Loading [MathJax]/jax/output/SVG/jax.js
Research article Special Issues

Some identities of degenerate higher-order Daehee polynomials based on λ-umbral calculus

  • The degenerate versions of special polynomials and numbers, initiated by Carlitz, have regained the attention of some mathematicians by replacing the usual exponential function in the generating function of special polynomials with the degenerate exponential function. To study the relations between degenerate special polynomials, λ-umbral calculus, an analogue of umbral calculus, is intensively applied to obtain related formulas for expressing one λ-Sheffer polynomial in terms of other λ-Sheffer polynomials. In this paper, we study the connection between degenerate higher-order Daehee polynomials and other degenerate type of special polynomials. We present explicit formulas for representations of the polynomials using λ-umbral calculus and confirm the presented formulas between the degenerate higher-order Daehee polynomials and the degenerate Bernoulli polynomials, for example. Additionally, we investigate the pattern of the root distribution of these polynomials.

    Citation: Dojin Kim, Sangbeom Park, Jongkyum Kwon. Some identities of degenerate higher-order Daehee polynomials based on λ-umbral calculus[J]. Electronic Research Archive, 2023, 31(6): 3064-3085. doi: 10.3934/era.2023155

    Related Papers:

    [1] Sang Jo Yun, Sangbeom Park, Jin-Woo Park, Jongkyum Kwon . Some identities of degenerate multi-poly-Changhee polynomials and numbers. Electronic Research Archive, 2023, 31(12): 7244-7255. doi: 10.3934/era.2023367
    [2] Weiran Ding, Jiansong Li, Yumeng Jia, Wanru Yang . Tractability of $ L_2 $-approximation and integration over weighted Korobov spaces of increasing smoothness in the worst case setting. Electronic Research Archive, 2025, 33(2): 1160-1184. doi: 10.3934/era.2025052
    [3] Mohra Zayed, Gamal Hassan . Kronecker product bases and their applications in approximation theory. Electronic Research Archive, 2025, 33(2): 1070-1092. doi: 10.3934/era.2025048
    [4] Muajebah Hidan, Ahmed Bakhet, Hala Abd-Elmageed, Mohamed Abdalla . Matrix-Valued hypergeometric Appell-Type polynomials. Electronic Research Archive, 2022, 30(8): 2964-2980. doi: 10.3934/era.2022150
    [5] Ibtissam Issa, Zayd Hajjej . Stabilization for a degenerate wave equation with drift and potential term with boundary fractional derivative control. Electronic Research Archive, 2024, 32(8): 4926-4953. doi: 10.3934/era.2024227
    [6] Jian Cao, José Luis López-Bonilla, Feng Qi . Three identities and a determinantal formula for differences between Bernoulli polynomials and numbers. Electronic Research Archive, 2024, 32(1): 224-240. doi: 10.3934/era.2024011
    [7] Qingjie Chai, Hanyu Wei . The binomial sums for four types of polynomials involving floor and ceiling functions. Electronic Research Archive, 2025, 33(3): 1384-1397. doi: 10.3934/era.2025064
    [8] Li Wang, Yuanyuan Meng . Generalized polynomial exponential sums and their fourth power mean. Electronic Research Archive, 2023, 31(7): 4313-4323. doi: 10.3934/era.2023220
    [9] Harman Kaur, Meenakshi Rana . Congruences for sixth order mock theta functions $ \lambda(q) $ and $ \rho(q) $. Electronic Research Archive, 2021, 29(6): 4257-4268. doi: 10.3934/era.2021084
    [10] Xinguang Zhang, Yongsheng Jiang, Lishuang Li, Yonghong Wu, Benchawan Wiwatanapataphee . Multiple positive solutions for a singular tempered fractional equation with lower order tempered fractional derivative. Electronic Research Archive, 2024, 32(3): 1998-2015. doi: 10.3934/era.2024091
  • The degenerate versions of special polynomials and numbers, initiated by Carlitz, have regained the attention of some mathematicians by replacing the usual exponential function in the generating function of special polynomials with the degenerate exponential function. To study the relations between degenerate special polynomials, λ-umbral calculus, an analogue of umbral calculus, is intensively applied to obtain related formulas for expressing one λ-Sheffer polynomial in terms of other λ-Sheffer polynomials. In this paper, we study the connection between degenerate higher-order Daehee polynomials and other degenerate type of special polynomials. We present explicit formulas for representations of the polynomials using λ-umbral calculus and confirm the presented formulas between the degenerate higher-order Daehee polynomials and the degenerate Bernoulli polynomials, for example. Additionally, we investigate the pattern of the root distribution of these polynomials.



    Special polynomials play a significantly important role in the development of several branches of mathematics, engineering, and physics by providing us with useful identities and properties. The study of special polynomials provides many useful identities, their relations, and representations associated with special numbers and polynomials. One of the powerful tools in this study is to investigate their generating functions [1,2] and connections[3,4,5,6] using the umbral calculus [7]. Furthermore, to better understand generating functions in special polynomials, the degenerate type of special polynomials has been extensively studied in many areas such as probability theory, fuzzy theory, connection problems, and other combinatorial theories in recent years by many mathematicians [8,9,10,11]. Since the introduction of degenerate versions of special polynomials and numbers by Carlitz [12], many researchers have been interested in the relationships between them. In addition, the degenerate version of umbral calculus, called λ-umbral calculus, plays a very powerful role in studying the relationships between degenerate versions of special polynomials and numbers. Recently, the Daehee polynomials and numbers were originally introduced as a new type of special polynomials by Kim and Kim [13] and thereafter their related properties and relationships with other polynomials have been extensively studied.

    In this study, we derive the formulas expressing degenerate higher-order Daehee polynomials in terms of the degenerate versions of other special polynomials by making use of λ-umbral calculus. These formulas provide the degenerate Daehee polynomials by taking r=1 and the Daehee polynomials by letting λ0. We first review the λ-analogue of umbral calculus: a class of λ-linear functionals on the polynomials, λ-differential operators based on the family of λ-linear functionals, and also λ-Sheffer sequences. See [14] and the references therein for more details on these contents.

    The rest of this section briefly recalls some necessary notations and definitions that are needed throughout this paper. Throughout this paper, we assume that λR{0} for simplicity.

    The degenerate exponential function exλ(t) is defined by

    exλ(t):=(1+λt)xλ=n=0(x)n,λtnn!,eλ(t):=e1λ(t)=n=0(1)n,λtnn!, (see [10, 13, 15, 16]),  (1.1)

    where (x)n,λ is a λ-analogue of the falling factorial sequence which is given by

    (x)n,λ=x(xλ)(x(n1)λ) for n1 and (x)0,λ=1, (see [14, 17]). (1.2)

    Also, the degenerate logarithm function is given by logλ(t):=1λ(tλ1), which is the compositional inverse of eλ(t), i.e.,

    logλ(eλ(t))=eλ(logλ(t))=t.

    In this study, we consider the degenerate higher-order Daehee polynomials D(r)n,λ(x) which are given by the generating function to be

    (logλ(1+t)t)r(1+t)x=n=0D(r)n,λ(x)tnn!,rN, (see [10, 15, 16]). (1.3)

    Especially, we call Dn,λ(x):=D(1)n,λ(x) the degenerate Daehee polynomials when r=1 and Dn,λ:=Dn,λ(0) the degenerate Daehee numbers when x=0.

    The degenerate Stirling numbers of the first kind S1,λ(n,m) and the second kind S2,λ(n,m) are respectively given by

    1m!(logλ(1+t))m=n=mS1,λ(n,m)tnn!,(m0), (see [9, 18]) (1.4)

    and

    1m!(eλ(t)1)m=n=mS2,λ(n,m)tnn!,(m0), (see [9, 18]). (1.5)

    Note that the falling factorial sequence (t)n is given by

    (t)n={t(t1)(t2)(t(n1)) for n1,(t)0=1 when n=0, (see [19]),

    which provides the relation with the λ-analogue of the falling factorial sequence such as

    (t)n,λ=nm=0S2,λ(n,m)(t)m,(n0).

    The main contribution of this paper is to provide various representations of the degenerate higher-order Daehee polynomials and numbers using λ-umbral calculus in terms of other well-known special polynomials and numbers. In more detail, we derive formulas for the n-th order of degenerate Daehee polynomials with the degenerate falling factorial polynomials, the degenerate type 2 Bernoulli polynomials, the degenerate Bernoulli polynomials, the degenerate Euler polynomials, the degenerate Mittag-Leffer polynomials, the degenerate Bell polynomials, and the degenerate Frobenius-Euler polynomials (see Theorems 2.1–2.7) as well as their inversion formulas. Therefore, we see that this technique enables us to represent various well-known polynomials in terms of degenerate higher-order Daehee polynomials and vice versa as a classical connection problem. In addition, to confirm the formulas, we present computational results between the degenerate higher-order Daehee polynomials and the degenerate Bernoulli polynomials for fixed variables. Moreover, we investigate the pattern of the root distribution of the polynomials.

    Now, we provide brief review of λ-umbral calculus: Let P be the algebra of polynomials in t over C, i.e.,

    P=C[t]={n=0antn|anC with an=0 for all but finite number of n}.

    and let F be the algebra of formal power series in t over the field C of complex numbers

    F={f(t)=n=0antnn!|anC}.

    Then, the λ-linear functional f(t)|λ on P for f(t)=n=0antnn!F is given by

    f(t)|(x)n,λλ=an,(n0), (see [14]),  (2.1)

    and it satisfies

    tk|(x)n,λλ=n!δn,k, (see [14]),  (2.2)

    where δn,k is the Kronecker delta.

    Note that the order of the formal power series for a nontrivial f(t), o(f(t)), is represented by the smallest integer k for which ak does not vanish. Especially, we call f(t) a delta series when o(f(t))=1, and also we say f(t) an invertible series when o(f(t))=0, (see [1,7,14] for details).

    For a non-negative integer order k, the λ-differential operator (tk)λ on P is defined by

    (tk)λ(x)n,λ={(n)k(x)nk,λ if 0kn,0, if k>n, (see [14, 20]).  (2.3)

    In general, for f(t)=k=0aktkk!F, the λ-differential operator (f(t))λ is satisfied with

    (f(t))λ(x)n,λ=nk=0(nk)ak(x)nk,λ. (2.4)

    Or equivalently, one can express (f(t))λ as

    (f(t))λ=k=0akk!(tk)λ.

    For a delta series f(t) and an invertible series g(t), i.e., o(f(t))=1 and o(g(t))=0, there exists a unique sequence pn,λ(x) of polynomials deg(pn,λ(x))=n satisfying the orthogonality condition

    g(t)(f(t))k|pn,λ(x)λ=n!δn,k,(n,k0). (2.5)

    Here, pn,λ(x) is called the λ-Sheffer sequence for (g(t),f(t)) denoted by pn,λ(x)(g(t),f(t))λ.

    We recall that pn,λ(x)(g(t),f(t))λ if and only if

    1g(ˉf(t))exλ(ˉf(t))=n=0pn,λ(x)tnn!,(see [7, 20]). (2.6)

    Here ˉf(t) represents the compositional inverse of f(t), i.e., f(ˉf(t))=ˉf(f(t))=t.

    For given a pair of λ-Sheffer sequences pn,λ(x)(g(t),f(t))λ and qn,λ(x)(h(t),(t))λ, we have the relation:

    pn,λ(x)=nk=0μn,kqk,λ(x), (2.7)

    where μn,k is obtained by

    μn,k=1k!h(ˉf(t))g(ˉf(t))((ˉf(t)))k|(x)n,λλ.

    Likewise, if qn,λ(x) is expressed in terms of pn,λ(x) as

    qn,λ(x)=nk=0νn,kpk,λ(x), (2.8)

    then νn,k can be obtained by

    νn,k=1k!g(ˉ(t))h(ˉ(t))(f(ˉ(t)))k|(x)n,λλ.

    It is easily shown that for f(t),g(t)F and p(x)P,

    f(t)g(t)|p(x)λ=g(t)|(f(t))λp(x)λ=f(t)|(g(t))λp(x)λ,(see [14]).

    We also note that from (x)n,λ(1,t)λ, any λ-Sheffer sequence pn,λ(x)(g(t),f(t))λ is represented by

    pn,λ(x)=nk=01k!1g(ˉf(t))(ˉf(t))k|(x)n,λλ(x)k,λ. (2.9)

    Now, we want to present representations of the degenerate higher-order Daehee polynomials D(r)n,λ(x) by using the algebraic properties of λ-Sheffer sequences.

    From (1.3), we have that n=0D(r)n,λ(x)tnn!=(logλ(1+t)t)rexλ(logλ(1+t)), so that we consider f(t)=eλ(t)1,ˉf(t)=logλ(1+t), and g(t)=eλ(t)1t in the view of (2.6) to obtain

    D(r)n,λ(x)((eλ(t)1t)r,eλ(t)1)λ. (2.10)

    If we let pn,λ(x)=n=0μD(r),λ(x), then, by using (2.5) we have

    (eλ(t)1t)r(eλ(t)1)k|pn,λ(x)λ=n=0μ(eλ(t)1t)r(eλ(t)1)k|D(r),λ(x)λ=n=0μ!δk,=k!μk,

    which implies

    μk=1k!(eλ(t)1t)r(eλ(t)1)k|pn,λ(x)λ.

    Thus, for pn,λ(x)P we have

    pn,λ(x)=nk=01k!(eλ(t)1t)r(eλ(t)1)k|pn,λ(x)λD(r)k,λ(x).

    Then, the formula between D(r)n,λ(x) and (x)n,λ is obtained.

    Theorem 2.1. For nN{0} and rN, we have

    D(r)n,λ(x)=nk=0(n=k(n)S1,λ(,k)D(r)n,λ)(x)k,λ.

    Reversely, we have the inversion formula given by

    (x)n,λ=nk=0(n=krj=0(n)(rj)(1)rjS2,λ(,k)(j)n+r,λ(n+r)r)D(r)k,λ(x).

    Proof. Let D(r)n,λ(x)=nk=0μn,k(x)k,λ. Then, by (1.4), (2.3), and (2.9), we can obtain

    μn,k=1k!(logλ(1+t)t)r(logλ(1+t))k|(x)n,λλ=(logλ(1+t)t)r|(1k!(logλ(1+t))k)λ(x)n,λλ=1!=kS1,λ(,k)(logλ(1+t)t)r|(t)λ(x)n,λλ=n=k(n)S1,λ(,k)(logλ(1+t)t)r|(x)n,λλ=n=k(n)S1,λ(,k)D(r)n,λ,

    which shows the first formula.

    For the inversion formula, we first note that

    (eλ(t)1t)r=rj=0(rj)(1)rjm=0(j)m,λtmrm!,

    which implies

    (eλ(t)1t)r|(x)n,λλ=rj=0(rj)(1)rj(j)n+r,λ(n)!(n+r)!=rj=0(rj)(1)rj(j)n+r,λ1(n+r)r. (2.11)

    Now, let (x)n,λ=k=0νn,kD(r)k,λ(x). Then, from (1.5), (2.7), and (2.11), νk satisfies

    νn,k=1k!(eλ(t)1t)r(eλ(t)1)k|(x)n,λλ=(eλ(t)1t)r|(1k!(eλ(t)1)k)λ(x)n,λλ=n=k(n)S2,λ(,k)(eλ(t)1t)r|(x)n,λλ=n=k(n)rj=0(rj)(1)rjS2,λ(,k)(j)n+r,λ(n+r)r,

    which shows the second result.

    Next, we consider the degenerate Bernoulli polynomials βn,λ(x), which is defined by the generating function to be

    teλ(t)1exλ(t)=n=0βn,λ(x)tnn!, (see [21]).

    Then, the connection formulas between D(r)n,λ(x) and βn,λ(x) are as follows.

    Theorem 2.2. For nN{0}, we have

    D(r)n,λ(x)=nk=0(k+r1)r1(n+r1)r1S1,λ(n+r1,k+r1)βk,λforrN.

    As the inversion formula, we have

    βn,λ(x)=nk=0(n=kr1j=0(n)(r1j)(1)r1j(j)n+r1,λ(n+r1)r1S2,λ(,k))D(r)k,λ(x)forr>1,

    and

    βn,λ(x)=nk=0S2,λ(n,k)Dk,λ(x)forr=1.

    Proof. First, note that βn,λ(x) is the λ-Sheffer sequence for

    βn,λ(x)(eλ(t)1t,t)λ. (2.12)

    Let us consider D(r),λ(x)=nk=0μn,kβk,λ(x). By (1.4), (2.9), (2.10) and (2.12), we obtain

    μn,k=1k!tlogλ(1+t)(tlogλ(1+t))r(logλ(1+t))k|(x)n,λλ=1k!t1r(logλ(1+t))k+r1|(x)n,λλ=k+1r1(k+r1)!t1r(logλ(1+t))k+r1|(x)n,λλ=(k+r1)r1(n+r1)r1S1,λ(n+r1,k+r1),

    which implies the first formula.

    To find the inversion formula, we first note that from (1.1) for r>1

    (eλ(t)1t)r1=t1rr1j=0(r1j)(1)r1jejλ(t)=r1j=0(r1j)(1)r1jm=0(j)m,λtm+1rm!. (2.13)

    Thus, by (2.2) and (2.13)

    (eλ(t)1t)r1|(x)n,λλ=r1j=0(r1j)(1)r1j(j)n+r1,λ(n)!(n+r1)!={r1j=0(r1j)(1)r1j(j)n+r1,λ(n+r1)r1 if r>1,δn, if r=1. (2.14)

    Now, if we consider βn,λ(x)=k=0νn,kD(r)k,λ(x), then by (1.5), (2.7), and (2.14), νn,k satisfies

    νn,k=1k!(eλ(t)1t)reλ(t)1t(eλ(t)1)k|(x)n,λλ=n=k(n)S2,λ(,k)(eλ(t)1t)r1|(x)n,λλ={n=k(n)S2,λ(,k)r1j=0(r1j)(1)r1j(j)n+r1,λ(n+r1)r1 if r>1,S2,λ(n,k) if r=1,

    which provides the formula.

    Next, we consider the degenerate type 2 Bernoulli polynomials bn,λ(x), which are defined by the generating functions to be

    teλ(t)e1λ(t)exλ(t)=n=0bn,λ(x)tnn!, (see [22]).

    Note that bn,λ(x) satisfies

    bn,λ(x)(eλ(t)e1λ(t)t,t)λ. (2.15)

    Then, we can have the following relation between D(r)n,λ(x) and bn,λ(x).

    Theorem 2.3. For nN{0} and rN, we have

    D(r)n,λ(x)={nk=0nm=k(nm)S1,λ(m,k)(D(r1)nm,λ+nm=0(1)(nm)D(r1)nm,λ)bk,λforr>1.S1,λ(n,k)+nm=k(nm)S1,λ(m,k)(1)nm(nm)nmforr=1.

    For the inversion formula, we have

    bn,λ(x)=12nk=0(n=kr1j=0n+r1m=0(n)(r1j)(n+r1m)S2,λ(,k)(1)r1j(j)m,λ(n+r1)r1×En+r1m,λ(12))D(r)k,λ(x)forr>1

    and

    bn,λ(x)=12nk=0(nm=k(nm)S2,λ(m,k)Enm,λ(12))Dk,λ(x)forr=1.

    Proof. Let us consider D(r)n,λ(x)=nk=0μn,kbk,λ(x). By (1.4), (2.9), (2.10), and (2.15), we get

    μn,k=1k!1+t11+tlogλ(1+t)(tlogλ(1+t))r(logλ(1+t))k|(x)n,λλ=(t(t+2)t+1)(logλ(1+t)t)r1k!(logλ(1+t))k1|(x)n,λλ=(t+2t+1)(logλ(1+t)t)r11k!(logλ(1+t))k|(x)n,λλ=nm=k(nm)S1,λ(m,k)(logλ(1+t)t)r1|(1+=0(t))λ(x)nm,λλ. (2.16)

    From (2.3), it is noted that

    (1+=0(t))λ(x)nm,λ=(x)nm,λ+nm=0(1)(nm)(x)nm,λ. (2.17)

    By applying the note (2.17) in (2.16), we have

    μn,k={nm=k(nm)S1,λ(m,k)(D(r1)nm,λ+nm=0(1)(nm)D(r1)nm,λ) for r>1,S1,λ(n,k)+nm=k(nm)S1,λ(m,k)(1)nm(nm)nm for r=1.

    To find the inversion formula, let us consider bn,λ(x)=k=0νn,kD(r)k,λ(x). From (1.5), (2.7), and (2.15), νn,k satisfies

    νn,k=1k!(eλ(t)1t)reλ(t)e1λ(t)t(logλ(t+1))k|(x)n,λλ=n=k(n)S2,λ(,k)eλ(t)eλ(t)+1(eλ(t)1t)r1|(x)n,λλ=12n=k(n)S2,λ(,k)2e12λ(t)e12λ(t)+e12λ(t)(eλ(t)1t)r1|(x)n,λλ. (2.18)

    Since exλ(t)1t=n=0(x)n+1,λn+1tnn!, we have that for r>1

    (eλ(t)1t)r1=t1rr1j=0(r1j)ejλ(t)(1)r1j=t1rr1j=0(r1j)(1)r1jm=0(j)m,λtmm!. (2.19)

    Then, (2.19) implies that for r>1

    2e12λ(t)e12λ(t)+e12λ(t)(eλ(t)1t)r1=t1rr1j=0(r1j)(1)r1j(m=0(j)m,λtmm!)(k=0Ek,λ(12)tkk!)=t1rr1j=0(r1j)(1)r1jm=0mk=0(mk)(j)k,λEmk,λ(12)tmm!=r1j=0(r1j)(1)r1jm=0mk=0(mk)(j)k,λEmk,λ(12)tm+1rm!, (2.20)

    where En,λ(x) are the type 2 degenerate Euler polynomials defined by the following generating function

    2e12λ(t)+e12λ(t)exλ(t)=n=0En,λ(x)tnn!,(see [23]). (2.21)

    Here we call En,λ:=En,λ(0) the type 2 degenerate Euler numbers if x=0. Thus, for m=n+r1 in (2.20) for r>1

    2e12λ(t)e12λ(t)+e12λ(t)(eλ(t)1t)r1|(x)n,λλ=r1j=0(r1j)(1)r1jn+r1k=0(n+r1k)(j)k,λ×En+r1k,λ(12)n!(n+r1)!=r1j=0(r1j)(1)r1jn+r1k=0(n+r1k)(j)k,λ×En+r1k,λ(12)1(n+r1)r1,

    and

    2e12λ(t)e12λ(t)+e12λ(t)|(x)n,λλ=En,λ(12) for r=1,

    which provides the inversion formula with (2.18).

    We consider the degenerate Euler polynomials Ek,λ that is defined by the generating function to be

    (2eλ(t)+1)exλ(t)=n=0En,λ(x)tnn!,(see [12, 21]), 

    which satisfies that

    En,λ(x)(eλ(t)+12,t)λ. (2.22)

    Then, the representation formula between D(r)n,λ(x) and En,λ(x) holds true.

    Theorem 2.4. For nN{0} and rN, we have

    D(r)n,λ(x)=12nk=0(n=kS1,λ(,k)(n)((n)D(r)n1,λ+2D(r)n,λ))Ek,λ(x).

    As the inversion formula, we have

    En,λ(x)=nk=0(n=krj=0n+rl=0(n)(rj)(n+rl)S2,λ(,k)(1)rj(j)l,λ(n+r)rEn+rl,λ)Dk,λ(x).

    Proof. Let D(r)n,λ(x)=nk=0μn,kEk,λ. Then, By (1.4), (2.9), (2.10), and (2.22), we can obtain

    μn,k=1k!(1+t)+12(tlogλ(1+t))r(logλ(1+t))k|(x)n,λλ=t+22(logλ(1+t)t)r1k!(logλ(1+t))k|(x)n,λλ=12=k(n)S1,λ(,k)(t+2)(logλ(1+t)t)r|(x)n,λλ, (2.23)

    where

    t(logλ(1+t)t)r|(x)n,λλ=nk=0D(r)k,λtk+1k!|(x)n,λλ=D(r)n1,λ(n) (2.24)

    and

    nk=0D(r)k,λtkk!|(x)n,λλ=D(r)n,λ. (2.25)

    Therefore, combining (2.24) and (2.25) to (2.23), we have

    μn,k=12n=k(n)S1,λ(,k)((n)D(r)n1,λ+2D(r)n,λ).

    To find the inversion formula, let En,λ(x)=k=0νn,kD(r)k,λ(x), where νn,k satisfies

    νn,k=1k!(eλ(t)1t)reλ(t)+12(eλ(t)1)k|(x)n,λλ=n=k(n)S2,λ(,k)(eλ(t)1t)r2eλ(t)+1|(x)n,λλ. (2.26)

    We note that

    (eλ(t)1t)r=trrj=0(rj)ejλ(t)(1)rj=trrj=0(rj)(1)rjm=0(j)m,λtmm!=rj=0(rj)(1)rjm=0(j)m,λtmrm!

    and

    (eλ(t)1t)r2eλ(t)+1=rj=0(rj)(1)rjm=0(ml=0(ml)(j)l,λEml,λ)tmrm!.

    Thus,

    (eλ(t)1t)r2eλ(t)+1|(x)n,λλ=rj=0(rj)(1)rjn+rl=0(n+rl)(j)l,λ(n+r)rEn+rl,λ. (2.27)

    Combining (2.27) to (2.26) gives

    νn,k=n=krj=0n+rl=0(n)(rj)(n+rl)S2,λ(,k)(1)rj(j)l,λ(n+r)rEn+rl,λ.

    The degenerate Mittag-Leffer polynomials Mn,λ(x) are given by the generating function to be

    exλ(logλ(1+t1t))=n=0Mn,λ(x)tnn!,(see [24]).

    It is noted that

    Mn,λ(x)(1,eλ(t)1eλ(t)+1)λ. (2.28)

    Then, we have the representation formulas between D(r)n,λ(x) and Mn,λ(x).

    Theorem 2.5. For nN{0} and rN, we have

    D(r)n,λ(x)=nk=0(1k!nm=0D(r)m,λ(nm)(nm1nmk)(1)nmk2nm(nm)!)Mk,λ.

    As the inversion formula, we have

    Mn,λ(x)=k=0(nm=0n!k!m!Km(λ)2m+k+r1)D(r)k,λ(x),

    where Kn(x|λ) are the Korobov polynomials of the first kind given by the generating function

    λt(1+t)λ1(1+t)x=n=0Kn(x|λ)tnn!,(see[25]).

    In particular, when x=0 Kn(λ):=Kn(0|λ) are called Korobov numbers of the first kind, that is,

    tlogλ(1+t)=n=0Kn(λ)tnn!.

    Proof. Let D(r),λ(x)=nk=0μn,kMk,λ. Then, by (1.4), (2.9), (2.10), and (2.28), we can obtain

    μn,k=1k!1((1+t)1logλ(1+t))r(1+t11+t+1)k|(x)n,λλ=1k!(logλ(1+t)t)r(tt+2)k|(x)n,λλ=1k!nm=0D(r)m,λ(nm)(tt+2)k|(x)nm,λλ,

    where

    (tt+2)k|(x)nm,λλ==0(1)2k+(k+1)tk+|(x)nm,λλ=(1)nmk2nm(nm1nmk)(nm)!. (2.29)

    Thus,

    μn,k=1k!nm=0D(r)m,λ(nm)(nm1nmk)(1)nmk2nm(nm)!.

    To find the inversion formula, let Mn,λ(x)=k=0νn,kD(r)k,λ(x), where

    νn,k=1k!(1+t1t1)rlogλ(1+t1t)(1+t1t1)k|(x)n,λλ=1k!(1+t(1t)1t)rlogλ(1+t1t)(1+t1+t1t)k|(x)n,λλ=1k!(2t1t)rlogλ(1+t1t)(2t1t)k|(x)n,λλ=1k!nm=01m!Km(λ)(2t1t)m+k+r1|(x)n,λλ,

    where

    (2t1t)m+k+r1|(x)n,λλ=2m+k+r1=0t+m+k+r1|(x)n,λλ=2m+k+r1n!.

    Thus,

    νn,k=1k!nm=0n!m!Km(λ)2m+k+r1.

    Next, let us consider the degenerate Bell polynomials Beln,λ(x), which are defined by the generating function to be

    ex(eλ(t)1)λ=n=0Beln,λ(x)tnn!,(see [26, 27]).

    Note that Beln,λ(x) are the λ-Sheffer sequences of

    Beln,λ(x)(1,logλ(1+t))λ, (2.30)

    which satisfies that

    Beln,λ(x)=nk=0S2,λ(n,k)(x)k,λ, (see [26]).

    Then, we have the representation formulas between D(r)n,λ(x) and Beln,λ(x).

    Theorem 2.6. For nN{0} and rN, it holds:

    D(r)n,λ(x)=nk=0(nm=kn=m(n)S1,λ(m,k)S1,λ(,m)D(r)n,λ)Belk,λ(x).

    Also the inversion formula are established

    Beln,λ(x)=nk=0(nm=kn=0rj=0(rj)S2,λ(m,k)S2,λ(n,)(1)rjm!(j)+rm,λ)D(r)k,λ(x).

    Proof. Let D(r),λ(x)=nk=0μn,kBelk,λ(x). Then, by (1.4), (2.9), (2.10), and (2.30), we can obtain

    μn,k=1k!1((1+t)1logλ(1+t))r(logλ(1+logλ(1+t)))k|(x)n,λλ=1k!(logλ(1+t)t)r(logλ(1+logλ(1+t)))k|(x)n,λλ=(logλ(1+t)t)r|((1k!logλ(1+logλ(1+t)))k)λ(x)n,λλ=nm=kS1,λ(m,k)n=m(n)S1,λ(,m)(logλ(1+t)t)r|(x)n,λλ=nm=kn=m(n)S1,λ(m,k)S1,λ(,m)D(r)n,λ.

    To find the inversion formula, let Beln,λ(x)=nk=0νn,kD(r)k,λ(x), then νn,k satisfies

    νn,k=1k!(eλ(t)1t)r(eλ(t)1)k|Beln,λ(x)λ=m=kS2,λ(m,k)(eλ(t)1t)rtmm!|n=0S2,λ(n,)(x),λλ=nm=kS2,λ(m,k)n=0S2,λ(n,)(eλ(t)1t)rtmm!|(x),λλ,

    where

    (eλ(t)1t)rtmm!|(x),λλ=rj=0(rj)(1)rjl=0(j)l,λtl+mrl!m!|(x),λλ=rj=0(rj)(1)rj(j)+rm,λ1m!.

    Therefore, we have

    νn,k=nm=kn=0rj=0(rj)S2,λ(m,k)S2,λ(n,)(1)rjm!(j)+rm,λ.

    The degenerate Frobenius-Euler polynomials h(α)n,λ(x|u) of order α are defined by the generating function as

    (1ueλ(t)u)αexλ(t)=n=0h(α)n,λ(x|u)tnn!,u(1)C.

    When x=0, h(α)n,λ(u):=h(α)n,λ(0|u) are called the degenerate Frobenius-Euler numbers.

    We note that h(α)n,λ(x|u) satisfy

    h(α)n,λ(x|u)((eλ(t)u1u)α,t)λ. (2.31)

    Then, we have the representation formulas between D(r)n,λ(x) and h(α)n,λ(x|u).

    Theorem 2.7. For nN{0} and rN, the representation holds:

    D(r)n,λ(x)=nk=0(nm=kα=0(nm)(α)(nm)(1u)S1,λ(m,k)D(r)nm,λ)h(α)k,λ(x|u).

    As the inversion formula, we have

    h(α)n,λ(x|u)=nk=0(n=0(nk+)(r+k)!k!(+r+k)!S2,λ(r+k+,r+k)h(α)nk,λ(u))D(r)k,λ(x).

    Proof. Let D(r)n,λ(x)=nk=0μn,kh(α)k,λ(x|u). By (1.4), (2.9), (2.10), and (2.31), we have

    μn,k=1k!(1+tu1u)α(tlogλ(1+t))r(logλ(1+t))k|(x)n,λλ=(logλ(1+t)t)r(1+t1u)α|(1k!(logλ(1+t))k)λ(x)n,λλ=nm=k(nm)S1,λ(m,k)(logλ(1+t)t)r(1+t1u)α|(x)nm,λλ=nm=k(nm)S1,λ(m,k)(logλ(1+t)t)r|(α=0(α)(t1u))λ(x)nm,λλ=nm=k(nm)S1,λ(m,k)α=0(α)(nm)(1u)(logλ(1+t)t)r|(x)nm,λλ=nm=k(nm)S1,λ(m,k)α=0(α)(nm)(1u)D(r)nm,λ,

    which implies the first formula.

    Conversely, we assume that h(α)n,λ(x|u)=nk=0nun,kD(r)k,λ(x). Then, νn,k satisfies

    νn,k=1k!(eλ(t)1t)r(eλ(t)u1u)α(eλ(t)1)k|(x)n,λλ=1k!(1ueλ(t)u)α(eλ(t)1)r+ktr|(x)n,λλ=n=0(nk+)(r+k)!k!(+r+k)!S2,λ(r+k+,r+k)(1ueλ(t)u)α|(x)nk,λλ=n=0(nk+)(r+k)!k!(+r+k)!S2,λ(r+k+,r+k)h(α)nk,λ(u),

    which shows the second assertion.

    In this subsection, we present the pattern of the zeros of the polynomials. The understanding of patterns of zeros of degenerate polynomials can provide useful information about the original polynomials which can be obtained as limit of λ approaches zero. For example, the first three consecutive degenerate higher-order Daehee polynomials of degree r are given by

    D(r)1,λ(x)=x+r(λ1)2,D(r)2,λ(x)=x2+(r(λ1)1)x+112r(λ1)(3r(λ1)+λ5),D(r)3,λ(x)=x3+12(3r(λ1)9)x2+14(8+r(λ1)(3r(λ1)+λ11))x+18r(λ1)(r(λ1)2)(r(λ1)+λ3),

    which approach to the higher-order Daehee polynomials of degree r as λ0. We observe the patterns of roots by the changing parameters λ and r on the polynomials. In order to do this, we fix the degree of the polynomials as n=40, and compute the roots of D(r)40,λ(x) with fixed r=3 and six different parameters λ=±1, ±10, ±100 with the help of the Mathematica tool. The results are displayed in Figure 1. Next, we increase the degree of the polynomials and investigate the distribution of the roots of the polynomials.

    Figure 1.  The computed roots of D(3)40,λ(x) with variable λ.

    For further investigation, we computed the roots of the polynomials by increasing the degree n of polynomials from 1 to 40 in Figure 2.

    Figure 2.  The roots of D(3)n,λ(x) with variable λ and different degree n=1, 2, , 40.

    Finally, we investigated the distribution of the roots of D(r)40,λ(x) with a fixed λ=10 and three different parameters r=3, 4, 5 and the results were displayed in Figure 3.

    Figure 3.  The roots of D(r)40,10(x) when r=3, 4, and 5.

    In this subsection, we provide the explicit formulas presented in Theorem 2.2 that show the representations of the degenerate higher-order Daehee polynomials in terms of the degenerate Bernoulli polynomials and vice versa. To better understand, we present the graphs of D(r)n,λ(x) with λ=0.1 and r=3 for n=0, 1, , 5 and of D(r)n,λ(x) with λ=0.1 for various orders r=1, 2, , 5 in Figure 4.

    Figure 4.  Graph of degenerate higher-order Daehee polynomials D(r)n,λ(x).

    Next, we compute the combinatorial results of μn,k and νn,k presented in the proof of Theorem 2.2 to confirm the connection formulas presented. To do this, we compute D(r)n,λ(x) and βn,λ(x) for r=3, λ=0.1, and n=0, 1, , 5 and expand them using the coefficients μn,k and νn,k which are computed with two decimal place accuracy. The expressions presented confirm the results of Theorem 2.2.

    The degenerate higher-order Daehee polynomials D(r)n,λ(x) with λ=0.1, r=3 for n=1, 2, , 5 are expressed in terms of βn,λ(x) as follows:

    D(3)5,λ(x)=x5674x4+4194x330083100x2+386814310000x68088951400000=β5,λ(x)272β4,λ(x)+69β3,λ(x)8195β2,λ(x)+174984310000β1,λ(x)6312807100000β0,λ(x),D(3)4,λ(x)=x4575x3+1794x234941500x+174984350000=β4,λ(x)9β3,λ(x)+141350β2,λ(x)8883250β1,λ(x)+70742750000β0,λ(x),D(3)3,λ(x)=x314120x2+59340x88831000=β3,λ(x)275β2,λ(x)+35140β1,λ(x)80372000β0,λ(x),D(3)2,λ(x)=x23710x+11740=β2,λ(x)2710β1,λ(x)+309200β0,λ(x),D(3)1,λ(x)=x2720=β1,λ(x)910β0,λ(x).

    Conversely, the degenerate Bernoulli polynomials βn,λ(x) with λ=0.1, r=3 for n=1, 2, , 5 are represented in terms of D(r)n,λ(x):

    β5,λ(x)=x5134x4+6720x32625x2350x+9009400000=D(3)5,λ(x)+272D(3)4,λ(x)+1052D(3)3,λ(x)+6579100D(3)2,λ(x)+13527625D(3)1,λ(x)+28983125D(3)0,λ(x),β4,λ(x)=x4125x3+4125x2625x2673100000,=D(3)4,λ(x)+9D(3)3,λ(x)+101750D(3)2,λ(x)+45940D(3)1,λ(x)+57516250D(3)0,λ(x),β3,λ(x)=x33320x2+1320x994000,=D(3)3,λ(x)+275D(3)2,λ(x)+1161200D(3)1,λ(x)+910D(3)0,λ(x),β2,λ(x)=x2x+33200=D(3)2,λ(x)+2710D(3)1,λ(x)+177200D(3)0,λ(x),β1,λ(x)=x920=D(3)1,λ(x)+910D(3)0,λ(x).

    The study of special polynomials provides useful tools in differential equations, fuzzy theory, probability, orthogonal polynomials, and special functions and numbers. These researches are conducted using various tools, including generating functions, p-adic analysis, combinatorial methods, and umbral calculus. Recently, degenerate versions of special polynomials and numbers have been investigated using λ-analogues of these methods, and their arithmetical and combinatorial properties and relations have been studied by several mathematicians. These degenerate versions of special polynomials and numbers have been applied in differential equations and probability theories, providing new applications. In this paper, we explore the connection problems between the degenerate higher-order Daehee polynomials and other degenerate types of special polynomials. We present explicit formulas for representations with the help of umbral calculus and vice versa. In addition, we illustrate the results with some explicit examples. In order to better understanding the polynomials, the distribution of roots are presented.

    The authors declare there is no conflict of interest.



    [1] R. Dere, Y. Simsek, H. Srivastava, A unified presentation of three families of generalized Apostol type polynomials based upon the theory of the umbral calculus and the umbral algebra, J. Number Theory, 133 (2013), 3245–3263. https://doi.org/10.1016/j.jnt.2013.03.004 doi: 10.1016/j.jnt.2013.03.004
    [2] E. Doha, Y. Youssri, On the connection coefficients and recurrence relations arising from expansions in series of modified generalized Laguerre polynomials: Applications on a semi-infinite domain, Nonlinear Eng., 8 (2019), 318–327. https://doi.org/10.1515/nleng-2018-0073 doi: 10.1515/nleng-2018-0073
    [3] W. Abd-Elhameed, Y. Youssri, Solutions of the connection problems between Fermat and generalized Fibonacci polynomials, JP J. Algebra, Number Theory Appl., 38 (2016), 349–362. https://doi.org/10.17654/NT038040349 doi: 10.17654/NT038040349
    [4] W. Abd-Elhameed, Y. Youssri, New connection formulae between Chebyshev and Lucas polynomials: New expressions involving Lucas numbers via hypergeometric functions, Adv. Stud. Contemp. Math., 28 (2018), 357–367.
    [5] W. Abd-Elhameed, Y. Youssri, Connection formulae between generalized Lucas polynomials and some Jacobi polynomials: Application to certain types of fourth-order BVPs, Int. J. Appl. Comput. Math., 6 (2020), 45. https://doi.org/10.1007/s40819-020-0799-4 doi: 10.1007/s40819-020-0799-4
    [6] W. Abd-Elhameed, Y. Youssri, N. El-Sissi, M. Sadek, New hypergeometric connection formulae between Fibonacci and Chebyshev polynomials, Ramanujan J., 42 (2017), 347–361. https://doi.org/10.1007/s11139-015-9712-x doi: 10.1007/s11139-015-9712-x
    [7] S. Roman, The Umbral Calculus, Academic Press, London, UK, 1984.
    [8] T. Kim, D. S. Kim, Some identities on truncated polynomials associated with degenerate Bell polynomials, Russ. J. Math. Phys., 28 (2021), 342–355. https://doi.org/10.1134/S1061920821030079 doi: 10.1134/S1061920821030079
    [9] T. K. Kim, D. S. Kim, H. I. Kwon, A note on degenerate stirling numbers and their applications, Proc. Jangjeon Math. Soc., 21 (2018), 195–203.
    [10] T. Kim, D. Kim, H. Lee, J. Kwon, Representations by degenerate Daehee polynomials, Open Math., 20 (2022), 179–194. https://doi.org/10.1515/math-2022-0013 doi: 10.1515/math-2022-0013
    [11] J. Kwon, P. Wongsason, Y. Kim, D. Kim, Representations of modified type 2 degenerate poly-Bernoulli polynomials, AIMS Math., 7 (2022), 11443–11463. https://doi.org/10.3934/math.2022638 doi: 10.3934/math.2022638
    [12] L. Carlitz, A degenerate Staudt-Clausen theorem, Arch. Math., 7 (1956), 28–33. https://doi.org/10.1007/BF01900520 doi: 10.1007/BF01900520
    [13] D. S. Kim, T. Kim, Daehee numbers and polynomials, Appl. Math. Sci., 7 (2013), 5969–5976. https://doi.org/10.12988/ams.2013.39535 doi: 10.12988/ams.2013.39535
    [14] D. S. Kim, T. Kim, Degenerate Sheffer sequences and λ-Sheffer sequences, J. Math. Anal. Appl., 493 (2021), 124521. https://doi.org/10.1016/j.jmaa.2020.124521 doi: 10.1016/j.jmaa.2020.124521
    [15] T. Kim, D. S. Kim, H. Kim, J. Kwon, Some results on degenerate Daehee and Bernoulli numbers and polynomials, Adv. Differ. Equations, 2020 (2020), 1–13. https://doi.org/10.1186/s13662-020-02778-8 doi: 10.1186/s13662-020-02778-8
    [16] J. W. Park, J. Kwon, A note on the degenerate high order Daehee polynomials, Appl. Math. Sci., 9 (2015), 4635–4642. http://doi.org/10.12988/ams.2015.56416 doi: 10.12988/ams.2015.56416
    [17] D. S. Kim, T. Kim, A note on a new type of degenerate Bernoulli numbers, Russ. J. Math. Phys., 27 (2020), 227–235. https://doi.org/10.1134/S1061920820020090 doi: 10.1134/S1061920820020090
    [18] T. Kim, A note on degenerate stirling polynomials of the second kind, arXiv preprint, (2017), arXiv: 1704.02290. https://doi.org/10.48550/arXiv.1704.02290
    [19] J. Riordan, An Introduction to Combinatorial Analysis, Princeton University Press, 1958.
    [20] T. Kim, D. S. Kim, H. K. Kim, H. Lee, Some properties on degenerate Fubini polynomials, Appl. Math. Sci. Eng., 30 (2022), 235–248. https://doi.org/10.1080/27690911.2022.2056169 doi: 10.1080/27690911.2022.2056169
    [21] L. Carlitz, Degenerate Stirling, Bernoulli and Eulerian numbers, Util. Math., 15 (1979), 51–88.
    [22] T. Kim, L. C. Jang, D. S. Kim, H. Y. Kim, Some identities on type 2 degenerate Bernoulli polynomials of the second kind, Symmetry, 12 (2020), 510. https://doi.org/10.3390/sym12040510 doi: 10.3390/sym12040510
    [23] G. W. Jang, T. Kim, A note on type 2 degenerate Euler and Bernoulli polynomials, Adv. Stud. Contemp. Math., 29 (2019), 147–159.
    [24] D. S. Kim, T. Kim, T. Mansour, J. J. Seo, Degenerate Mittag-Leffler polynomials, Appl. Math. Comput., 274 (2016), 258–266. https://doi.org/10.1016/j.amc.2015.11.014 doi: 10.1016/j.amc.2015.11.014
    [25] N. Korobov, Special polynomials and their applications, Math. Notes, 2 (1996), 77–89.
    [26] T. Kim, D. S. Kim, Degenerate polyexponential functions and degenerate Bell polynomials, J. Math. Anal. Appl., 487 (2020), 124017. https://doi.org/10.1016/j.jmaa.2020.124017 doi: 10.1016/j.jmaa.2020.124017
    [27] T. Kim, D. S. Kim, H. Y. Kim, J. Kwon, Some identities of degenerate Bell polynomials, Mathematics, 8 (2020), 40. https://doi.org/10.3390/math8010040 doi: 10.3390/math8010040
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1603) PDF downloads(148) Cited by(0)

Figures and Tables

Figures(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog