We consider a 2mth-order nonlinear p-Laplacian difference equation containing both advance and retardation. Using the critical point theory, we establish some new and weaker criteria on the existence of homoclinic solutions with mixed nonlinearities.
Citation: Peng Mei, Zhan Zhou, Yuming Chen. Homoclinic solutions of discrete p-Laplacian equations containing both advance and retardation[J]. Electronic Research Archive, 2022, 30(6): 2205-2219. doi: 10.3934/era.2022112
[1] | Abdelbaki Choucha, Sofian Abuelbacher Adam Saad, Rashid Jan, Salah Boulaaras . Decay rate of the solutions to the Lord Shulman thermoelastic Timoshenko model. AIMS Mathematics, 2023, 8(7): 17246-17258. doi: 10.3934/math.2023881 |
[2] | Zihan Cai, Yan Liu, Baiping Ouyang . Decay properties for evolution-parabolic coupled systems related to thermoelastic plate equations. AIMS Mathematics, 2022, 7(1): 260-275. doi: 10.3934/math.2022017 |
[3] | Soh E. Mukiawa, Tijani A. Apalara, Salim A. Messaoudi . Stability rate of a thermoelastic laminated beam: Case of equal-wave speed and nonequal-wave speed of propagation. AIMS Mathematics, 2021, 6(1): 333-361. doi: 10.3934/math.2021021 |
[4] | Noelia Bazarra, José R. Fernández, Jaime E. Muñoz-Rivera, Elena Ochoa, Ramón Quintanilla . Analytical and numerical analyses of a viscous strain gradient problem involving type Ⅱ thermoelasticity. AIMS Mathematics, 2024, 9(7): 16998-17024. doi: 10.3934/math.2024825 |
[5] | Keltoum Bouhali, Sulima Ahmed Zubair, Wiem Abedelmonem Salah Ben Khalifa, Najla ELzein AbuKaswi Osman, Khaled Zennir . A new strict decay rate for systems of longitudinal $ m $-nonlinear viscoelastic wave equations. AIMS Mathematics, 2023, 8(1): 962-976. doi: 10.3934/math.2023046 |
[6] | Zayd Hajjej, Sun-Hye Park . Asymptotic stability of a quasi-linear viscoelastic Kirchhoff plate equation with logarithmic source and time delay. AIMS Mathematics, 2023, 8(10): 24087-24115. doi: 10.3934/math.20231228 |
[7] | Abdelbaki Choucha, Asma Alharbi, Bahri Cherif, Rashid Jan, Salah Boulaaras . Decay rate of the solutions to the Bresse-Cattaneo system with distributed delay. AIMS Mathematics, 2023, 8(8): 17890-17913. doi: 10.3934/math.2023911 |
[8] | Qian Li . General and optimal decay rates for a viscoelastic wave equation with strong damping. AIMS Mathematics, 2022, 7(10): 18282-18296. doi: 10.3934/math.20221006 |
[9] | Abdelbaki Choucha, Salah Boulaaras, Asma Alharbi . Global existence and asymptotic behavior for a viscoelastic Kirchhoff equation with a logarithmic nonlinearity, distributed delay and Balakrishnan-Taylor damping terms. AIMS Mathematics, 2022, 7(3): 4517-4539. doi: 10.3934/math.2022252 |
[10] | Jincheng Shi, Yan Liu . Spatial decay estimates for the coupled system of wave-plate type with thermal effect. AIMS Mathematics, 2025, 10(1): 338-352. doi: 10.3934/math.2025016 |
We consider a 2mth-order nonlinear p-Laplacian difference equation containing both advance and retardation. Using the critical point theory, we establish some new and weaker criteria on the existence of homoclinic solutions with mixed nonlinearities.
We consider the following Cauchy problem for the JMGT-thermoviscoelastic plate with Cattaneo-type heat conduction:
{τρuttt+ρutt=−k∗Δ2u−kΔ2ut−mΔθ, (x,t)∈Rn×R+,θt+κ∇⋅q−mτΔutt−mΔut=0 (x,t)∈Rn×R+,τ0qt+q+κ∇θ=0, (x,t)∈Rn×R+, | (1.1) |
with initial data
(u,ut,utt,θ,q)(x,0)=(u0,u1,u2,θ0,q0)(x), x∈Rn, | (1.2) |
where τ,ρ,k∗,k,m,τ0,κ are positive constants, and the critical parameter is given by K:=k−τk∗.
The linear Jordan-Moore-Gibson-Thompson equation (JMGT) is expressed as follows:
τuttt+δutt+βAut+γAu=0, | (1.3) |
where A is a strictly positive operator in a Hilbert space, and τ,δ,β,γ are positive constants.
Equation (1.3) originally arises as a model for wave propagation in viscous, thermally relaxing fluids (cf. [5,6]). A similar form of the equation appears in the standard linear solid model (cf. [4]) and in the formulation of a relaxation parameter within the Green–Naghdi type Ⅲ theory (cf. [3,10]), particularly when A=−Δ. Furthermore, Eq (1.3) serves as a potential model for vertical displacements in viscoelastic plates (cf. [7]) when A=Δ2.
In recent years, there has been growing interest in the study of problem (1.3). In [2], the authors investigated the MGT-viscoelastic plate coupled with the Fourier law and type Ⅲ heat conduction, proving that the corresponding semigroups are analytic in the subcritical case K>0. Subsequently, [1] focused on the MGT-viscoelastic plate with Cattaneo heat conduction and established the following decay result in the subcritical case K>0:
● the subcritical case K>0:
‖∇pU(t)‖2L2(Rn)≤C(1+t)−n+2p4‖U0‖2L1(Rn)+C(1+t)−l‖∇p+lU0‖2L2(Rn), |
where U=(ut+τutt,Δut,Δ(u+τut),θ,q)T and U0=U(x,0).
In this work, we improve upon the results in [1] for the subcritical case K>0 and establish the decay result for the critical case K=0. Additionally, we analyze the eigenvalues to demonstrate the optimality of the decay results in both cases. The specific decay rates are as follows:
● the subcritical case K>0:
‖∇pW(t)‖2L2(Rn)≤C(1+t)−n2−p‖W0‖2L1(Rn)+Ce−Ct‖∇pW0‖2L2(Rn), |
where W=(ut+τutt,Δut,Δ(u+τut),θ,q)T and W0=W(x,0).
● the critical case K=0:
‖∇pZ(t)‖2L2(Rn)≤C(1+t)−n2−p‖Z0‖2L1(Rn)+C(1+t)−l‖∇p+lZ0‖2L2(Rn), |
where Z=(ut+τutt,Δ(u+τut),θ,q)T and Z0=Z(x,0).
The paper is organized as follows. In Section 2, we introduce some notations and present our main results. Section 3 is devoted to proving the decay estimates for the JMGT-thermoviscoelastic plate with Cattaneo heat conduction. Finally, in Section 4, we establish the optimality of the decay rates obtained.
Before closing this section, we give some notations to be used below. Let the Fourier transform of a function f=f(x) be denoted by ˆf=ˆf(ξ), defined as
F[f](ξ)≡ˆf(ξ)=1(2π)n2∫Rne−ix⋅ξf(x)dx, |
and let the complex conjugate of ˆu be denoted by ˉˆu.
In this section, we state our main results.
Taking the Fourier transform of system (1.1)-(1.2), we have
{τρˆuttt+ρˆutt+k∗|ξ|4ˆu+k|ξ|4ˆut−m|ξ|2ˆθ=0,ˆθt+κiξ⋅ˆq+mτ|ξ|2ˆutt+m|ξ|2ˆut=0,τ0ˆqt+ˆq+κiξˆθ=0 | (2.1) |
with initial data
(ˆu,ˆut,ˆutt,ˆθ,ˆq)(ξ,0)=(ˆu0,ˆu1,ˆu2,ˆθ0,ˆq0)(ξ), | (2.2) |
where ξ∈Rn. By the new variables
ˆφ=ˆut,ˆw=ˆutt, |
we obtain
{ˆut−ˆφ=0,ˆφt−ˆw=0,ˆwt+1τˆw+k∗τρ|ξ|4ˆu+kτρ|ξ|4ˆφ−mτρ|ξ|2ˆθ=0,ˆθt+κiξ⋅ˆq+mτ|ξ|2ˆw+m|ξ|2ˆφ=0,ˆqt+1τ0ˆq+κτ0iξˆθ=0. | (2.3) |
Then, we state the following pointwise estimates and decay results.
Theorem 2.1. Let
ˆW:=(ˆut+τˆutt,Δˆut,Δ(ˆu+τˆut),ˆθ,ˆq)T, |
where (ˆu(ξ,t),ˆθ(ξ,t),ˆq(ξ,t)) is the Fourier image of the solution (u(x,t),θ(x,t),q(x,t)). Assume that K>0. Then, ˆW satisfies the following pointwise estimate
|ˆW(ξ,t)|2≤Ce−cρ1(ξ)t|ˆW0(ξ)|2, | (2.4) |
for any t≥0, where ρ1(ξ):=|ξ|21+|ξ|2, and where C,c>0 are independent of t,ξ, and the initial data.
Furthermore, let W=(ut+τutt,Δut,Δ(u+τut),θ,q)T, where (u(x,t),θ(x,t),q(x,t)) is the solution of problem (1.1), (1.2), and W0=W(x,0)∈Hs(Rn)∩L1(Rn), where s is nonnegative. Then, W satisfies the decay estimate
‖∇pW(t)‖2L2(Rn)≤C(1+t)−n2−p‖W0‖2L1(Rn)+Ce−Ct‖∇pW0‖2L2(Rn), | (2.5) |
for all 0≤p≤s.
Remark 2.2. The decay result (2.5) does not exhibit the regularity-loss phenomenon. In consideration of [1], the decay estimate presented here aligns with the exponential stability of the MGT-viscoelastic plate with Cattaneo-type heat conduction in a bounded domain. At the same time, we improve the result in unbounded domain obtained in [1]. Noting the asymptotic expansion of the eigenvalues in Section 4, we find that the exponent in pointwise estimate (2.4) is optimal. Thus, the decay estimate (2.5) is optimal.
Remark 2.3. Note that the decay estimate (2.5) and the MGT-viscoelastic plate with the Gurtin-Pipkin thermal law in [11] exhibit the same decay rate when K>0, despite the absence of a regularity-loss phenomenon in (2.5).
Theorem 2.4. Let
ˆZ=(ˆut+τˆutt,Δ(ˆu+τˆut),ˆθ,ˆq)T, |
where (ˆu(ξ,t),ˆθ(ξ,t),ˆq(ξ,t)) is the Fourier image of the solution (u(x,t),θ(x,t),q(x,t)). Assume that K=0. Then, ˆZ has the following pointwise estimate
|ˆZ(ξ,t)|2≤Ce−cρ2(ξ)t|ˆZ0(ξ)|2, | (2.6) |
for any t≥0, where ρ2(ξ):=|ξ|2(1+|ξ|2)2. Furthermore, let Z=(ut+τutt,Δ(u+τut),θ,q)T, where (u(x,t),θ(x,t),q(x,t)) is the solution of problem (1.1)-(1.2), and Z0=Z(x,0)∈Hs(Rn)∩L1(Rn), where s is nonnegative. Then, Z satisfies the following decay estimate
‖∇pZ(t)‖2L2(Rn)≤C(1+t)−n2−p‖Z0‖2L1(Rn)+C(1+t)−l‖∇p+lZ0‖2L2(Rn), | (2.7) |
for all 0≤p+l≤s.
Remark 2.5. According to [11], we find that the MGT-viscoelastic plate with Gurtin-Pipkin thermal law has the same decay result as (2.7) under the condition K=0, including both the decay rate and regularity-loss phenomenon.
In this section, we consider the decay estimates of the norm related to (1.1)-(1.2).
In this subsection, we define the energy functional of system (2.3) as
ˆE(ξ,t):=|ˆφ+τˆw|2+τρK|ξ|4|ˆφ|2+k∗ρ|ξ|4|ˆu+τˆφ|2+1ρ|ˆθ|2+τ0ρ|ˆq|2, | (3.1) |
which is equivalent to |ˆW(ξ,t)|2. To derive our main result, we begin by stating and proving several lemmas.
Lemma 3.1. Let (ˆu,ˆφ,ˆw,ˆθ,ˆq) be the solution of (2.3). Assume that K>0. Then, ˆE(ξ,t) satisfies
ddtˆE(ξ,t)=−1ρK|ξ|4|ˆφ|2−1ρ|ˆq|2. |
Lemma 3.2. The following inequality holds true:
ddtF1(t)+(k∗ρ−2ε1)|ξ|4|ˆu+τˆφ|2≤|ˆφ+τˆw|2+C(ε1)|ξ|4|ˆφ|2+C(ε1)|ˆθ|2, | (3.2) |
for any ε1>0, where
F1(t):=Re((ˆφ+τˆw)(ˉˆu+τˉˆφ)). |
Proof. We can easily obtain
ddtF1(t)+k∗ρ|ξ|4|ˆu+τˆφ|2−|ˆφ+τˆw|2=−1ρK|ξ|4Re(ˆφ(ˉˆu+τˉˆφ))+mρ|ξ|2Re(ˆθ(ˉˆu+τˉˆφ)). | (3.3) |
By virtue of Young's inequality, for any ε1>0, we have
−1ρK|ξ|4Re(ˆφ(ˉˆu+τˉˆφ))≤ε1|ξ|4|ˆu+τˆφ|2+C(ε1)|ξ|4|ˆφ|2, | (3.4) |
mρ|ξ|2Re(ˆθ(ˉˆu+τˉˆφ))≤ε1|ξ|4|ˆu+τˆφ|2+C(ε1)|ˆθ|2. | (3.5) |
Combining (3.3)–(3.5), we obtain the desired result (3.2).
Lemma 3.3. The functional
F2(t):=Re(ˆθ(ˉˆφ+τˉˆw)) |
satisfies
ddtF2(t)+(m−ε2)|ξ|2|ˆφ+τˆw|2≤C(ε2)|ˆq|2+ε′2|ξ|6|ˆu+τˆφ|2+ε2|ξ|6|ˆφ|2+C(ε2,ε′2)|ξ|2|ˆθ|2, | (3.6) |
for any ε2,ε′2>0.
Proof. It is easy to obtain
ddtF2(t)+m|ξ|2|ˆφ+τˆw|2=−κRe(iξˆq(ˉˆφ+τˉˆw))−k∗ρ|ξ|4Re(ˆuˉˆθ)−kρ|ξ|4Re(ˆφˉˆθ)+mρ|ξ|2|ˆθ|2. | (3.7) |
Applying Young's inequality with ε2,ε′2>0, we get
−κRe(iξˆq(ˉˆφ+τˉˆw))≤ε2|ξ|2|ˆφ+τˆw|2+C(ε2)|ˆq|2, | (3.8) |
−k∗ρ|ξ|4Re(ˆuˉˆθ)≤ε′2|ξ|6|ˆu+τˆφ|2+C(ε′2)|ξ|2|ˆθ|2, | (3.9) |
−kρ|ξ|4Re(ˆφˉˆθ)≤ε2|ξ|6|ˆφ|2+C(ε2)|ξ|2|ˆθ|2. | (3.10) |
Thanks to (3.7)–(3.10), we deduce (3.6).
Lemma 3.4. Define the functional
F3(t):=Re(iξτ0ˆqˉˆθ+imττ0ξ3ˆφˉˆq). |
Then,
ddtF3(t)+(k−2ε3)|ξ|2|ˆθ|2≤C(ε3)(1+|ξ|2)|ˆq|2+C(ε3)|ξ|6|ˆφ|2, | (3.11) |
for any ε3>0.
Proof. Multiplying (2.3)4 and (2.3)5 by iτ0ξˉˆq and (−iτ0ξˉˆθ), respectively, adding the resulting equations, and taking the real part, we have
ddtRe(iτ0ξˆqˉˆθ)+κ|ξ|2|ˆθ|2−κτ0|ξ|2|ˆq|2=Re(iξˆqˉˆθ)−mττ0Re(iξ3ˆwˉˆq)−mτ0Re(iξ3ˆφˉˆq). | (3.12) |
To eliminate Re(iξ3ˆwˉˆq), we multiply (2.3)2 and (2.3)5 by imττ0ξ3ˉˆq and −imττ0ξ3ˉˆφ, respectively. Then, combining the resulting equations and taking real parts, we have
ddtRe(imττ0ξ3ˆφˉˆq)=mττ0Re(iξ3ˆwˉˆq)+mτRe(iξ3ˆqˉˆφ)−κmτ|ξ|4Re(ˆθˉˆφ). | (3.13) |
Summing up (3.12) and (3.13), we arrive at
ddtF3(t)+κ|ξ|2|ˆθ|2−κτ0|ξ|2|ˆq|2=Re(iξˆqˉˆθ)+(mτ+mτ0)Re(iξ3ˆqˉˆφ)−κmτ|ξ|4Re(ˆθˉˆφ). | (3.14) |
Young's inequality yields, for any ε3>0,
Re(iξˆqˉˆθ)≤ε3|ξ|2|ˆθ|2+C(ε3)|ˆq|2, | (3.15) |
(mτ+mτ0)Re(iξ3ˆqˉˆφ)≤ε3|ξ|6|ˆφ|2+C(ε3)|ˆq|2, | (3.16) |
−κmτ|ξ|4Re(ˆθˉˆφ)≤ε3|ξ|2|ˆθ|2+C(ε3)|ξ|6|ˆφ|2. | (3.17) |
Hence, plugging (3.15)–(3.17) into (3.14), we arrive at (3.11).
We now proceed to prove our main result.
Proof of Theorem 2.1. We define the Lyapunov functional as follows:
L1(ξ,t):=N(1+|ξ|2)ˆE(ξ,t)+|ξ|2F1(t)+N2F2(t)+N3F3(t), |
where N,N2, and N3 are positive constants to be determined later. By utilizing the previously established lemmas, we obtain
ddtL1(ξ,t)+[(k∗ρ−2ε1)−N2ε′2]|ξ|6|ˆu+τˆφ|2+[N2(m−ε2)−1]|ξ|2|ˆφ+τˆw|2+[N3(κ−2ε3)−C(ε1)−N2C(ε2,ε′2)]|ξ|2|ˆθ|2+[NKρ|ξ|4(1+|ξ|2)−C(ε1)|ξ|6−N2ε2|ξ|6−N3C(ε3)|ξ|6]|ˆφ|2+[Nρ(1+|ξ|2)−N2C(ε2)−N3C(ε3)(1+|ξ|2)]|ˆq|2≤0. | (3.18) |
At this stage, we aim to determine the constants in Eq (3.18). We begin by selecting
ε1<k∗2ρ,ε2<m,ε3<κ2. |
Next, we fix N2>1m−ε2 and choose ε′2<k∗ρN2−2ε1N2. Then, we select N3 such that
N3>C(ε1)+N2C(ε2,ε′2)κ−2ε3. |
Finally, we choose N sufficiently large to satisfy
N>max{ρ[C(ε1)+N2ε2+N3C(ε3)]K,ρ[N2C(ε2)+N3C(ε3)]}. |
Consequently, we obtain, with a positive constant C1,
ddtL1(ξ,t)+C1M1(t)≤0, | (3.19) |
where
M1(t)=|ξ|6|ˆu+τˆφ|2+|ξ|2|ˆφ+τˆw|2+|ξ|2|ˆθ|2+|ξ|6|ˆφ|2+|ξ|2|ˆq|2=|ξ|2ˆE(ξ,t). |
From the definitions of ˆE(ξ,t) and L1(ξ,t), we know that there exist two positive constants C2 and C3 such that the following relation holds
C2(1+|ξ|2)ˆE(ξ,t)≤L1(ξ,t)≤C3(1+|ξ|2)ˆE(ξ,t). |
Thus, Eq (3.19) transforms into
ddtˆE(ξ,t)+C|ξ|21+|ξ|2ˆE(ξ,t)≤0. | (3.20) |
Finally, the estimate in (3.20) leads to the desired result (2.4), allowing us to derive the decay estimate (2.5). The proof of (2.5) is the same as the one of Theorem 3.6 in [8], so we omit it here.
Based on Lemmas 3.1–3.3 and the condition K=0, we have the following conclusion.
Lemma 3.5. Under the condition K=0, the energy functional (3.1) becomes
ˆE(ξ,t):=|ˆφ+τˆw|2+k∗ρ|ξ|4|ˆu+τˆφ|2+1ρ|ˆθ|2+τ0ρ|ˆq|2, | (3.21) |
and then ˆE(ξ,t) satisfies
ddtˆE(ξ,t)=−1ρ|ˆq|2 | (3.22) |
and the following inequality holds true:
ddtF1(t)+(k∗ρ−ϵ1)|ξ|4|ˆu+τˆφ|2≤|ˆφ+τˆw|2+C(ϵ1)|ˆθ|2, | (3.23) |
ddtF2(t)+(m−ϵ2)|ξ|2|ˆφ+τˆw|2≤C(ϵ2)|ˆq|2+ϵ′2|ξ|6|ˆu+τˆφ|2+C(ϵ′2)|ξ|2|ˆθ|2, | (3.24) |
for any ϵ1>0 and ϵ2,ϵ′2>0.
Proof. It is straightforward to obtain Eqs (3.22) and (3.23). It follows from (3.7) that
ddtF2(t)+m|ξ|2|ˆφ+τˆw|2=−κRe(iξˆq(ˉˆφ+τˉˆw))−k∗ρ|ξ|4Re((ˆu+τˆφ)ˉˆθ)+mρ|ξ|2|ˆθ|2. |
Using Young's inequality, we get
−κRe(iξˆq(ˉˆφ+τˉˆw))≤ϵ2|ξ|2|ˆφ+τˆw|2+C(ϵ2)|ˆq|2,−k∗ρ|ξ|4Re((ˆu+τˆφ)ˉˆθ)≤ϵ′2|ξ|6|ˆu+τˆφ|2+C(ϵ′2)|ξ|2|ˆθ|2, |
where ϵ2,ϵ′2>0. Collecting the above estimates, we obtain (3.24).
Lemma 3.6. The functional
ˉF3(t):=Re(iτ0ξˆqˉˆθ) |
satisfies
ddtˉF3(t)+(κ−ϵ3)|ξ|2|ˆθ|2≤C(ϵ3,ϵ′3)(1+|ξ|2+|ξ|4)|ˆq|2+ϵ′3|ξ|2|ˆφ+τˆw|2, | (3.25) |
for any ϵ3,ϵ′3>0.
Proof. Taking (3.12) into account, we arrive at
ddtˉF3(t)+κ|ξ|2|ˆθ|2−κτ0|ξ|2|ˆq|2=Re(iξˆqˉˆθ)−mτ0Re(iξ3(ˆφ+τˆw)ˉˆq). | (3.26) |
Taking advantage of Young's inequality, we obtain (3.25). The proof is complete.
Proof of Theorem 2.4. We define the new Lyapunov functional L2(ξ,t) associated to the case K=0 as follows:
L2(ξ,t):=ˉN(1+|ξ|2)2ˆE(ξ,t)+|ξ|2F1(t)+ˉN2F2(t)+ˉN3ˉF3(t). | (3.27) |
Taking the derivative of (3.27) with respect to t and making use of the above lemmas, we derive
ddtL2(ξ,t)+[(k∗ρ−ϵ1)−ˉN2ϵ′2]|ξ|6|ˆu+τˆφ|2+[ˉN2(m−ϵ2)−1−ˉN3ϵ′3]|ξ|2|ˆφ+τˆw|2+[ˉN3(κ−ϵ3)−C(ϵ1)−ˉN2C(ϵ′2)]|ξ|2|ˆθ|2+[ˉNρ(1+|ξ|2)2−ˉN2C(ϵ2)−ˉN3C(ϵ3,ϵ′3)(1+|ξ|2+|ξ|4)]|ˆq|2≤0. | (3.28) |
At this point, we choose our constants carefully like before. First, we pick
ϵ1<k∗ρ,ϵ2<m,ϵ3<κ. |
Next, we choose
ˉN2>1m−ϵ2andˉN3>C(ϵ1)+ˉN2C(ϵ′2)κ−ϵ3. |
Then, we fix ϵ′3 satisfying
ϵ′2<(k∗/ρ−ϵ1)ˉN2,ϵ′3<ˉN2(m−ϵ2)−1ˉN3. |
Finally, we choose N large enough such that
ˉN>ρˉN2C(ϵ1)+ρˉN3C(ϵ3,ϵ′3). |
Thus, we arrive at
ddtL2(ξ,t)+C4M2(t)≤0, | (3.29) |
where
M2(t)=|ξ|6|ˆu+τˆφ|2+|ξ|2|ˆφ+τˆw|2+|ξ|2|ˆθ|2+|ξ|2|ˆq|2=|ξ|2ˆE(ξ,t). |
From the definition of ˆE(ξ,t) and (3.27), it is obviously that L2(ξ,t)∼(1+|ξ|2)2ˆE(ξ,t). Then,
ddtˆE(ξ,t)+C|ξ|2(1+|ξ|2)2ˆE(ξ,t)≤0. | (3.30) |
Thus, we achieve the desired pointwise estimate (2.6), which leads to the conclusion (2.7). The proof process of (2.7) is similar to the proof of Theorem 3.1 in [9], so we omit it here.
From now on, we study the asymptotic expansion of the eigenvalues for |ξ|→0 and |ξ|→∞ to show the optimality.
Let ˆV=(ˆu,ˆφ,ˆw,ˆθ,ˆq)T and ˆV0=(ˆu0,ˆφ0,ˆw0,ˆθ0,ˆq0)T. Then, we can rewrite system (2.1)-(2.2) as
{ˆVt+iξAˆV+|ξ|2BˆV+|ξ|4DˆV+LˆV=0,ˆV(ξ,0)=ˆV0(ξ), | (4.1) |
where
A=(0000000000000000000κ000κτ00),L=(0−100000−100001τ000000000001τ0),B=(0000000000000−mτρ00mmτ0000000),D=(0000000000k∗τρkτρ0000000000000). |
For (4.1), the solution is given by
ˆV(ξ,t)=etˆΦ(iξ)ˆV0(ξ), |
where etˆΦ(iξ) denotes the matrix exponential with
ˆΦ(iξ)=−(L+iξA+|ξ|2B+|ξ|4D). |
Setting ζ=iξ, we get
ˆΦ(ζ)=−(L+ζA−ζ2B+ζ4D). |
Let λj(ζ) denote the eigenvalues of the matrix ˆΦ(ζ). By the direct calculation, we find that the characteristic polynomial of ˆΦ(ζ) is
τρcdet(λI−ˆΦ(ζ))=τρτ0λ5+(τ0ρ+τρ)λ4+[(τ0k+m2ττ0)ζ4−τρκ2ζ2+ρ]λ3+[(τ0k∗+m2τ+m2τ0+k)ζ4−ρκ2ζ2]λ2+[(m2+k∗)ζ4−κ2kζ6]λ−κ2k∗ζ6. | (4.2) |
Lemma 4.1. The real parts of the eigenvalues of (2.1)-(2.2) satisfy the following asymptotic expansion:
Reλj(iξ)={−1τ+O(|ξ|2),j=1,−1τ0+O(|ξ|2),j=2,−Re(ϕj)|ξ|2+O(|ξ|3),j=3,4,5, | (4.3) |
for |ξ|→0.
Proof. We consider λj(ζ) the following asymptotic expansion:
λj(ζ)=∞∑h=0λ(h)j|ζ|h, | (4.4) |
for |ζ|→0. Straightforward computations yield
λ(0)j=−1τ,j=1,λ(0)j=−1τ0,j=2,λ(0)j=λ(1)j=0,λ(2)j=ϕj,j=3,4,5, |
where ϕj are the roots of equation ρX3−ρκ2X2+(m2+k∗)X−κ2k∗=0. To demonstrate that Re(ϕj)>0, we set
f(X):=ρX3−ρκ2X2+(m2+k∗)X−κ2k∗. | (4.5) |
Since f(0)f(κ2)<0, we conclude that f has at least one real root X=ϕ1 in the interval (0,κ2). We express Eq (4.5) in the form
f(X)=(X−ϕ1)(ρX2+d1X+d0) |
with d1=−ρκ2+ϕ1ρ<0 and d0=κ2k∗ϕ1>0. For the remaining roots ϕ2 and ϕ3, we find that
ϕ2+ϕ3=−d1ρ>0,ϕ2ϕ3=d0ρ>0. |
This implies that if ϕ2 and ϕ3 are real, they are both positive; if ϕ2 and ϕ3 are complex conjugates, then
Re(ϕ2)=Re(ϕ3)=12(κ2−ϕ1)>0. |
Thus, we have arrived at the desired result in (4.3). This completes the proof.
When |ζ|→∞, we rewrite ˆΦ(ζ) as ˆΦ(ζ)=ζ2ˆΨ(ζ−1), where ˆΨ(ζ−1)=B−ζ−1A−ζ−2L−ζ2D, and consider the eigenvalues μj(ζ−1), for j=1,2,3,4,5 of the matrix ˆΨ(ζ−1). Meanwhile, these eigenvalues μj(ζ−1) are the solutions to the characteristic equation
τρcdet(μI−ˆΦ(ζ−1))=τρτ0μ5+(τ0ρ+τρ)ζ−2μ4+[ρζ−4−τρκ2ζ−2+(τ0k+m2ττ0)]μ3+[−ρκ2ζ−4+(τ0k∗+m2τ+m2τ0+k)ζ−2]μ2+[(m2+k∗)ζ−4−κ2kζ−2]μ−κ2k∗ζ−4. |
Lemma 4.2. When K>0, the real parts of the eigenvalues of (2.1)-(2.2) satisfy the asymptotic expansion
Reλj(iξ)={−Kτ0ρ2τρ(τ0k+m2ττ0)+O(|ξ|−1),j=1,2,−m2τκ2k+κ2k2+m2τ0κ2K2κ2k(τ0k+m2ττ0)+O(|ξ|−1),j=3,4,−1+O(|ξ|−1),j=5, | (4.6) |
for |ξ|→∞.
When K=0, the real parts of the eigenvalues of (2.1)-(2.2) satisfy the asymptotic expansion
Reλj(iξ)={−κ2m2τ2ρ2τ20(k+m2τ)2|ξ|−2+O(|ξ|−3),j=1,2,−m2τκ2k+κ2k22κ2k(τ0k+m2ττ0)+O(|ξ|−1),j=3,4,−1+O(|ξ|−1),j=5, | (4.7) |
for |ξ|→∞.
Proof. As |ζ|→∞, similar calculation as before yields
μ(2)j=±√k+m2ττρi,μ(1)j=0,Re(μ(0)j)=−Kτ0ρ2τρ(τ0k+m2ττ0), j=1,2,whenK>0;μ(2)j=±√k+m2ττρi,μ(1)j=0,μ(0)j=∓τ2ρκ2m22√τρ(k+m2τ)(τ0k+m2ττ0)i,μ(−1)j=0,Re(μ(−2)j)=κ2m2τ2ρ2τ20(k+m2τ)2, j=1,2,whenK=0;μ(2)j=0,μ(1)j=±√κ2kτ0k+m2ττ0,μ(0)j=−m2τκ2k+κ2k2+m2τ0κ2K2κ2k(τ0k+m2ττ0), j=3,4,μ(2)j=0,μ(1)j=0,μ(0)j=−1, j=5. |
Consequently, our conclusion holds.
In this work, we have investigated the Cauchy problem for the JMGT-viscoelastic plate system coupled with Cattaneo-type heat conduction, focusing on the optimal decay rates of solutions in both the subcritical and critical cases. Our main contributions can be summarized as follows:
(1) The subcritical case: We proved that the system exhibits exponential decay without regularity loss, improving upon previous results in the literature. This indicates that the dissipation mechanism in this regime preserves the initial regularity of solutions.
(2) The critical case: In contrast, we observed a regularity-loss phenomenon in the decay rates, demonstrating a fundamental difference in the long-time behavior compared to the subcritical case.
Danhua Wang performed the formal analysis and wrote the manuscript; Kewang Chen performed the validation and review. All authors have read and approved the final version of the manuscript for publication.
The authors declare they haven't used Artificial Intelligence (AI) tools in the creation of this article.
The first author is supported by the Basic Science (Natural Science) Research project of higher education institutions in Jiangsu Province (Grant No. 24KJB110021) and Youth Special project of Nanjing Xiaozhuang University (No. 2022NXY38).
The authors declare that there is no conflict of interest.
[1] |
Z. Guo, J. Yu, Existence of periodic and subharmonic solutions for second order superlinear difference equations, Sci. China Ser. A: Math., 46 (2003), 506–515. https://doi.org/10.1007/BF02884022 doi: 10.1007/BF02884022
![]() |
[2] |
L. Erbe, B. Jia, Q. Zhang, Homoclinic solutions of discrete nonlinear systems via variational method, J. Appl. Anal. Comput., 9 (2019), 271–294. https://doi.org/10.11948/2019.271 doi: 10.11948/2019.271
![]() |
[3] | S. Elaydi, An Introduction to Difference Equations, Springer New York, 2005. |
[4] |
B. Zheng, J. Li, J. Yu, One discrete dynamical model on Wolbachia infection frequency in mosquito populations, Sci. China Math., 65 (2022), https://doi.org/10.1007/s11425–021–1891–7 doi: 10.1007/s11425–021–1891–7
![]() |
[5] |
Z. Balanov, C. García-Azpeitia, W. Krawcewicz, On variational and topological methods in nonlinear difference equations, Commun. Pure Appl. Anal., 17 (2018), 2813–2844. https://doi.org/10.3934/cpaa.2018133 doi: 10.3934/cpaa.2018133
![]() |
[6] |
A. Iannizzotto, S. Tersian, Multiple homoclinic solutions for the discrete p-Laplacian via critical point theory, J. Math. Anal. Appl., 403 (2013), 173–182. https://doi.org/10.1016/j.jmaa.2013.02.011 doi: 10.1016/j.jmaa.2013.02.011
![]() |
[7] |
L. Kong, Homoclinic solutions for a higher order difference equation, Appl. Math. Lett., 86 (2018), 186–193. https://doi.org/10.1016/j.aml.2018.06.033 doi: 10.1016/j.aml.2018.06.033
![]() |
[8] |
J. Kuang, Z. Guo, Heteroclinic solutions for a class of p-Laplacian difference equations with a parameter, Appl. Math. Lett., 100 (2020), 106034. https://doi.org/10.1016/j.aml.2019.106034 doi: 10.1016/j.aml.2019.106034
![]() |
[9] |
G. Lin, Z. Zhou, Homoclinic solutions of discrete ϕ-Laplacian equations with mixed nonlinearities, Commun. Pure Appl. Anal., 17 (2018), 1723–1747. https://doi.org/10.3934/cpaa.2018082 doi: 10.3934/cpaa.2018082
![]() |
[10] |
H. Shi, X. Liu, Y. Zhang, Homoclinic orbits for second order p-Laplacian difference equations containing both advance and retardation, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM, 110 (2016), 65–78. https://doi.org/10.1007/s13398-015-0221-y doi: 10.1007/s13398-015-0221-y
![]() |
[11] |
R. Stegliński, On homoclinic solutions for a second order difference equation with p-Laplacian, Discrete Contin. Dyn. Syst. Ser. B, 23 (2018), 487–492. https://doi.org/10.3934/dcdsb.2018033 doi: 10.3934/dcdsb.2018033
![]() |
[12] |
G. Sun, A. Mai, Infinitely many homoclinic solutions for second order nonlinear difference equations with p-Laplacian, Sci. World J., 2014 (2014), 276372. https://doi.org/10.1186/1687-1847-2014-161 doi: 10.1186/1687-1847-2014-161
![]() |
[13] |
Z. Zhou, J. Ling, Infinitely many positive solutions for a discrete two point nonlinear boundary value problem with ϕc-Laplacian, Appl. Math. Lett., 91 (2019), 28–34. https://doi.org/10.1016/j.aml.2018.11.016 doi: 10.1016/j.aml.2018.11.016
![]() |
[14] |
Z. Zhou, D. Ma, Multiplicity results of breathers for the discrete nonlinear Schrödinger equations with unbounded potentials, Sci. China Math., 58 (2015), 781–790. https://doi.org/10.1007/s11425-014-4883-2 doi: 10.1007/s11425-014-4883-2
![]() |
[15] |
L. Schulman, Some differential-difference equations containing both advance and retardation, J. Math. Phys., 15 (1974), 295–298. https://doi.org/10.1063/1.1666641 doi: 10.1063/1.1666641
![]() |
[16] |
D. Smets, M. Willem, Solitary waves with prescribed speed on infinite lattices, J. Funct. Anal., 149 (1997), 266–275. https://doi.org/10.1006/jfan.1996.3121 doi: 10.1006/jfan.1996.3121
![]() |
[17] |
P. Chen, X. Tang, Existence of infinitely many homoclinic orbits for fourth-order difference systems containing both advance and retardation, Appl. Math. Comput., 217 (2011), 4408–4415. https://doi.org/10.1016/j.amc.2010.09.067 doi: 10.1016/j.amc.2010.09.067
![]() |
[18] | P. Mei, Z. Zhou, G. Lin, Periodic and subharmonic solutions for a 2nth-order ϕc-Laplacian difference equation containing both advances and retardations, Discrete Contin. Dyn. Syst. Ser. S, 12 (2019), 2085–2095. |
[19] | C. Stuart, Locating cerami sequences in a mountain pass geometry, Commun. Appl. Anal., 15 (2011), 569–588. |