Loading [MathJax]/jax/output/SVG/jax.js
Research article Special Issues

Block splitting preconditioner for time-space fractional diffusion equations


  • For solving a block lower triangular Toeplitz linear system arising from the time-space fractional diffusion equations more effectively, a single-parameter two-step split iterative method (TSS) is introduced, its convergence theory is established and the corresponding preconditioner is also presented. Theoretical analysis shows that the original coefficient matrix after preconditioned can be expressed as the sum of the identity matrix, a low-rank matrix, and a small norm matrix. Numerical experiments show that the preconditioner improve the calculation efficiency of the Krylov subspace iteration method.

    Citation: Jia-Min Luo, Hou-Biao Li, Wei-Bo Wei. Block splitting preconditioner for time-space fractional diffusion equations[J]. Electronic Research Archive, 2022, 30(3): 780-797. doi: 10.3934/era.2022041

    Related Papers:

    [1] Miyuki Koiso . Stable anisotropic capillary hypersurfaces in a wedge. Mathematics in Engineering, 2023, 5(2): 1-22. doi: 10.3934/mine.2023029
    [2] Daniela De Silva, Ovidiu Savin . Uniform density estimates and $ \Gamma $-convergence for the Alt-Phillips functional of negative powers. Mathematics in Engineering, 2023, 5(5): 1-27. doi: 10.3934/mine.2023086
    [3] Ko-Shin Chen, Cyrill Muratov, Xiaodong Yan . Layered solutions for a nonlocal Ginzburg-Landau model with periodic modulation. Mathematics in Engineering, 2023, 5(5): 1-52. doi: 10.3934/mine.2023090
    [4] Giovanni Di Fratta, Alberto Fiorenza, Valeriy Slastikov . On symmetry of energy minimizing harmonic-type maps on cylindrical surfaces. Mathematics in Engineering, 2023, 5(3): 1-38. doi: 10.3934/mine.2023056
    [5] Fausto Ferrari, Nicolò Forcillo . A new glance to the Alt-Caffarelli-Friedman monotonicity formula. Mathematics in Engineering, 2020, 2(4): 657-679. doi: 10.3934/mine.2020030
    [6] Manuel Friedrich . Griffith energies as small strain limit of nonlinear models for nonsimple brittle materials. Mathematics in Engineering, 2020, 2(1): 75-100. doi: 10.3934/mine.2020005
    [7] Morteza Fotouhi, Andreas Minne, Henrik Shahgholian, Georg S. Weiss . Remarks on the decay/growth rate of solutions to elliptic free boundary problems of obstacle type. Mathematics in Engineering, 2020, 2(4): 698-708. doi: 10.3934/mine.2020032
    [8] Paolo Maria Mariano, Domenico Mucci . Equilibrium of thin shells under large strains without through-the-thickness shear and self-penetration of matter. Mathematics in Engineering, 2023, 5(6): 1-21. doi: 10.3934/mine.2023092
    [9] Giacomo Canevari, Arghir Zarnescu . Polydispersity and surface energy strength in nematic colloids. Mathematics in Engineering, 2020, 2(2): 290-312. doi: 10.3934/mine.2020015
    [10] Filippo Gazzola, Gianmarco Sperone . Remarks on radial symmetry and monotonicity for solutions of semilinear higher order elliptic equations. Mathematics in Engineering, 2022, 4(5): 1-24. doi: 10.3934/mine.2022040
  • For solving a block lower triangular Toeplitz linear system arising from the time-space fractional diffusion equations more effectively, a single-parameter two-step split iterative method (TSS) is introduced, its convergence theory is established and the corresponding preconditioner is also presented. Theoretical analysis shows that the original coefficient matrix after preconditioned can be expressed as the sum of the identity matrix, a low-rank matrix, and a small norm matrix. Numerical experiments show that the preconditioner improve the calculation efficiency of the Krylov subspace iteration method.



    Rectifying curves have been studied a lot in three-dimensional Euclidean space. Rectifying curve whose definition and equivalent definitions are provided in [1]. Chen and Dillen revealed the relationship between the center point of the spatial curve and the rectifying curve in [2]. Rectifying curves have many properties in Euclidean space [3]. In four-dimensional Euclidean space, İşbilir and Tosun [4] studied rectifying curves. Many scholars studied the properties of multiple curves in three-dimensional Minkowski space [5,6]. There have also been studies about rectifying curves, such as three-dimensional Minkowski space [7,8], three-dimensional hyperbolic space [9], and three-dimensional spheres [10]. There is a new article about rectifying curves [11]. These are all valuable geometric information obtained by analyzing the curvature and the torsion of the regular rectifying curve and the Frenet-Serret formula. If the curve has singularities, then other methods need to be used for research. The definition of framed curves has been given in [12]. Framed curves are spatial curves that have moving frames. The framed base curve may have singularities. Next, the rectifying curve was studied by the adapted frame in [13].

    Inspired by the above work, we study non-lightlike framed rectifying curves. We define the non-lightlike framed rectifying curves, study the construction of the non-lightlike framed rectifying curves, and obtain valuable geometric information.

    In Section 2, we review the basic knowledge of non-lightlike framed curves. In Section 3, the non-lightlike framed rectifying curves are defined and their equivalent definitions are given. In Section 4, a method for constructing non-lightlike framed rectifying curves is provided, and examples of regular curves and singular curves are also provided. In Section 5, we define non-lightlike framed helices to obtain the relationship between them and non-lightlike framed rectifying curves. The centrodes of non-lightlike framed rectifying curves are also studied.

    All maps and manifolds considered here are differentiable of class C.

    Let R31 be Minkowski 3-space with the pseudo scalar product ,, the pseudo vector product , and the norm ||||. The pseudo scalar product is equipped with the signature (,+,+).

    For any nonzero vector aR31, it is called spacelike, timelike, or lightlike if a,a is positive, negative, or zero, respectively. We say the regular curve γ:IR31 is spacelike, timelike, or lightlike if the vector γ(t) is spacelike, timelike or lightlike for all tI, respectively. For nR31{0}, define a set P={aR31|a,n=0}. It is obvious that P is a plane in R31. The vector n is called the pseudo normal vector of the plane P. The plane P is called spacelike, timelike, or lightlike if the vector n is timelike, spacelike, or lightlike, respectively.

    There are three pseudo spheres in R31:

    S21={aR31|a,a=1},
    LC={aR31{0}|a,a=0}

    and

    H20={aR31|a,a=1}.

    We call them de Sitter 2-space, (open) lightcone, and hyperbolic 2-space, respectively. Let Δ={(β1,β2)R31×R31|β1,β2=0,||β1||=1,||β2||=1} and γ:IR31 be a non-lightlike curve.

    Definition 2.1. We call (γ,β1,β2):IR31×Δ a non-lightlike framed curve if γ(t),β1(t)=0, γ(t),β2(t)=0 for any tI. We call γ:IR31 a non-lightlike framed base curve if there exists (β1,β2):IΔ such that (γ,β1,β2) is a non-lightlike framed curve.

    Define μ(t)=β1(t)β2(t). There exists a function α:IR satisfying γ(t)=α(t)μ(t). {β1(t),β2(t),μ(t)} is a moving frame along γ. Frenet-type formulas are

    (β1(t)β2(t)μ(t))=(0l1(t)l2(t)σl1(t)0l3(t)σδl2(t)δl3(t)0)(β1(t)β2(t)μ(t)),
    γ(t)=α(t)μ(t),

    where

    σ=μ(t),μ(t),δ=β1(t),β1(t),l1(t)=σδβ1(t),β2(t),l2(t)=σβ1(t),μ(t),l3(t)=σβ2(t),μ(t),α(t)=σγ(t),μ(t).

    (l1,l2,l3,α):IR4 is called the curvature of (γ,β1,β2). If μ(t) is spacelike (timelike), we call γ a spacelike (timelike) framed base curve.

    We know t0 is a singular point of γ if and only if α(t0)=0.

    Proposition 2.2. γ:IR31 is a non-lightlike regular curve, and (γ,β1,β2):IR31×Δ is a non-lightlike framed curve. The relations between the curvature (l1,l2,l3,α) of (γ,β1,β2) and the curvature κ and the torsion τ of γ are

    (|α|κ)(t)=|l22σl23|(t),
    (δα(l22σl23)τ)(t)=(l2l3l3l2+σl1l22l1l23)(t).

    We assume l22(t)σl23(t) and denote ε=sgn(l22σl23)(t).

    Definition 2.3. (γ,β1,β2):IR31×Δ is a non-lightlike framed curve, and its curvature is (l1,l2,l3,α). Let

    (¯β1(t)¯β2(t))=1ε(l22σl23)(t)(εl2(t)εσl3(t)l3(t)l2(t))(β1(t)β2(t)).

    We call ¯β1 direction the principal normal direction of (γ,β1,β2) and ¯β2 direction the binormal direction of (γ,β1,β2).

    We have μ(t)=¯β1(t)¯β2(t). {¯β1(t),¯β2(t),μ(t)} is called the Frenet-type frame along γ. Frenet-type formulas are

    (¯β1(t)¯β2(t)μ(t))=(0L1(t)L2(t)σL1(t)00σεδL2(t)00)(¯β1(t)¯β2(t)μ(t)),
    γ(t)=α(t)μ(t),

    where

    L1(t)=ε(l2l3l3l2l22σl23(t)+σl1(t)),L2(t)=ε(l22(t)σl23(t)).

    Then (L1,L2,0,α) is the curvature of (γ,¯β1,¯β2).

    Remark 2.4. (γ,β1,β2):IR31×Δ is a non-lightlike framed curve, and its curvature is (l1,l2,0,α). If l2(t)>0, then ¯β1(t)=β1(t) and ¯β2(t)=β2(t). If l2(t)<0, then ¯β1(t)=β1(t) and ¯β2(t)=β2(t).

    In this article, we only study the non-lightlike framed curve (γ,¯β1,¯β2) and its frame is the Frenet-type frame {¯β1(t),¯β2(t),μ(t)}.

    Remark 2.5. γ:IR31 is a non-lightlike regular curve and (γ,¯β1,¯β2):IR31×Δ is a non-lightlike framed curve. Let l3=0 be in Proposition 2.2. We have the relations among the curvature κ, the torsion τ of γ and the curvature (L1,L2,0,α) of (γ,¯β1,¯β2) are

    κ(t)=L2|α|(t),τ(t)=σδL1α(t)

    For a non-lightlike framed curve (γ,¯β1,¯β2):IR31×Δ, the rectifying plane of γ at t0 is the plane through γ(t0) and spanned by ¯β2(t0) and μ(t0).

    Definition 3.1. (γ,¯β1,¯β2):IR31×Δ is a non-lightlike framed curve. We call (γ,¯β1,¯β2) a non-lightlike framed rectifying curve if γ satisfies

    γ(t)=(ψμ+ϕ¯β2)(t)

    for two functions ψ(t),ϕ(t):IR. γ is called a base curve of a non-lightlike framed rectifying curve (Figure 1).

    Figure 1.  γ is a base curve of a non-lightlike framed rectifying curve.

    We call f(t)=γ(t),γ(t) the distance squared function of a non-lightlike framed curve (γ,¯β1,¯β2).

    Theorem 3.2. (γ,¯β1,¯β2):IR31×Δ is a non-lightlike framed curve. The following statements are equivalent.

    (1) γ(t),μ(t)=σα(t).

    (2) The distance squared function satisfies

    f(t)=σγ(t),μ(t)2ϕ2σεδ.

    (3) γ(t),¯β2(t)=ϕεδ,ϕR{0}.

    (4) γ(t) is a base curve of a non-lightlike framed rectifying curve.

    Proof. Let γ(t) be a base curve of a non-lightlike framed rectifying curve. We know there exist two functions ψ(t) and ϕ(t) such that

    γ(t)=(ψμ+ϕ¯β2)(t). (3.1)

    According to the Frenet-type formulas and deriving (3.1), we have

    (αμ)(t)=(ψμ+(σεδψL2+σϕL1)¯β1+ϕ¯β2)(t).

    Then

    ψ(t)=α(t),(σεδψL2)(t)=(σϕL1)(t),ϕ(t)=0. (3.2)

    From the first equation of (3.2), we obtain γ,μ(t)=σψ(t)=σα(t). This proves the statement (1).

    By (3.1) and (3.2), we can obtain that

    γ,γ(t)=(σψ2ϕ2σεδ)(t)=(σγ,μ2ϕ2σεδ)(t),

    If ϕ=0, then ψ(t)=0 and γ(t) is a point. So ϕ0. This proves statements (2) and (3).

    Conversely, we assume the statement (1) holds, then

    γ,μ(t)=(αμ,μ+γ,σεδL2¯β1)(t)=σα(t).

    By assumption, we obtain γ(t),¯β1(t)=0. So γ(t) is a base curve of a non-lightlike framed rectifying curve.

    If the statement (2) holds, then

    γ,γ(t)=(σγ,μ2ϕ2σεδ)(t).

    Then,

    2γ,αμ(t)=(2σγ,μσα+γ,σεδL2¯β1)(t).

    So we get γ(t),¯β1(t)=0.γ(t) is a base curve of a non-lightlike framed rectifying curve.

    If the statement (3) holds, γ(t),¯β2(t)=ϕσεδ. By taking the derivative, we have

    (αμ,¯β2+γ,σL1¯β1)(t)=0.

    So γ(t),¯β1(t)=0.γ(t) is a base curve of a non-lightlike framed rectifying curve.

    Remark 3.3. (γ,¯β1,¯β2) is a non-lightlike framed rectifying curve. If the base curve of a non-lightlike framed rectifying curve γ is singular at t0, then from Eq (3.2) and the statement (2) in Theorem 3.2, we have

    L1L2(t)=σδψϕ(t),(L1L2(t))=σδαϕ(t).

    So (L1(t0)L2(t0))=0. Moreover, we know

    f(t)=(2αγ,μ)(t).

    So f(t0)=0.

    Theorem 4.1. (γ,¯β1,¯β2):IR31×Δ is a non-lightlike framed rectifying curve. γ(t) is a base curve of a non-lightlike framed rectifying curve if and only if γ(t) can be expressed as one of the following two equations

    γ(t)=ρ(sec(||y(t)||dt+M))y(t),

    where M is a constant, ρR{0} and y(t) is a spacelike framed base curve on S21. Or

    γ(t)=2ϕe||y(t)||dt+12M|1e2||y(t)||dt+M|y(t),

    where M is a constant, ϕR{0} and y(t) is a spacelike (timelike) framed base curve on H20 (S21).

    Proof. First, we prove the first equation. Let γ(t) be a base curve of a spacelike framed rectifying curve, which has a spacelike rectifying plane. So γ,γ(t)=(ψ2(t)+ρ2)(t), where ρR{0}. Let y(t)=(1(ψ2+ρ2)12γ)(t) be a spacelike framed base curve on S21. We have

    γ(t)=(ψα(ψ2+ρ2)12y+(ψ2+ρ2)12y)(t).

    Since γ(t)=α(t)μ(t) and y(t) is orthogonal to y(t), we can obtain

    γ,γ(t)=(ψ2α2ψ2+ρ2+(ψ2+ρ2)y,y)(t).

    So

    ||y(t)||=(|ρα|ψ2+ρ2)(t).

    We only consider ρα(t)0, and it is similar for ρα(t)0. Then

    ||y(t)||dt+M=arctanψ(t)ρ.

    That is

    ψ(t)=ρtan(||y(t)||dt+M).

    So

    γ(t)=ρ(sec(||y(t)||dt+M))y(t).

    Conversely, let (y,βy1,βy2) be a spacelike framed curve and γ(t) be defined by

    γ(t)=ρ(sec(||y(t)||dt+M))y(t).

    Let ¯ψ(t)=ρ(tan2(||y(t)||dt+M)) and ¯α(t)=¯ψ(t). Then

    γ(t)=((¯ψ2+ρ2)12y)(t),
    γ(t)=(¯ψ¯α(¯ψ2+ρ2)12y+(¯ψ2+ρ2)12y)(t).

    Since y(t) is also a spacelike framed curve, we define that y(t)=ψ(t)μy(t), where μy(t)=βy1(t)βy2(t). We can obtain

    ||y(t)||dt+M=arctan¯ψ(t)ρ

    and

    ||y(t)||=(|ρ¯α|¯ψ2+ρ2)(t).

    Therefore, we denote that y(t)=(ρ¯α¯ψ2+ρ2μy)(t). That is y(t)=(ρ¯α¯ψ2(t)+ρ2)(t). Then we have

    γ(t)=(¯α¯ψ(¯ψ2+ρ2)12y+ρ(¯ψ2+ρ2)12μy)(t)=(¯αμ)(t).

    Hence, we can calculate that γ,μ2(t)=¯ψ(t). Since γ,γ(t)=(¯ψ2+ρ2)(t), we have

    γ,γ(t)=(γ,μ2+ρ2)(t).

    It indicates that the function satisfies the statement (2) in Theorem 3.2. So γ(t) is a base curve of a spacelike framed rectifying curve.

    Next we prove the second equation. Let γ(t) be the base curve of a spacelike framed rectifying curve, which has a timelike rectifying plane and a spacelike position vector. (We only prove this case, and the proof for other cases is similar to it.) So γ,γ(t)=(ψ2ϕ2)(t), where ϕR{0}. Let y(t)=(1(ψ2ϕ2)12γ)(t) be a spacelike framed base curve on S21. We have

    γ(t)=(ψα(ψ2ϕ2)12y+(ψ2ϕ2)12y)(t),

    Since γ(t)=(αμ)(t) and y(t) is orthogonal to y(t),

    γ,γ(t)=α2(t)=(ψ2α2ψ2ϕ2+(ψ2ϕ2)y,y)(t).

    So

    ||y(t)||=|ϕαψ(t)2ϕ2|(t)

    and

    ||y(t)||dt+M=12ln|ψ(t)ϕψ(t)+ϕ|.

    Then,

    ψ(t)=ϕ1+e2||y(t)||dt+M1e2||y(t)||dt+M.

    So

    γ(t)=2ϕe||y(t)||dt+12M|1e2||y(t)||dt+M|y(t).

    Conversely, we can obtain the proof of this section by referring to the proof of the first equation.

    Remark 4.2. If γ(t) is a base curve of a spacelike framed rectifying curve, which has a timelike rectifying plane and a lightlike position vector, then γ(t),γ(t)=0. That means ψ2(t)=ϕ2, α(t)=0, then γ(t) is a point. So γ(t) does not exist.

    Example 4.3. Let y1(t)=(32,72cos2t,72sin2t),t(π23,π23) be a curve on S21. We have ||y1(t)||=7. Let ρ=1 and M=0. We have the curve

    γ1(t)=(sec7t)(32,72cos2t,72sin2t)

    is a base curve of a non-lightlike framed rectifying curve in R31 (Figure 2).

    Figure 2.  The curve γ1(t) is a non-lightlike framed rectifying curve.

    Example 4.4. Let y2(t)=(sinht2,cosht2,0),t(π2,π2) be a curve on S21. We have ||y2(t)||=2|t|. Let ρ=1 and M=0. We have the curve

    γ2(t)=sect2(sinht2,cosht2,0)

    is a base curve of a non-lightlike framed rectifying curve with a singular point R31 (Figure 3).

    Figure 3.  The curve γ2(t) is a base curve of a non-lightlike framed rectifying curve with a singular point. The black point is the singular point of the curve, whose two segments coincide.

    Definition 5.1. (γ,¯β1,¯β2):IR31×Δ is a non-lightlike framed curve. γ is called a non-lightlike framed helix if there exists a fixed unit vector η satisfying

    μ(t),η=p,

    where pR{0}.

    Remark 5.2. For a non-lightlike framed curve (γ,β1,β2), we can also call γ a non-lightlike framed helix if there exists a fixed unit vector η satisfying

    μ(t),η=p,

    where pR{0}.

    (γ,¯β1,¯β2):IR31×Δ is a non-lightlike framed curve with the curvature (L1,L2,0,α). γ is a non-lightlike framed helix. We consider the ratio L1(t)L2(t).

    Since

    μ,η(t)=(σεδL2¯β1,η(t)=0.

    Then

    ¯β1(t),η=0. (5.1)

    η is located in the plane, and the plane has basis vectors μ(t) and ¯β2(t). Since μ(t),η=p, we have ¯β2(t),η is a constant, denoted by p1. If p1=0, then μ(t)=σpη. At this point, γ is a segment of a straight line. So we always assume p10. We take the derivative of (5.1), so

    L2μ+L1¯β2,η(t)=0.

    Then

    L1L2(t)=pp1.

    By Theorem 3.2, we can obtain γ(t) is a base curve of the non-lightlike framed rectifying curve if and only if

    L1L2(t)=c1α(t)dt+c2,

    where c1,c2R, c10.

    Proposition 5.3. (γ,¯β1,¯β2):IR31×Δ is a non-lightlike framed curve and its curvature is (L1,L2,0,α). The curvature satisfies (L1(t)L2(t))=c1α(t).

    (1) If c1=0, then (γ,¯β1,¯β2) is a non-lightlike framed helix.

    (2) If c10, then (γ,¯β1,¯β2) is a non-lightlike framed rectifying curve.

    Definition 5.4. (γ,¯β1,¯β2):IR31×Δ is a non-lightlike framed curve and its curvature is (L1,L2,0,α). We call d(t) the centrode of (γ,¯β1,¯β2) if

    d(t)=(L1μ+L2¯β2)(t).

    Proposition 5.5. (γ,¯β1,¯β2):IR31×Δ is a non-lightlike framed curve, and its curvature is (L1,L2,0,α). Where L1(t) is a nonzero constant and L2(t) is a nonconstant function.

    (1) Let d(t)=(L1μ+L2¯β2)(t) be the centrode of (γ,¯β1,¯β2). Then d(t) is a base curve of a non-lightlike framed rectifying curve.

    (2) The base curve of any non-lightlike framed rectifying curve in R31 is the centrode of some non-lightlike framed curve.

    Future research could extend the concept of non-lightlike framed rectifying curves to high-dimensional Minkowski space or it could study lightlike framed rectifying curves. This provides assistance in studying the properties and classification of higher-dimensional non-lightlike framed rectifying curves.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    This work was supported by the National Natural Science Foundation of China (Grant No. 11671070).

    The authors declare that there is no conflict of interest.



    [1] A. Hanyga, Multidimensional solutions of space-time-fractional diffusion equations, Proc. R. Soc. A., 458 (2002), 429–450. https://doi.org/10.1098/rspa.2001.0893 doi: 10.1098/rspa.2001.0893
    [2] Y. Povstenko, Linear Fractional Diffusion-Wave Equation for Scientists and Engineers, Birkh¨auser, Cham, 2015. https://doi.org/10.1007/978-3-319-17954-4-12
    [3] Y. Povstenko, Fractional Thermoelasticity, Springer, Cham, 2015. https://doi.org/10.1007/978-3-319-15335-3
    [4] T. Gao, J. Q. Duan, Quantifying model uncertainty in dynamical systems driven by non-Gaussian Lˊevy stable noise with observations on mean exit time or escape probability, Commun. Nonlinear Sci. Numer. Simul., 39 (2016), 1–6. https://doi.org/10.1016/j.cnsns.2016.02.019 doi: 10.1016/j.cnsns.2016.02.019
    [5] G. M. Zaslavsky, D. Stevens, H. Weitzner, Selfsimilar transport in incomplete chaos, Phys. Rev. E, 48 (1993), 1683. https://doi.org/10.1103/PhysRevE.48.1683 doi: 10.1103/PhysRevE.48.1683
    [6] J. A. Tenreiro Machado, Implementing discrete-time fractional-order controllers, Fract. Calc. Appl. Anal., 4 (2001), 47–66. http://dx.doi.org/10.20965/jaciii.2001.p0279 doi: 10.20965/jaciii.2001.p0279
    [7] R. L. Magin, Fractional calculus in bioengineering, Crit. Rev. Biomed. Eng., 32 (2004), 1–104. https://doi.org/10.1615/CritRevBiomedEng.v32.i2.10 doi: 10.1615/CritRevBiomedEng.v32.i2.10
    [8] D. Valenti, B. Spagnolo, G. Bonanno, Hitting time distributions in financial markets, Physica A, 382 (2007), 311–320. https://doi.org/10.1016/j.physa.2007.03.044 doi: 10.1016/j.physa.2007.03.044
    [9] J. Bai, X. C. Feng, Fractional-order anisotropic diffusion for image denoising, IEEE Trans. Image Process., 16 (2007), 2492–2502. https://doi.org/10.1109/TIP.2007.904971 doi: 10.1109/TIP.2007.904971
    [10] P. F. Dai, Q. B. Wu, S. F. Zhu, An efficient matrix splitting preconditioning technique for two-dimensional unsteady space-fractional diffusion equations, J. Comput. Appl. Math., 371 (2020), 112673. https://doi.org/10.1016/j.cam.2019.112673 doi: 10.1016/j.cam.2019.112673
    [11] X. M. Gu, S. L. Wu, A parallel-in-time iterative algorithm for Volterra partial integro-differential problems with weakly singular kernel, J. Comput. Phys., 417 (2020), 109576. https://doi.org/10.1016/j.jcp.2020.109576 doi: 10.1016/j.jcp.2020.109576
    [12] X. M. Gu, Y. L. Zhao, X. L. Zhao, B. Carpentieri, Y. Y. Huang, A note on parallel preconditioning for the all-at-once solution of Riesz fractional diffusion equations, Numer. Math. Theor. Meth. Appl., 14 (2021), 893–919. https://doi.org/10.4208/nmtma.OA-2020-0020 doi: 10.4208/nmtma.OA-2020-0020
    [13] Y. L. Zhao, X. M. Gu, M. Li, H. Y. Jian, Preconditioners for all-at-once system from the fractional mobile/immobile advection-diffusion model, J. Appl. Math. Comput., 65 (2021), 669–691. https://doi.org/10.1007/s12190-020-01410-y doi: 10.1007/s12190-020-01410-y
    [14] Y. L. Zhao, X. M. Gu, A. Ostermann, A preconditioning technique for an all-at-once system from Volterra subdiffusion equations with graded time steps, J. Sci. Comput., 88 (2021), 1–22. https://doi.org/10.1007/s10915-021-01527-7 doi: 10.1007/s10915-021-01527-7
    [15] M. M. Meerschaert, C. Tadjeran, Finite difference approximations for fractional advection dispersion flow equations, J. Comput. Appl. Math., 172 (2004), 65–77. https://doi.org/10.1016/j.cam.2004.01.033 doi: 10.1016/j.cam.2004.01.033
    [16] M. M. Meerschaert, C. Tadjeran, Finite difference approximations for two-sided space-fractional partial differential equations, Appl. Numer. Math., 56 (2006), 80–90. https://doi.org/10.1016/j.apnum.2005.02.008 doi: 10.1016/j.apnum.2005.02.008
    [17] H. Wang, K. X. Wang, T. Sircar, A direct O(Nlog2N) finite difference method for fractional diffusion equations, J. Comput. Phys., 229 (2010), 8095–8104. https://doi.org/10.1016/j.jcp.2010.07.011 doi: 10.1016/j.jcp.2010.07.011
    [18] R. H. Chan, M. K. Ng, Conjugate gradient methods for Toeplitz systems, SIAM Rev., 38 (1995), 427–482. https://doi.org/10.1137/S0036144594276474 doi: 10.1137/S0036144594276474
    [19] M. K. Ng, Iterative Methods for Toeplitz Systems, Oxford University Press, 2004. https://doi.org/10.5555/1121576
    [20] R. Chan, X. Q. Jin, An Introduction to Iterative Toeplitz Solvers, Portland, Ringgold, Inc., 2008. https://doi.org/10.1137/1.9780898718850
    [21] K. X. Wang, H. Wang, A fast characteristic finite difference method for fractional advection diffusion equations, Adv. Water Resour., 34 (2011), 810–816. https://doi.org/10.1016/j.advwatres.2010.11.003 doi: 10.1016/j.advwatres.2010.11.003
    [22] H. K. Pang, H. W. Sun, Multigrid method for fractional diffusion equations, J. Comput. Phys., 231 (2012), 693–703. https://doi.org/10.1016/j.jcp.2011.10.005 doi: 10.1016/j.jcp.2011.10.005
    [23] S. L. Lei, H. W. Sun, A circulant preconditioner for fractional diffusion equations, J. Comput. Phys., 242 (2013), 715–725. https://doi.org/10.1016/j.jcp.2013.02.025 doi: 10.1016/j.jcp.2013.02.025
    [24] F. R. Lin, S. W. Yang, X. Q. Jin, Preconditioned iterative methods for fractional diffusion equation, J. Comput. Phys., 256 (2014), 109–117. https://doi.org/10.1016/j.jcp.2013.07.040 doi: 10.1016/j.jcp.2013.07.040
    [25] Y. L. Zhao, P. Y. Zhu, X. M. Gu, A limited-memory block bi-diagonal Toeplitz preconditioner for block lower triangular Toeplitz system from time-space fractional diffusion equation, J. Comput. Appl. Math., 362 (2019), 99–115. https://doi.org/10.1016/j.cam.2019.05.019 doi: 10.1016/j.cam.2019.05.019
    [26] Z. Z. Bai, K. Y. Lu, J. Y. Pan, Diagonal and Toeplitz splitting iteration methods for Diagonal-plus-Toeplitz linear systems from spatial fractional diffusion equations, Numer. Linear Algebra Appl., 24 (2017), e2093. https://doi.org/10.1002/nla.2093 doi: 10.1002/nla.2093
    [27] K. Y. Lu, Diagonal and circulant or skew-circulant splitting preconditioners for spatial fractional diffusion equations, Comput. Appl. Math., 37 (2018), 1–23. https://doi.org/10.1007/s40314-017-0570-6 doi: 10.1007/s40314-017-0570-6
    [28] P. F. Dai, Q. B. Wu, S. F. Zhu, Quasi-Toeplitz splitting iteration methods for unsteady space-fractional diffusion equations, Numer. Methods Partial Differ. Equations, 35 (2019), 699–715. https://doi.org/10.1002/num.22320 doi: 10.1002/num.22320
    [29] M. K. Ng, J. Y. Pan, Approximate inverse circulant-plus-diagonal preconditioners for Toeplitz-plus-diagonal matrices. SIAM J. Sci. Comput., 32 (2010), 1442–1464. https://doi.org/10.1137/080720280
    [30] I. Podlubny, Fractional Differential Equations, Academic Press, 1999. http://www.gbv.de/dms/ilmenau/toc/25279799X.PDF
    [31] O. Axelsson, Iterative Solution Methods, Cambridge University Press, 1994. https://doi.org/10.1017/CBO9780511624100
    [32] R. S. Varga, Matrix Iterative Analysis, Springer, Berlin, Heidelberg, 1962. https://doi.org/10.1007/978-3-642-05156-2
    [33] A. A. Alikhanov, A new difference scheme for the time fractional diffusion equation, J. Comput. Phys., 280 (2015), 424–438. https://doi.org/10.1016/j.jcp.2014.09.031 doi: 10.1016/j.jcp.2014.09.031
    [34] T. Huckle, Circulant and skewcirculant matrices for solving Toeplitz matrix problems, SIAM J. Matrix Anal. Appl., 13 (1992), 767–777. https://doi.org/10.1137/0613048 doi: 10.1137/0613048
    [35] S. Hon, Circulant preconditioners for functions of Hermitian Toeplitz matrices, J. Comput. Appl. Math., 352 (2019), 328–340. https://doi.org/10.1016/j.cam.2018.11.011 doi: 10.1016/j.cam.2018.11.011
    [36] S. T. Lee, H. K. Pang, H. W. Sun, Shift-invert Arnoldi approximation to the Toeplitz matrix exponential, SIAM J. Sci. Comput., 32 (2010), 774–792. https://doi.org/10.1137/090758064 doi: 10.1137/090758064
    [37] X. Lu, H. K. Pang, H. W. Sun, et al. Approximate inversion method for time-fractional subdiffusion equations: Approximate inversion method for time-fractional equations, Numer. Linear Algebra Appl., 25 (2017), e2132. https://doi.org/10.1002/nla.2132 doi: 10.1002/nla.2132
    [38] R. S. Varga, Gerˇsgorin and His Circles, Springer, Berlin, Heidelberg, 2004. https://doi.org/10.1007/978-3-642-17798-9
    [39] M. M. Meerschaert, C. Tadjeran, Finite difference approximations for fractional advection dispersion equations, J. Comput. Appl. Math., 172 (2004), 65–77. https://doi.org/10.1016/j.cam.2004.01.033 doi: 10.1016/j.cam.2004.01.033
    [40] M. M. Meerschaert, C. Tadjeran, Finite difference approximations for two-sided space-fractional partial differential equations, Appl. Numer. Math., 56 (2006), 80–90. https://doi.org/10.5555/1126893.1642837 doi: 10.5555/1126893.1642837
    [41] H. Li, J. Cheng, H. B. Li, et al., Stability analysis of fractional-order linear system with time delay described by the Caputo-Fabrizio derivative, Adv. Differ. Equations, 86 (2019), 1–8. https://doi.org/10.1007/s12555-012-0164-4 doi: 10.1007/s12555-012-0164-4
    [42] C. F. Lorenzo, T. T. Hartley, Variable order and distributed order fractional operators, Nonlinear Dyn., 29 (2002), 57–98. https://doi.org/10.1023/A:1016586905654 doi: 10.1023/A:1016586905654
    [43] X. Zheng, H. Wang, An optimal-order numerical approximation to variable-order space-fractional diffusion equations on uniform or graded meshes, SIAM J. Numer. Anal., 58 (2020), 330–352. https://doi.org/10.1137/19M1245621 doi: 10.1137/19M1245621
    [44] X. Zheng, H. Wang, An error estimate of a numerical approximation to a hidden-memory variable-order space-time fractional diffusion equation, SIAM J. Numer. Anal., 58 (2020), 2492–2514. https://doi.org/10.1137/20M132420X doi: 10.1137/20M132420X
    [45] X. Zheng, H. Wang, A hidden-memory variable-order time-fractional optimal control model: analysis and approximation, SIAM J. Control Optim., 59 (2021), 1851–1880. https://doi.org/10.1137/20M1344962 doi: 10.1137/20M1344962
  • This article has been cited by:

    1. Klaus Deckelnick, Marco Doemeland, Hans-Christoph Grunau, Boundary value problems for a special Helfrich functional for surfaces of revolution: existence and asymptotic behaviour, 2021, 60, 0944-2669, 10.1007/s00526-020-01875-6
    2. L. De Luca, M. Ponsiglione, Variational models in elasticity, 2021, 3, 2640-3501, 1, 10.3934/mine.2021015
    3. Marco Pozzetta, On the Plateau–Douglas problem for the Willmore energy of surfaces with planar boundary curves, 2021, 27, 1292-8119, S2, 10.1051/cocv/2020049
    4. Anthony Gruber, Magdalena Toda, Hung Tran, Stationary surfaces with boundaries, 2022, 62, 0232-704X, 305, 10.1007/s10455-022-09850-4
    5. Manuel Schlierf, On the convergence of the Willmore flow with Dirichlet boundary conditions, 2024, 241, 0362546X, 113475, 10.1016/j.na.2023.113475
    6. Anna Kubin, Luca Lussardi, Marco Morandotti, Direct Minimization of the Canham–Helfrich Energy on Generalized Gauss Graphs, 2024, 34, 1050-6926, 10.1007/s12220-024-01564-2
    7. Manuel Schlierf, Global existence for the Willmore flow with boundary via Simon’s Li–Yau inequality, 2025, 1864-8258, 10.1515/acv-2024-0018
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2247) PDF downloads(85) Cited by(0)

Figures and Tables

Figures(2)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog