Loading [MathJax]/jax/output/SVG/jax.js
Research article

ˉ-equation look at analytic Hilbert's zero-locus theorem

  • Received: 18 October 2021 Revised: 09 December 2021 Accepted: 09 December 2021 Published: 20 December 2021
  • Stemming from the Pythagorean Identity sin2z+cos2z=1 and Hörmander's L2-solution of the Cauchy-Riemann's equation ˉu=f on C, this article demonstrates a corona-type principle which exists as a somewhat unexpected extension of the analytic Hilbert's Nullstellensatz on C to the quadratic Fock-Sobolev spaces on C.

    Citation: Xiaofen Lv, Jie Xiao, Cheng Yuan. ˉ-equation look at analytic Hilbert's zero-locus theorem[J]. Electronic Research Archive, 2022, 30(1): 168-178. doi: 10.3934/era.2022009

    Related Papers:

    [1] Die Hu, Peng Jin, Xianhua Tang . The existence results for a class of generalized quasilinear Schrödinger equation with nonlocal term. Electronic Research Archive, 2022, 30(5): 1973-1998. doi: 10.3934/era.2022100
    [2] Shuai Yuan, Sitong Chen, Xianhua Tang . Normalized solutions for Choquard equations with general nonlinearities. Electronic Research Archive, 2020, 28(1): 291-309. doi: 10.3934/era.2020017
    [3] Shaban Khidr, Salomon Sambou . $ L^p $-theory for the $ {\partial }\overline{\partial} $-equation and isomorphisms results. Electronic Research Archive, 2025, 33(1): 68-86. doi: 10.3934/era.2025004
    [4] David Cheban, Zhenxin Liu . Averaging principle on infinite intervals for stochastic ordinary differential equations. Electronic Research Archive, 2021, 29(4): 2791-2817. doi: 10.3934/era.2021014
    [5] Yuhui Chen, Ronghua Pan, Leilei Tong . The sharp time decay rate of the isentropic Navier-Stokes system in $ {\mathop{\mathbb R\kern 0pt}\nolimits}^3 $. Electronic Research Archive, 2021, 29(2): 1945-1967. doi: 10.3934/era.2020099
    [6] Quanqing Li, Zhipeng Yang . Existence of normalized solutions for a Sobolev supercritical Schrödinger equation. Electronic Research Archive, 2024, 32(12): 6761-6771. doi: 10.3934/era.2024316
    [7] Jon Johnsen . Well-posed final value problems and Duhamel's formula for coercive Lax–Milgram operators. Electronic Research Archive, 2019, 27(0): 20-36. doi: 10.3934/era.2019008
    [8] Guaiqi Tian, Hongmin Suo, Yucheng An . Multiple positive solutions for a bi-nonlocal Kirchhoff-Schr$ \ddot{\mathrm{o}} $dinger-Poisson system with critical growth. Electronic Research Archive, 2022, 30(12): 4493-4506. doi: 10.3934/era.2022228
    [9] Massimo Grossi . On the number of critical points of solutions of semilinear elliptic equations. Electronic Research Archive, 2021, 29(6): 4215-4228. doi: 10.3934/era.2021080
    [10] Mingzhan Huang, Xiaohuan Yu, Shouzong Liu . Modeling and analysis of release strategies of sterile mosquitoes incorporating stage and sex structure of wild ones. Electronic Research Archive, 2023, 31(7): 3895-3914. doi: 10.3934/era.2023198
  • Stemming from the Pythagorean Identity sin2z+cos2z=1 and Hörmander's L2-solution of the Cauchy-Riemann's equation ˉu=f on C, this article demonstrates a corona-type principle which exists as a somewhat unexpected extension of the analytic Hilbert's Nullstellensatz on C to the quadratic Fock-Sobolev spaces on C.



    As one of the fundamentals of algebraic-complex geometry, the analytic Hilbert's Nullstellensatz (either theorem of zeros or zero-locus theorem) [1] on the finite complex plane C asserts that for finitely many analytic polynomials {pj}nj=1 without common zeros in C,

      finitely many analytic polynomials  {qj}nj=1  such that  nj=1pjqj=1. (1)

    This celebrated principle has been improved and extended for more than a century; see e.g., Hermann [2], Masser-Wüstholz [3], Brownawell [4], Kollár [5], and Kwon-Neryanun-Trent [6] whose Lemma 1.4 especially indicates that an entire function Y is a polynomial on C if and only if lim|z||z|m|Y(z)|=0 for some positive integer m.

    Meanwhile, in complex trigonometry, the Pythagorean Identity on C states that

    sin2z+cos2z=(eizeiz2i)2+(eiz+eiz2)2=1    zC, (2)

    and sinz & cosz have no common zero as graphically shown below

    Although the entire functions sinz & cosz are not analytic polynomials, they can be appropriately approximated by analytic polynomials and satisfy:

    {(sinz)g1(z)+(cosz)g2(z)=1;{g1(z)=sinz, g2(z)=cosz};supzC(|g1(z)|+|g2(z)|)e|z|<;|sinz|+|cosz|1,

    where this last inequality is geometric due to the basic fact that the sum of the lengths of the adjacent & opposite sides BC & CA is not less than the length of the hypotenuse AB in the right triangle ABC drawn below

    The previous two-fold observation actually inspires us to extend the analytic Hilbert's Nullstellensatz to some entire function spaces.

    For α>0, let F2α be the Fock-Hilbert space of all L2(λα)-integrable entire functions (or analytic functions on C) with the inner product

    f,gF2α=Cf(z)¯g(z)dλα(z)    entire function pair  {f,g},

    where

    dλα(z)=απ1eα|z|2dA(z)=απ1eα|z|2dxdy    z=x+iyC.

    Moreover, for a nonnegative integer m, let F2α,m be the quadratic m-order Fock-Sobolev space of all entire functions obeying

    f2F2α,m=C|zmf(z)|2eα|z|2dA(z)<;

    Evidently,

    α1<α2F2α1,mF2α2,m;

    see also Zhu's book [7] for more information.

    Since all analytic polynomials are dense in F2α,m, as a somewhat unexpected variant of Eqs (1) and (2) we discover the following corona-type principle.

    Theorem 1.1. Let

    {α(0,);m,n{1,2,3,...};f1,...,fnF2α,1.

    If g is an entire function with

    nj=1|fj||g|m, (3)

    then

      g1,...,gnF22mα,1  such that  nj=1fjgj=g3m. (4)

    Especially, if

    nj=1|fj|1, (5)

    then

      g1,...,gnF22mα,1  such that  nj=1fjgj=1. (6)

    For α(0,), let

    Cz{f(z)=n=0anzng(z)=n=0bnznbe two entire functions with their derivatives  {f(z),g(z)}.

    Then some elementary calculations derive the following four formulae:

    {Cf(z)¯g(z)dλα(z)=n=0αnan¯bnn!;Czf(z)¯zg(z)dλα(z)=n=0αn1an¯bn(n+1)!;Cf(z)¯g(z)dλα(z)=n=1α1nan¯bnn2(n1)!=αCf(z)¯g(z)(α|z|21)dλα(z);Czf(z)¯zg(z)dλα(z)=α2Cf(z)¯g(z)dλα(z)+α1Cf(z)¯g(z)dλα(z).

    Consequently,

    F2α,1F2α  with  f2α,1=C|f(z)|2dλα(z)f2F2α,1=α2f2α,1+α1f2F2α.

    Moreover, a modification of Cho-Zhu's statement on [8, p. 2496] gives the following pointwise estimation

    fF2α,1|f(z)|fF2α,1(1+|z|)1e21α|z|2    zC. (1)

    Lemma 2.1. For

    z=x+iyC;1<p<;p=p(p1)1;C2c={all compactly-supported C2-functions: CC};Ap(e2ϕ)={all analytic functions in Lp(e2ϕ)},

    let ϕ:CR  &  g:CC be C2-smooth with

    {0Δϕ(z)=41(2x+2y)ϕ(z)=zˉzϕ(z)=ˉϕ(z);=z=21(xiy);ˉ=ˉz=21(x+iy);ˉ2ϕg(z)=e2ϕ(z)(g(z)e2ϕ(z)). (2)

    (i) Weighted (Lp,ˉ)-estimation - not only for a given function f on C there exists a weak solution uLp(e2ϕ) to ˉu=f in the sense of

    Cu¯ˉ2ϕge2ϕdA=Cfˉge2ϕdA    gC2c (3)

    if and only if

    supgC2c|Cfˉge2ϕdA|(C|ˉ2ϕg|pe2ϕdA)1p<, (4)

    but also Eq (4) holds for all fLp((Δ(2ϕ)e2ϕ)1) if and only if

    C|g|p(Δ(2ϕ))ppe2ϕdAC|ˉ2ϕg|pe2ϕdA    gC2c. (5)

    (ii) Uniqueness up to entire Lp(e2ϕ)-functions - arbitrary two solutions in (i) differ by a function hAp(e2ϕ) with

    C|h|pe2ϕdA2p+1C|f|p(Δ(2ϕ)e2ϕ)1dA.

    (iii) Weighted (Lp,ˉ)-Poincaré inequality - if uC1 satisfies (i) above and the Lp(e2ϕ)-minimality below

    C|u|pe2ϕdA=infhAp(e2ϕ)C|u+h|pe2ϕdA, (6)

    then

    C|u|pe2ϕdAC|ˉu|p(e2ϕΔ(2ϕ))1dA, (7)

    and consequently, if uC1 enjoys the case p=2 of (i) and the L2(e2ϕ)-orthogonality

    Cuˉhe2ϕdA=0    hA2(e2ϕ), (8)

    then Eq (7) holds for p=2.

    (iv) Weighted (L2,ˉ)-estimation is always available.

    (v) Uniqueness - if

      ϵ(0,2)  such that  C((1+|z|)ϵ2e2ϕ(z))2dA(z)<, (9)

    then the solution in (iv) is unique.

    Proof. (i) This part is motivated by Berndtsson's [9, Theorems 2–3]. But, the argument comes from an adjustment of the case p=2 presented in Berndtsson's [10, Proposition 1.1].

    Suppose that for a given function f on C there exists a weak solution uLp(e2ϕ) to ˉu=f in the sense of Eq (3). Then the Hölder inequality derives

    |Cfˉge2ϕdA|=|Cu¯ˉ2ϕge2ϕdA|(C|u|pe2ϕdA)1p(C|ˉ2ϕg|pe2ϕdA)1p    gC2c.

    Hence Eq (4) holds for the previous function f. Conversely, if Eq (4) is valid for a given function f on C, then

    Sϕ={ˉ2ϕg:  gC2c}

    is a subspace of Lp(e2ϕ), and hence the given function f induces the following bounded antilinear functional on Sϕ:

    Lf(ˉ2ϕg)=Cfˉge2ϕdA.

    This, along with the Hahn-Banach extension theorem, ensures an extension of Lf from Sϕ to Lp(e2ϕ). Consequently, the Riesz-type representation theorem for the dual of Lp(e2ϕ) produces a function

    u[Lp(e2ϕ)]=Lp(e2ϕ)

    such that

    Lf(G)=Cu¯Ge2ϕdA    GLp(e2ϕ).

    Upon taking G=ˉ2ϕg, we find that the last function uLp(e2ϕ) is a weak solution to ˉu=f in the sense of Eq (3).

    Moreover, if Eq (4) holds for all fLp((Δ(2ϕ)e2ϕ)1), then an application of the duality

    [Lp(e2ϕ)]=Lp(e2ϕ)

    under the pairing

    f,g2ϕ=Cfˉge2ϕdA=C((Δ(2ϕ))1pf)((Δ(2ϕ))1pˉg)e2ϕdA

    derives Eq (5). Evidently, if Eq (5) holds, then f,g2ϕ deduces that Eq (4) is valid for all fLp((Δ(2ϕ)e2ϕ)1).

    As an aside of the preceding demonstration, we achieve that for any fLp((Δ(2ϕ)e2ϕ)1) there exists a weak solution uLp(e2ϕ) of ˉu=f with

    C|u|pe2ϕdAC|f|p(Δ(2ϕ))1e2ϕdA

    if and only if Eq (5) holds.

    (ii) This follows from the fact that ˉu=0 if and only if u is analytic.

    (iii) This comes from a modification of the argument for Berndtsson's [10, Corollary 1.4]. Indeed, without loss of generality, we may assume

    C|ˉu|p(e2ϕΔ(2ϕ))1dA<.

    Now, the verification of (i) ensures that

    ˉv=ˉuLp((Δ(2ϕ)e2ϕ)1)

    has a weak solution v enjoying the inequality

    C|v|pe2ϕdAC|ˉu|p(Δ(2ϕ))1e2ϕdA. (10)

    Note that (ii) produces a function hAp(e2ϕ) such that v=u+h. So Eqs (6) & (10) imply

    C|u|pe2ϕdAC|u+h|pe2ϕdAC|ˉu|p(Δ(2ϕ))1e2ϕdA,

    as desired in Eq (7).

    Especially, if Eq (8) is valid, then a combination of

    ˉ(v+h)=ˉu    hA2ϕ

    and the closedness of A2(e2ϕ) in L2(e2ϕ) yields a function hA2(e2ϕ) such that

    {C|v+h|2e2ϕdA=infhA2ϕC|v+h|2e2ϕdAC|v|2e2ϕdA;C(v+hu)ˉhe2ϕdA=0    hA2(e2ϕ). (11)

    Upon noticing ˉ(v+hu)=0, we obtain

    v+hu(A2(e2ϕ))(A2(e2ϕ))={0}  &  v+h=u.

    As a consequence, u is the L2(e2ϕ)-minimal solution to ˉv=ˉu. Thus, the weighted (L2,ˉ)-Poincaré inequality follows from the first inequality of Eq (11) and the case p=2 of Eq (10).

    Here it is appropriate to mention that as shown in [10, Theorem 3.3] the case p=2 of Eq (10) can be used to establish the following Brunn-Minkowski-type concavity: if D is a convex open subset of the (n+1)-dimesnional Euclidean space Rn×(,) and Dt={x:(x,t)D} then the Lebesgue measure Mn(Dt) satisfies 2tlogMn(Dt)0 - i.e., - the function tlogMn(Dt) is concave - in particular - so is tlogA(Dt)=logM2(Dt).

    (iv) This is a minor variant of [11, Theorem 1.1] - the well-known Hörmander L2-estimate for the ˉ-equation presented in [12]. In fact, given fL2((e2ϕΔ(2ϕ))1) the basic identity (cf. [10, Proposition 1.2])

    C|g|2(Δ(2ϕ))e2ϕdA+C|ˉg|2e2ϕdA=C|ˉ2ϕg|2e2ϕdA    gC2c,

    ensures the second iff-condition of (i) with p=2

    C|g|2(Δ(2ϕ))e2ϕdAC|ˉ2ϕg|2e2ϕdA    gC2c,

    thereby reaching the existence of a weak solution u to ˉu=f with

    C|u|2e2ϕdAC|f|2(Δ(2ϕ))1e2ϕdA.

    (v) Such a uniqueness is newly induced by Eq (1). Yet, its proof is similar to the argument for Hedenmalm's curvature-orientated uniqueness of the ˉ-equation in [11, Theorem 1.4]. As a matter of fact, if u1&u2 are two solutions in (iv), then u1u2 is an entire function on C due to (ii), and hence log|u1u2| is subharmonic on C. This, plus Eq (2), deduces

    Δlog(|u1u2|eϕ)=Δlog|u1u2|+Δϕ>0,

    and so that

    |u1u2|eϕ=exp(log(|u1u2|eϕ))

    is subharmonic on C. Now, for any

    (z0,r)C×(1+|z0|,),

    a combination of Eq (9), the mean-value-inequality for the subharmonic function |u1u2|eϕ and the Cauchy-Schwarz inequality derives

    |u1(z0)u2(z0)|eϕ(z0)(πr2)1|zz0|<r|u1u2|eϕdA(πr2)1|z|<2r1|u1u2|eϕdAπ1(2r)ϵ|z|<2r1|u1(z)u2(z)|eϕ(z)(1+|z|)ϵ2dA(z)π1(2r)ϵC|u1(z)u2(z)|eϕ(z)(1+|z|)ϵ2dA(z)π1(2r)ϵ(C|u1u2|2dAe2ϕ)12(C((1+|z|)ϵ2e2ϕ(z))2dA(z))1222π1(2r)ϵ(C|f|2dA(Δϕ)e2ϕ)12(C((1+|z|)ϵ2e2ϕ(z))2dA(z))12.

    Letting r in the last estimation gives

    {|u1(z0)u2(z0)|eϕ(z0)=0;u1(z0)=u2(z0).

    Since z0 is arbitrary, the last equality ensures u1=u2 on C.

    Argument for Theorem 1.1. Clearly, if g1 in (3)–(4), then (5)(6) follows from Eq (3)(4) which is verified as below.

    Suppose that (3) is valid. Let

    {φj=gm¯fjnl=1|fl|2  j{1,...,n};Hj,k=gmφjˉφk  j,k{1,...,n}.

    If bj,k is a function solving pointwisely the ˉ-equation

    ˉbj,k=Hj,k, (12)

    then each

    gj=g2mφj+nk=1(bj,kbk,j)fk (13)

    is an entire function enjoying

    nj=1gjfj=g2mnj=1fjφj+nk,j=1(bjkbkj)fkfj=g3m,

    and hence the equation in (4) is met.

    Thanks to the smoothness of f1,...,fn,g, Lemma 2.1(iv) with

    ϕ(z)=21(2m1)α|z|2

    produces a function bj,k such that (12) holds pointwisely with

    C|bj,k(z)|2e(2m1)α|z|2dA(z)21C|Hj,k(z)|2(e(2m1)α|z|2Δϕ(z))dA(z)=((2m1)α)1C|Hj,k(z)|2e(2m1)α|z|2dA(z). (14)

    In order to achieve gjF22mα,1 in (4), in the sequel we employ (12)–(13) to prove

    {C|Hj,k(z)|2e(2m1)α|z|2dA(z)<;C|zgj(z)|2e2mα|z|2dA(z)< (15)

    It is easy to get

    supzC|φj(z)|=supzC|gm(z)¯fj(z)nl=1|fl(z)|2|=supzC(|g(z)|m(nl=1|fl(z)|2)12)(|fj(z)|(nl=1|fl(z)|2)12)1.

    In the above and below, XY stands for XcY for a positive constant c.

    For the case m=1, we utilize Eqs (1) & (3) to derive

    C|zg2m(z)φj(z)|2e2mα|z|2dA(z)C|zg2(z)|2e2α|z|2dA(z)g2F2α,1C|z|2|g(z)|2(e21α|z|21+|z|)2e2α|z|2dA(z)g2F2α,1C|z|2|g(z)|2(1+|z|)2eα|z|2dA(z)g2F2α,1C|z|2|g(z)|2eα|z|2dA(z)g4F2α,1nj=1fj4F2α,1<.

    For the case m>1, we utilize Eq (1) - the Hölder inequality - Eq (3) to derive

    C|zg2m(z)φj(z)|2e2mα|z|2dA(z)g4mF2α,1C(1+|z|)4m|z|2dA(z)gm4F2α,1C(1+|z|)2(2m1)dA(z)nj=1fj4F2α,1<.

    In summary, we always have

    C|zg2m(z)φj(z)|2e2mα|z|2dA(z)nj=1fj4F2α,1<. (16)

    Now, a straightforward computation gives

    ˉφj=gmnl=1fl(¯fl¯fj¯fj¯fl)(nl=1|fl|2)2.

    As evaluated in [13,14], we have

    |ˉφj|2|g|2m(nl=1|fl|2)2nl=1|fl|2(nl=1|fl|2)4nl=1|fl|2nl=1|fl|2,

    thereby producing

    |Hj,k|2=|gmφjˉφk|2nl=1|fl|2.

    Clearly, we get

    C|Hj,k(z)|2e(2m1)α|z|2dA(z)Cnl=1|fl(z)|2e(2m1)α|z|2dA(z)nl=1fl2F2α,1<, (17)

    whence verifying the first inequality of (15).

    According to Lemma 2.1(i), there exists bj,k classically resolving (12) with (14), and consequently, a combination of Eqs (1) & (17) yields

    C|zbj,k(z)|2|fk(z)|2e2mα|z|2dA(z)fk2F2α,1C|bj,k(z)|2|z|2(1+|z|)2e(2m1)α|z|2dA(z)fk2F2α,1C|bj,k(z)|2e(2m1)α|z|2dA(z)fk2F2α,1C|Hj,k(z)|2e(2m1)α|z|2dA(z)fk2F2α,1nl=1fl2F2α,1<. (18)

    Since the comparable constants in (18) are independent of {j,k}, the formula (13), along with (16) & (18), validates the second inequality of (15).

    XL was supported by NNSF of China (#12171150; #11771139) & NSF of Zhejiang Province (LY20A010008); JX was supported by NSERC of Canada (#202979) & MUN's SBM-Fund (#214311); CY was supported by NNSF of China (#11501415).

    The authors declare there is no conflict of interest.



    [1] D. Hilbert, Über die vollen Invariantesysteme, Math. Ann., 42 (1893), 313–373. https://doi.org/10.1007/BF01444162 doi: 10.1007/BF01444162
    [2] G. Hermann, Die frage der endlich vielen schritte in der theorie der polynomideale, Math. Ann., 95 (1926), 736–788. https://doi.org/10.1007/BF01206635 doi: 10.1007/BF01206635
    [3] D. W. Masser, G. Wüstholz, Fields of large transcendence degree generated by values of elliptic functions, Invent. Math., 72 (1983), 407–464. https://doi.org/10.1007/BF01398396 doi: 10.1007/BF01398396
    [4] W. D. Brownawell, Bounds for the degrees in the Nullstellensatz, Ann. Math., 126 (1987), 577–591. https://doi.org/10.2307/1971361 doi: 10.2307/1971361
    [5] J. Kollár, Sharp effective Nullstellensatz, J. Amer. Math. Soc., 4 (1988), 963–975. https://doi.org/10.1090/S0894-0347-1988-0944576-7 doi: 10.1090/S0894-0347-1988-0944576-7
    [6] H. Kwon, A. Netyanun, T. Trent, An analytic approach to the degree bound in the Nullstellensatz, Proc. Amer. Math. Soc., 144 (2016), 1145–1152. https://doi.org/10.1090/proc/12781 doi: 10.1090/proc/12781
    [7] K. Zhu, Analysis on Fock Spaces, Grad. Texts in Math., Vol. 263, Springer, New York, 2012.
    [8] H. R. Cho, K. Zhu, Fock-Sobolev spaces and their Carleson measures, J. Funct. Anal., 263 (2012), 2483–2506. https://doi.org/10.1016/j.jfa.2012.08.003 doi: 10.1016/j.jfa.2012.08.003
    [9] B. Berndtsson, Weighted estimates for ˉ in domains in C, Duke Math. J., 66 (1992), 239–255. https://doi.org/10.1215/S0012-7094-92-06607-5 doi: 10.1215/S0012-7094-92-06607-5
    [10] B. Berndtsson, An Introduction to Things ˉ, Analytic and Algebraic Geometry, McNeal, Amer. Math. Soc. Providence RI 2010. 7–76. https: //doi.org/10.1090/PCMS/017/02
    [11] H. Hedenmalm, On Hörmander's solution of the ˉ-equation. I, Math. Z., 281 (2015), 349–355. https://doi.org/10.1007/s00209-015-1487-7 doi: 10.1007/s00209-015-1487-7
    [12] L. Hörmander, An Introduction to Complex Analysis in Several Variables, North Holland, Amsterdam, 1973.
    [13] D. P. Banjade, Wolff's ideal theorem on Qp spaces, Rocky Mountain J. Math., 49 (2019), 2121–2133. https://doi.org/10.1216/RMJ-2019-49-7-2121 doi: 10.1216/RMJ-2019-49-7-2121
    [14] J. Xiao, C. Yuan, Cauchy-Riemann ˉ-equations with some applications, Preprint (submitted), 2021.
  • This article has been cited by:

    1. Wenwan Yang, Cheng Yuan, Two variants of Hilbert’s Nullstellensatz, 2023, 51, 0092-7872, 1344, 10.1080/00927872.2022.2134411
    2. Jie Xiao, Cheng Yuan, Hilbert’s Nullstellensatz for analytic trigonometric polynomials, 2022, 40, 07230869, 910, 10.1016/j.exmath.2022.09.005
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2133) PDF downloads(197) Cited by(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog