−1)k+l−1,φk,l2(ηk,l2)=0,φk,l2(ηk,l3)=0,φk,l3(ηk,l0)=1,φk,l3(ηk,l1)=0,φk,l3(ηk,l2)=0,φk,l3(ηk,l3)=0. |
By (2.1) we have
xi⋅φk,l0=(−1)k+l+1φk,l0,yi⋅φk,l0=2(−1)k+lφk,li,xi⋅φk,l1=(−1)k+lφk,l1,yi⋅φk,l1=2δi,2(−1)k+l+1φk,l3,xi⋅φk,l2=(−1)k+lφk,l2,yi⋅φk,l2=2δi,1(−1)k+lφk,l3,xi⋅φk,l3=(−1)k+l+1φk,l3,yi⋅φk,l3=0,ρ(φk,l0)=xk+11xl+12⊗φk,l0,ρ(φk,l1)=xk+11xl+12y1⊗φk,l0+xk1xl+12⊗φk,l1,ρ(φk,l2)=xk+11xl+12y2⊗φk,l0+xk+11xl2⊗φk,l2,ρ(φk,l3)=xk+11xl+12y1y2⊗φk,l0+xk1xl+12y2⊗φk,l1−xk+11xl2y1⊗φk,l2+xk1xl2⊗φk,l3 |
where i=1,2. Hence M3(k,l)∗=M3(k+1,l+1).
Assume that H is a finite dimensional Hopf algebra. Let F(H) be the free abelian group generated by the isomorphic classes [M] of H-modules M. Then, the abelian group F(H) becomes a ring equipped with a multiplication given by the tensor product [M][N]=[M⊗N]. The Green ring r(H) is defined to be the quotient ring of F(H) module the relations [M⊕N]=[M]+[N]. The projective class ring of H is the subring of r(H) generated by its simple and projective modules. As is known, HHYD≅D(Hcop)M. where D(Hcop)M is the category of the left modules of Drinfeld double D(Hcop). For this reason, we have the projective class ring of HHYD which is denoted by rP(HHYD).
In this section, we briefly set D:=D(ˉAcop). Let P(V) be the projective cover of a simple D-module V, or equivalently, a simple Yetter-Drinfeld module V∈ˉAˉAYD. Let Irr(D) be the set of isomorphism classes of simple D-modules. One sees that
D≅⨁V∈Irr(D)P(V)⊕dimV |
and D is unimodular and quasi-triangular (see [26,27]).
For convenience, we let
A=(10000−10000−100001),B=(1000010000100001),Ci=(0000δi,1000δi,20000−δi,2δi,10),D=(1000y1x100y20x20y1y2x1y2−x2y1x1x2),E=(x1x2y10000−x2y100x1x2y1y20−x1y100−x2y1y20y1),F=(x1x2y2000−x1x2y1y2−x2y20000−x1y2000−x1y1y2y2),G=(x1x2y1y20000x2y1y20000x1y1y20000y1y2), |
A′=(0000100000000010),B′i=(xi000−xiy3−ix1x200xiyi010xiyiy3−ix1x2yiy3−ixi−11xi2),C′=(20000−2000010000−1),D′i=(1000y3−ixi−11xi200yi0xi0−yiy3−ixi−11xi2yi−xiy3−ix1x2) |
where i∈[[1,2]].
By a complex computation, we can obtain the following three classes of Yetter-Drinfeld modules for ˉA.
(1) P0(k,l),k,l∈Z2: it is of a basis {u0,u1,⋯,u15}, the matrices of the action and coaction of ˉA on P0(k,l) are given as follows.
[xi]=(−1)k+l(A0000−A0000−A0000A),[yi]=2(−1)k+l(−Ci000δi,1BCi00δi,2B0Ci00−δi,2Bδi,1B−Ci),ρ(W)=xk1xl2(x1x2D000Ex2D00F0x1D0Gx1F−x2ED)⊗W |
where W=(u0,u1,⋯,u15)T.
(2) P(k,l,j),k,l∈Z2,j∈[[1,2]]: it is of a basis {p0,p1,⋯,p7}, the matrices of the action and coaction of ˉA on P(k,l,j) are given as follows.
[xi]=(−1)k+l+i+j(−A00A),[yi]=(−1)k+l(2δi,3−jA′δi,jC′02δi,3−jA′),ρ(P)=xk1xl2(B′j00D′j)⊗P |
where P=(p0,p1,⋯,p7)T.
(3) Tj(k,l),k,l∈Z2,j∈[[1,2]]: it is of a basis {vj0,vj1,vj2,vj3}, the matrices of the action and coaction of ˉA on Tj(k,l) are given as follows.
[xi]=(−1)k+l−1A,[yi]=δi,3−j(−1)k+l(0020000200000000),ρ(U)=xk1xl2(x3−j000x3−jy3−j100001000y3−jx3−j)⊗U |
where U=(vj0,vj1,vj2,vj3)T.
Lemma 4.1. For k,l∈Z2,j∈[[1,2]], P0(k,l), P(k,l,j) and Tj(k,l) are indecomposable Yetter-Drinfeld modules over ˉA.
Proof. Suppose that P(k,l,j) is not indecomposable. Then, there exist two non-trivial submodules M and N such that P(k,l,j)=M⊕N. We claim that p7∉M and p7∉N. If p7∈M then p4,p5,p6∈M since
ρ(p7)=−xk1xl2yjy3−j⊗p4+xk+j−11xl+j2yj⊗p5−xk1xl2xjy3−j⊗p6+xk+j−11xl+j2xj⊗p7 |
which implies that
p0=(−1)k+l2yj⋅p4∈M,p1=(−1)k+l−12yj⋅p5∈M,p2=(−1)k+lyj⋅p6∈M,p3=(−1)k+l−1yj⋅p7∈M. |
Then, M=P(k,l,j). It's a contradiction. Similarly, if p7∈N then N=P(k,l,j), a contradiction too.
Therefore, we may assume p=6∑i=0αipi+p7∈M for some αi∈K, i∈[[0,6]]. Then,
ρ(p)=xk1xl2xj⊗(α0p0+α6p6)−xk1xl2xjy3−j⊗(α1p0+p6)+xk1xl2xjyj⊗α2p0+xk1xl2xjyjy3−j⊗α3p0+xk+j−11xl+j2xj⊗(α1p1+p7)+xk+j−11xl+j2xjyj⊗α3p1+xk1xl2⊗(α2p2+α4p4)+xk1xl2y3−j⊗(α3p2+α5p4)+xk+j−11xl+j2⊗(α3p3+α5p5)+xk1xl2yj⊗α6p4−xk1xl2yjy3−j⊗p4+xk+j−11xl+j2yj⊗p5. |
Hence, p5,α1p1+p7∈M which implies that
p7=(α1p1+p7)−α1p1=(α1p1+p7)−(−1)k+l−12α1yj⋅p5∈M. |
It is a contradiction. Therefore, P(k,l,j) is an indecomposable Yetter-Drinfeld module over ˉA. Similarly, one can check that P0(k,l) and Tj(k,l) are also indecomposable Yetter-Drinfeld modules over ˉA.
The results are followed.
It is easy to see P(k,l,j), P0(k,l) and Tj(k,l), k,l∈Z2,j=1,2 are non-isomorphic to each other. Denote Pi(k,l)=P(k+i,l+i−1,i) for i∈[[1,2]],k,l∈Z2.
Lemma 4.2. For k,l∈Z2,i∈[[0,2]], P(Mi(k,l))≅Pi(k,l) and P(M3(k,l))≅M3(k,l).
Proof. It is well known that D is a symmetric algebra [28] and every projective module is injective. Then, P(M0(k,l))=E(Mt(k,l)) for some t∈Z4 and the socle and top of P(M0(k,l)) coincides. Therefore, P(M0(k,l))≅E(M0(k,l)). By Lemma 4.1, P0(k,l) is an indecomposable module with SocP0(k,l)≅M0(k,l). Thus, P0(k,l) embeds in E(M0(k,l)) which implies that dimP(M0(k,l))≥dimP0(k,l)=16.
Similarly, dimP(Mi(k,l))≥dimPi(k,l)=8 since SocPi(k,l)≅Mi(k,l) for i=1,2.
It follows that
dimD=1∑k,l=0dimP(M0(k,l))+21∑k,l=02∑i=1dimP(Mi(k,l))+41∑k,l=0dimP(M3(k,l))≥4×16+2×8×8+4×4×4=256. |
Hence, we only have dimP(M0(k,l))=16, dimP(M1(k,l))=dimP(M2(k,l))=8, dimP(M3(k,l))=4.
Therefore, P(Mi(k,l))≅Pi(k,l) and P(M3(k,l))≅M3(k,l) for i∈[[0,2]].
Corollary 4.3. We have
DD≅1⨁k,l=0(P0(k,l)⊕P1(k,l)⊕2⊕P2(k,l)⊕2⊕M3(k,l)⊕4). |
By Corollary 4.3, it is obvious that Ti(k,l) is not projective for i=1,2.
Note that the tensor products of Yetter-Drinfeld modules are commutative since D is quasi-triangular.
Lemma 4.4. For k,k′,l,l′∈Z2, we have
(1) M0(k,l)⊗Mt(k′,l′)≅Mt(k+k′,l+l′) where t∈[[0,3]].
(2) M0(k,l)⊗Pi(k′,l′)≅Pi(k+k′,l+l′) where i∈[[0,2]].
Proof. (1) The results of (1) can be obtained by a direct computation.
(2) By (1) we have
P0(k+k′,l+l′)=P(M0(k,l)⊗M0(k′,l′))⊆M0(k,l)⊗P0(k′,l′). |
By Lemma 4.2 we have dimP0(k+k′,l+l′)=dim(M0(k,l)⊗P0(k′,l′)) and M0(k,l)⊗P0(k′,l′) is projective. Hence, M0(k,l)⊗P0(k′,l′)≅P(k+k′,l+l′). Similarly, we have M0(k,l)⊗P1(k′,l′)≅P1(k+k′,l+l′) and M0(k,l)⊗P2(k′,l′)≅P2(k+k′,l+l′).
Lemma 4.5. For k,k′,k″,l,l′,l″∈Z2,i=1,2, we have
(1) M1(k,l)⊗M2(k′,l′)≅M3(k+k′,l+l′).
(2) Mi(k,l)⊗Mi(k′,l′)≅Ti(k+k′,l+l′).
(3) Mi(k,l)⊗Mi(k′,l′)⊗Mi(k″,l″)
≅Mi(k+k′+k″+i−1,l+l′+l″+i)⊕2⊕Mi(k+k′+k″,l+l′+l″)⊕2.
(4) Mi(k,l)⊗M3(k′,l′)≅P3−i(k+k′+i−1,l+l′+i).
(5) M3(k,l)⊗M3(k′,l′)≅P0(k+k′+1,l+l′+1).
Proof. The statements (1), (2) can be obtained by a direct computation.
On the other hand, by Lemma 4.4 (1) it suffices to prove the cases for Mi(0,0)⊗3,Mi(0,0)⊗M3(0,0) and M3(0,0)⊗M3(0,0).
For the statement (3), note that Tj(0,0)=Mj(0,0)⊗Mj(0,0),j=1,2. Let {uj0,uj1} be a basis of Mj(0,0). The actions on the basis {uj0,uj1} and the coactions are given by
xi⋅uj0=(−1)i+juj0,yi⋅uj0=2δi,3−juj1,xi⋅uj1=(−1)i+j−1uj1,yi⋅uj1=0,ρ(uj0)=1⊗uj0,ρ(uj1)=y3−j⊗uj0+x3−j⊗uj1. |
where i=1,2. Let
λj0=uj0⊗vj0,λj1=uj1⊗vj0,λj2=uj0⊗vj1+uj1⊗vj0,λj3=uj1⊗vj1,λj4=uj0⊗vj2,λj5=uj1⊗vj2−uj0⊗vj0,λj6=uj1⊗vj2−uj0⊗vj3,λj7=uj1⊗vj3−uj0⊗vj1−uj1⊗vj0 |
and Lt=Kλj2t+Kλj2t+1 where t∈[[0,3]]. By a direct computation, we have L0≅L3≅Mj(j−1,j),L1≅L2≅Mj(0,0). Therefore,
Mj(0,0)⊗3≅Mj(j−1,j)⊕2⊕Mj(0,0)⊕2. |
For the statement (4), we have
HomD(Mi(0,0)⊗M3(0,0),M3−i(k,l))≅HomD(M3(0,0),M3−i(k,l)⊗Mi(0,0)∗)≅HomD(M3(0,0),M3−i(k,l)⊗Mi(i−1,i))≅HomD(M3(0,0),M3(k+i−1,l+i)) |
where i=1,2. By Schur's lemma, HomD(Mi(0,0)⊗M3(0,0),M3−i(k,l))≠0 if and only if k=i−1,l=i. Since Mi(0,0)⊗M3(0,0) is projective and dim(Mi(0,0)⊗M3(0,0))=dimP3−i(0,1)=8, we get that Mi(0,0)⊗M3(0,0)≅P3−i(i−1,i).
Similarly for the statement (5) we have
HomD(M3(0,0)⊗M3(0,0),M0(k,l))≅HomD(M3(0,0),M0(k,l)⊗M3(0,0)∗)≅HomD(M3(0,0),M0(k,l)⊗M3(1,1))≅HomD(M3(0,0),M3(k+1,l+1)). |
Hence, M3(0,0)⊗M3(0,0)≅P0(1,1).
Lemma 4.6. For k,k′,k″,l,l′,l″∈Z2,i=1,2 we have
(1) Mi(k,l)⊗Pi(k′,l′)≅P0(k+k′+i−1,l+l′+i).
(2) Mi(k,l)⊗P3−i(k′,l′)≅M3(k+k′,l+l′)⊕2⊕M3(k+k′+i−1,l+l′+i)⊕2.
Proof. It suffices to prove the lemma for Mi(0,0)⊗Pi(0,0) and Mi(0,0)⊗P3−i(0,0) by Lemma 4.4 (1) (2), where i=1,2.
(1) We have
HomD(Mi(0,0)⊗Pi(0,0),M0(k,l))≅HomD(Pi(0,0),M0(k,l)⊗Mi(0,0)∗)≅HomD(Pi(0,0),M0(k,l)⊗Mi(i−1,i))≅HomD(Pi(0,0),Mi(k+i−1,l+i)). |
Hence, Mi(0,0)⊗Pi(0,0)≅P0(i−1,i).
(2) Let N−1=0,Nt=t∑s=0Kvis for t∈[[0,3]], where i∈[[1,2]]. One can check that
0=N−1⊂N0⊂N1⊂N2⊂N3=Ti(k,l) |
is a Yetter-Drinfeld submodules chain of Ti(k,l) such that Nt/Nt−1 is a one dimensional Yetter-Drinfeld module and
N0≅N3/N2≅M0(k+i−1,l+i),N1/N0≅N2/N1≅M0(k,l). |
Hence, by Lemma 4.5 (4) we have
Mi(0,0)⊗P3−i(0,0)≅Mi(0,0)⊗Mi(0,0)⊗M3(i−1,i)≅Ti(0,0)⊗M3(i−1,i)≅(M0(i−1,i)⊕2⊕M0(0,0)⊕2)⊗M3(i−1,i)≅M3(0,0)⊕2⊕M3(i−1,i)⊕2. |
Lemma 4.7. For k,k′,k″,l,l′,l″∈Z2,i=1,2 we have
(1) M3(k,l)⊗Pi(k′,l′)≅M3−i(k,l)⊗P0(k′+1,l′+1)
≅P3−i(k+k′+1,l+l′+1)⊕2⊕P3−i(k+k′+i−1,l+l′+i)⊕2.
(2) Pi(k,l)⊗Pi(k′,l′)≅P0(k+k′+1, l+l′+1)⊕2⊕P0(k+k′+i−1,l+l′+i)⊕2.
(3) P1(k,l)⊗P2(k′,l′)≅M3(k,l)⊗P0(k′,l′)≅1⨁s,t=0M3(s,t)⊕4.
(4) Pi(k,l)⊗P0(k′,l′)≅1⨁s,t=0Pi(s,t)⊕4.
(5) P0(k,l)⊗P0(k′,l′)≅1⨁s,t=0P0(s,t)⊕4.
Proof. It suffices to prove the lemma for M3(0,0)⊗Pi(0,0), M3(0,0)⊗P0(0,0), Pi(0,0)⊗Pi(0,0), P1(0,0)⊗P2(0,0), Pi(0,0)⊗P0(0,0) and P0(0,0)⊗P0(0,0) by Lemma 4.4 (1) (2).
(1) Let V−1=0,Vt=∑ts=0(Kp2s+Kp2s+1) for t∈[[0,3]]. One can check that
0=V−1⊂V0⊂V1⊂V2⊂V3=P(k,l,i)=Pi(k+i,l+i−1) |
is a Yetter-Drinfeld submodules chain of Pi(k+i,l+i−1) such that Vt/Vt−1 is a two dimensional Yetter-Drinfeld module and
V0≅V3/V2≅Mi(k+i,l+i−1),V1/V0≅V2/V1≅Mi(k,l). |
Hence,
M3(0,0)⊗Pi(0,0)≅M3(0,0)⊗(Mi(0,0)⊕2⊕Mi(i,i−1)⊕2)≅P3−i(i−1,i)⊕2⊕P3−i(1,1)⊕2≅M3(0,0)⊗M3(i,i−1)⊗M3−i(0,0)≅P0(i−1,i)⊗M3−i(0,0). |
Therefore,
M3(0,0)⊗Pi(0,0)≅M0(i,i−1)⊗P0(i−1,i)⊗M3−i(0,0)≅P0(1,1)⊗M3−i(0,0) |
since
P3−i(i−1,i)⊕2⊕P3−i(1,1)⊕2≅M0(i,i−1)⊗(P3−i(i−1,i)⊕2⊕P3−i(1,1)⊕2). |
(2) By Lemma 4.6 (1), we have
Pi(0,0)⊗Pi(0,0)≅Pi(0,0)⊗(Mi(0,0)⊕2⊕Mi(i,i−1)⊕2)≅P0(i−1,i)⊕2⊕P0(1,1)⊕2. |
(3) By Lemma 4.5 (1) (4) (5) and Lemma 4.6 (2), we have
P1(0,0)⊗P2(0,0)≅P1(0,0)⊗(M2(0,0)⊕2⊕M2(0,1)⊕2)≅1⨁s,t=0M3(s,t)⊕2≅M2(1,0)⊗M3(0,0)⊗M1(0,1)⊗M3(0,0)≅M3(0,0)⊗P0(0,0). |
(4) By (1), we have
Pi(0,0)⊗P0(0,0)≅(Mi(0,0)⊕2⊕Mi(i,i−1)⊕2)⊗P0(0,0)≅1⨁s,t=0Pi(s,t)⊕4. |
(5) Let
κ0=u3−u6+u9+u12,κ1=u7+u13,κ2=u11+u14,κ3=u15,κ4=u1−u4,κ5=u5,κ6=u8−u2,κ7=u10,κ8=u0,κ9=u6−u3,κ10=u3+u9,κ11=u11−u14,κ12=u1,κ13=u2,κ14=u7,κ15=u6, |
and K−1=0,Kt=∑ts=0Kκs for t∈[[0,15]]. One sees that
0=K−1⊂K0⊂K1⊂⋯⊂K15=P0(k,l) |
is a Yetter-Drinfeld submodules chain of P0(k,l) such that Kt/Kt−1 is a one dimensional Yetter-Drinfeld module and
Ks/Ks−1≅M0(k,l), if s=0,9,10,15;Ks/Ks−1≅M0(k,l+1), if s=2,4,11,12;Ks/Ks−1≅M0(k+1,l), if s=1,6,13,14;Ks/Ks−1≅M0(k+1,l+1), if s=3,5,7,8. |
Hence,
P0(0,0)⊗P0(0,0)≅P0(0,0)⊗(1⨁s,t=0M0(s,t)⊕4)≅1⨁s,t=0P0(s,t)⊕4. |
The proof is finished.
Now, we can describe the projective class rings of ˉAˉAYD.
Let a1=[M0(1,0)],a2=[M0(0,1)],b1=[M1(0,0)],b2=[M2(0,0)].
Lemma 4.8. The following statements hold in rP(ˉAˉAYD).
(1) For k,l∈Z2,i=1,2,
[M0(k,l)]=ak1al2,[Mi(k,l)]=ak1al2bi,[M3(k,l)]=ak1al2b1b2,[Pi(k,l)]=ak+i1al+i+12bi1b3−i2,[P0(k,l)]=ak+11al+12b21b22. |
(2) For i=1,2,
a2i=1,b3i=2(1+ai−11ai2)bi. |
Proof. The results are easy to get from Lemma 4.4 and Lemma 4.5.
Corollary 4.9. The following set is a Z-basis of rP(ˉAˉAYD):
{ak1al2bs1bt2|k,l∈[[0,1]],s,t∈[[0,2]]}. |
Proof. By Lemma 4.8(2), a2i=1 and b3i=2(1+ai−11ai2)bi for all i∈[[1,2]]. By Lemma 4.5(2) we have b3i=2(1+ai−11ai2)bi for i=1,2. Hence, the highest degree of bi is 2. It is easy to check that the set
{ak1al2bs1bt2|k,l∈[[0,1]],s,t∈[[0,2]]} |
is an independent set since #{ak1al2bs1bt2|k,l,s,t∈Z2}=36, the number of Z-basis of rP(ˉAˉAYD). Therefore,
{ak1al2bs1bt2|k,l∈[[0,1]],s,t∈[[0,2]]} |
is a Z-basis of rP(ˉAˉAYD).
The results of this section is as follows.
Theorem 4.10. The projective class ring rP(ˉAˉAYD) is isomorphic to the quotient ring of the ring Z[x1,x2,y1,y2] module the ideal I generated by the following elements
x2i−1,y3i−2(1+xi−11xi2)yi,i=1,2. | (4.1) |
Proof. By Corollary 4.9, there is a unique ring epimorphism
Φ:Z[x1,x2,y1,y2]→rP(ˉAˉAYD) |
such that Φ(xi)=ai,Φ(yi)=bi for i=1,2. By Lemma 4.8(2) we have
Φ(x2i−1)=a2i−1=0,Φ(y3i−2(1+xi−11xi2)yi)=b3i−2(1+ai−11ai2)bi=0. |
It follows that Φ(I)=0 and hence Φ induces a natural ring epimorphism
¯Φ:Z[x1,x2,y1,y2]/I→rP(ˉAˉAYD) |
such that ¯Φ(¯ν)=Φ(ν) for all ν∈Z[x1,x2,y1,y2], where ¯ν=ν+I. It is straightforward to check that the ring Z[x1,x2,y1,y2]/I is Z-spanned by
{¯x1k¯x2l¯y1s¯y2t|k,l∈[[0,1]],s,t∈[[0,2]]}. |
This means the Z-rank of Z[x1,x2,y1,y2]/I is 36. Hence, we get the ring isomorphism ¯Φ.
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
The work is supported by National Natural Science Foundation of China (Grant No. 11671024). The authors are grateful to the referees for careful reading and helpful suggestions.
The authors declare there is no conflicts of interest.
[1] |
N. Andruskiewitsch, H. J. Schneider, Lifting of quantum linear spaces and pointed Hopf algebras of orderp3, J. Algebra, 209 (1998), 658–691. http://doi.org/10.1006/jabr.1998.7643 doi: 10.1006/jabr.1998.7643
![]() |
[2] |
D. N. Yetter, Quantum groups and representations of monoidal categories, Math. Proc. Cambridge, 108 (1990), 261–290. http://doi.org/10.1017/S0305004100069139 doi: 10.1017/S0305004100069139
![]() |
[3] |
N. Andruskiewitsch, H. J. Schneider, Finite quantum groups and Cartan matrices, Adv. Math., 154 (2000), 1–45. http://doi.org/10.1006/aima.1999.1880 doi: 10.1006/aima.1999.1880
![]() |
[4] | N. Andruskiewitsch, H. J. Schneider, Pointed Hopf algebras, in New Directions in Hopf algebras, Cambridge: Cambridge University Press, (2002), 1–68. |
[5] |
N. Andruskiewitsch, H. J. Schneider, On the classification of finite dimensional pointed Hopf algebras, Ann. Math., 171 (2010), 375–417. http://doi.org/10.4007/annals.2010.171.375 doi: 10.4007/annals.2010.171.375
![]() |
[6] |
N. Andruskiewitsch, G. Carnovale, G. A. García, Finite dimensional pointed Hopf algebras over finite simple groups of Lie type Ⅰ. Non-semisimple classes in PSLn(q), J. Algebra, 442 (2015), 36–65. http://doi.org/10.1016/j.jalgebra.2014.06.019 doi: 10.1016/j.jalgebra.2014.06.019
![]() |
[7] |
G. A. García, J. M. J. Giraldi, On Hopf algebras over quantum subgroups, J. Pure Appl. Algebra, 223 (2019), 738–768. https://doi.org/10.1016/j.jpaa.2018.04.018 doi: 10.1016/j.jpaa.2018.04.018
![]() |
[8] | N. Hu, R. Xiong, Some Hopf algebras of dimension 72 without the Chevalley property, preprint, arXiv: 1612.04987. |
[9] |
Y. Shi, Finite dimensional Nichols algebras over Kac-Paljutkin algebra H8, Rev. Unión Mat. Argent., 60 (2019), 265–298. http://doi.org/10.33044/revuma.v60n1a17 doi: 10.33044/revuma.v60n1a17
![]() |
[10] |
R. Xiong, On Hopf algebras over the unique 12-dimensional Hopf algebra without the dual Chevalley property, Commun. Algebra, 47 (2019) 1516–1540. http://doi.org/10.1080/00927872.2018.1508582 doi: 10.1080/00927872.2018.1508582
![]() |
[11] |
Y. Zheng, Y. Gao, N. Hu, Finite dimensional Hopf algebras over the Hopf algebra Hb:1 of Kashina, J. Algebra, 567 (2021), 613–659. http://doi.org/10.1016/j.jalgebra.2020.09.035 doi: 10.1016/j.jalgebra.2020.09.035
![]() |
[12] |
Y. Zheng, Y. Gao, N. Hu, Finite dimensional Hopf algebras over the Hopf algebra Hd:−1,1 of Kashina, J. Pure Appl. Algebra, 225 (2021), 106527. https://doi.org/10.1016/j.jpaa.2020.106527 doi: 10.1016/j.jpaa.2020.106527
![]() |
[13] |
D. E. Radford, On oriented quantum algebras derived from representations of the quantum double of a finite dimensional Hopf algebra, J. Algebra, 270 (2003), 670–695. http://doi.org/10.1016/j.jalgebra.2003.07.006 doi: 10.1016/j.jalgebra.2003.07.006
![]() |
[14] |
H. Zhu, H. Chen, Yetter-Drinfeld modules over the Hopf-Ore extension of the group algebra of dihedral group, Acta Math. Sin., 28 (2012), 487–502. http://doi.org/10.1007/s10114-011-9777-4 doi: 10.1007/s10114-011-9777-4
![]() |
[15] | R. Xiong, Some classification results on finite dimensional Hopf algebras, Ph.D thesis, East China Normal University, 2019. |
[16] | Y. Zhang, The Ore extensions of Hopf algebras and their related topics, Ph.D thesis, Beijing University of Technology, 2020. |
[17] | J. Chen, S. Yang, D. Wang, Y. Xu, On 4n-dimension neither pointed nor semisimple Hopf algebras and the associated weak Hopf algebras, preprint, arXiv: 1809.00514. |
[18] |
S. Yang, Y. Zhang, Ore extensions for the Sweedler's Hopf algebra H4, Mathematics, 8 (2020), 1293. http://doi.org/10.3390/math8081293 doi: 10.3390/math8081293
![]() |
[19] |
Y. Guo, S. Yang, The Grothendieck ring of Yetter-Drinfeld modules over a class of 2n2-dimension Kac-Paljutkin Hopf algebras, Comm. Algebra, 51 (2023). https://doi.org/10.1080/00927872.2023.2213340 doi: 10.1080/00927872.2023.2213340
![]() |
[20] |
Y. Guo, S. Yang, Projective class rings of a kind of category of Yetter-Drinfeld modules, AIMS Mathematics, 8 (2023), 10997–11014. http://doi.org/10.3934/math.2023557 doi: 10.3934/math.2023557
![]() |
[21] |
Y. Li, N. Hu, The Green rings of the 2-rank Taft algebra and its two relatives twisted, J. Algebra, 410 (2014), 1–35. http://doi.org/10.1016/j.jalgebra.2014.04.006 doi: 10.1016/j.jalgebra.2014.04.006
![]() |
[22] |
H. X. Chen, A class of noncommutative and noncocommutative Hopf algebras: the quantum version, Comm. Algebra, 27 (1999), 5011–5032. http://doi.org/10.1080/00927879908826745 doi: 10.1080/00927879908826745
![]() |
[23] |
H. X. Chen, H. S. E. Mohammed, W. Lin, H. Sun, The projective class rings of a family of pointed Hopf algebras of rank two, Bull. Belg. Math. Soc. Simon Stevin, 23 (2016), 693–711. http://doi.org/10.36045/bbms/1483671621 doi: 10.36045/bbms/1483671621
![]() |
[24] | N. Hu, Quantum group structure associated to the quantum affine space, Algebra Colloq., 11 (2004), 483–492. |
[25] |
G. Feng, N. Hu, Y. Li, Drinfeld doubles of the n-rank Taft algebras and a generalization of the Jones polynomial, Pac. J. Math., 312 (2021), 421–456. http://doi.org/10.2140/pjm.2021.312.421 doi: 10.2140/pjm.2021.312.421
![]() |
[26] | S. Montgomery, Hopf algebras and their actions on rings, CBMS Regional Conference Series in Mathematics, 1993. http://doi.org/10.1090/cbms/082 |
[27] | M. Auslander, I. Reiten, S. O. Smalø, Representation theory of Artin algebras, Cambridge: Cambridge University Press, 1995. http://doi.org/10.1017/CBO9780511623608 |
[28] |
M. Lorenz, Representations of finite dimensional Hopf algebra, J. Algebra, 188 (1997), 476–505. https://doi.org/10.1006/jabr.1996.6827 doi: 10.1006/jabr.1996.6827
![]() |