Citation: Patrick Moriarty, Damon Honnery. Review: Assessing the climate mitigation potential of biomass[J]. AIMS Energy, 2017, 5(1): 20-38. doi: 10.3934/energy.2017.1.20
[1] | Moriarty P, Honnery D (2011) Rise and Fall of the Carbon Civilisation. London, Springer. |
[2] | BP (2016) BP Statistical Review of World Energy. London, BP. |
[3] | International Energy Agency (IEA) (2016) Key World Energy Statistics 2016. Paris, IEA/OECD. |
[4] | Foley JA, Monfreda C, Ramankutty N, et al. (2007) Our share of the planetary pie. PNAS 104: 12585-12586. doi: 10.1073/pnas.0705190104 |
[5] | Kleidon A (2006) The climate sensitivity to human appropriation of vegetation productivity and its thermodynamic characterization. Glob Planet Change 54: 109-127. doi: 10.1016/j.gloplacha.2006.01.016 |
[6] | Krausmann F, Erb K-H, Gingrich S, et al. (2013) Global human appropriation of net primary production doubled in the 20th century. PNAS 110: 10324-10329. doi: 10.1073/pnas.1211349110 |
[7] | Running SW (2012) A measurable planetary boundary for the biosphere. Science 337: 1458-1459. doi: 10.1126/science.1227620 |
[8] | Schramski JR, Gattie DK, Brown JH (2015) Human domination of the biosphere: rapid discharge of the earth-space battery foretells the future of humankind. PNAS 112: 9511-9517. doi: 10.1073/pnas.1508353112 |
[9] | Moriarty P, Honnery D (2009) What energy levels can the Earth sustain? Energy Policy 37: 2469-2474. doi: 10.1016/j.enpol.2009.03.006 |
[10] | Moriarty P, Honnery D (2007) World bioenergy: problems and prospects. Int J Glob Energ Issues 27: 231-249. doi: 10.1504/IJGEI.2007.013657 |
[11] | Hein L, Leemans R (2012) The impact of first-generation biofuels on the depletion of the global phosphorus reserve. Ambio 41: 341-349. doi: 10.1007/s13280-012-0253-x |
[12] | Smeets EMW, Faaij APC, Lewandowski IM, et al. (2007) A bottom-up assessment and review of global bio-energy potentials to 2050. Prog Energ Combust Sci 33: 56-106. doi: 10.1016/j.pecs.2006.08.001 |
[13] | Erb K-H, Haberl H, Plutzar C (2012) Dependency of global primary bioenergy crop potentials in 2050 on food systems, yields, biodiversity conservation and political stability. Energy Policy 47: 260-269. doi: 10.1016/j.enpol.2012.04.066 |
[14] | Thrän D, Seidenberger T, Zeddies J, et al. (2010) Global biomass potentials—Resources, drivers and scenario results. Energ Sustain Dev 14(3): 200-205. |
[15] | Searchinger T, Edwards R, Mulligan D, et al. (2015) Do biofuel policies seek to cut emissions by cutting food? Science 347: 1420-1422. doi: 10.1126/science.1261221 |
[16] | OECD/FAO (2014) OECD-FAO Agricultural Outlook 2014-2023. Paris, OECD. Available from http://dx.doi.org/10.1787/agr_outlook-2014-en. |
[17] | Alexandratos N, Bruinsma J (2012) World Agriculture Towards 2030/2050: The 2012 Revision. ESA Working Paper No. 12-03. Rome, FAO. |
[18] | Burney JA, Davis SJ, Lobell DB (2010) Greenhouse gas mitigation by agricultural intensification. PNAS 107: 12052–12057. doi: 10.1073/pnas.0914216107 |
[19] | Acker TL, Atwater C, Smith DH (2013) Energy inefficiency in industrial agriculture: you are what you eat. Energ Sources Pt B: Econ Planning Pol 8: 420-430. doi: 10.1080/15567249.2010.485168 |
[20] | Pelletier N, Tyedmers P (2010) Forecasting potential global environmental costs of livestock production 2000-2050. PNAS 107: 18371-18374. doi: 10.1073/pnas.1004659107 |
[21] | Haberl H, Beringer T, Bhattacharya SC, et al. (2010) The global technical potential of bio-energy in 2050 considering sustainability constraints. Curr Opin Environ Sustain 2: 394-403. doi: 10.1016/j.cosust.2010.10.007 |
[22] | Powell TWR, Lenton TM (2012) Future carbon dioxide removal via biomass energy constrained by agricultural efficiency and dietary trends. Energ Environ Sci 5: 8116-8133. doi: 10.1039/c2ee21592f |
[23] | Smith KA, Mosier AR, Crutzen PJ, et al. (2012) The role of N2O derived from crop-based biofuels, and from agriculture in general, in Earth’s climate. Phil Trans Roy Soc B 367: 1169-1174. doi: 10.1098/rstb.2011.0313 |
[24] | Ruan L, Bhardwaj AK, Hamilton SK, et al. (2016) Nitrogen fertilization challenges the climate benefit of cellulosic biofuels. Environ Res Lett 11 (064007). |
[25] | Zhao G, Bryan BA, King D, et al. (2015) Sustainable limits to crop residue harvest for bioenergy: maintaining soil carbon in Australia’s agricultural lands. Glob Change Biol: Bioenerg 7: 479-487. doi: 10.1111/gcbb.12145 |
[26] | Van Renssen S (2014) A bioeconomy to fight climate change. Nature Clim Change 4: 951-953. doi: 10.1038/nclimate2419 |
[27] | Umweltbundesamt (2014) Environmental Innovation Policy – Greater resource efficiency and climate protection through the sustainable material use of biomass. Available from: http://www.umweltbundesamt.de/sites/default/files/medien/378/publikationen/texte_03_2014_druckfassung_uba_stofflich_abschlussbericht_kurz_englisch.pdf. |
[28] | Hoogwijk M, Faaij A, van den Broek R, et al. (2003) Exploration of the ranges of the global potential of biomass for energy. Biomass Bioenerg 25: 119-133. doi: 10.1016/S0961-9534(02)00191-5 |
[29] | Carmichael A (2015) Man-made fibers continue to grow. Textile World. Available from: http://www.textileworld.com/textile-world/fiber-world/2015/02/man-made-fibers-continue-to-grow/. |
[30] | World Economic Forum (WEF) (2016) The new plastics economy: rethinking the future of plastics. WEF. Available from: http://www3.weforum.org/docs/WEF_The_New_Plastics_Economy.pdf. |
[31] | Gustavsson L, Sathre R (2011) Energy and CO2 analysis of wood substitution in construction Clim Change 105: 129-153. |
[32] | Bribián IZ, Capilla AV, Usón AA (2011) Life cycle assessment of building materials: comparative analysis of energy and environmental impacts and evaluation of the eco-efficiency improvement potential. Build Environ 46: 1133-1140. doi: 10.1016/j.buildenv.2010.12.002 |
[33] | Warman RD (2014) Global wood production from natural forests has peaked. Biodivers Conserv 23: 1063-1078. doi: 10.1007/s10531-014-0633-6 |
[34] | World Steel Association (2015) Steel statistical yearbook 2015. Available from: https://www.worldsteel.org/statistics/statistics-archive/yearbook-archive.html. Also earlier editions. |
[35] | Edwards P (2015) The rise and potential peak of cement demand in the urbanized world. Available from: http://cornerstonemag.net/the-rise-and-potential-peak-of-cement-demand-in-the-urbanized-world/. |
[36] | International Aluminium Institute (2016) Primary aluminium production, 2016. Available from: http://www.world-aluminium.org/statistics/primary-aluminium-production/#data. |
[37] | Food and Agriculture Organisation (FAO) (2014) Forestry products yearbook 2014. Rome: FAO. |
[38] | Gustavsson L, Joelsson A (2010) Life cycle primary energy analysis of residential buildings. Energ Buildings 42: 210-220. doi: 10.1016/j.enbuild.2009.08.017 |
[39] | Gustavsson L, Pingoud K, Sathre R (2006) Carbon dioxide balance of wood substitution: comparing concrete- and wood-framed buildings. Mitig Adapt Strategies Glob Change11: 667-691. |
[40] | Cornwall W (2016) Tall timber. Science 353: 1354-1356. doi: 10.1126/science.353.6306.1354 |
[41] | Sanchez DL, Nelson JH, Johnston J, et al. (2015) Biomass enables the transition to a carbon negative power system across western North America. Nature Clim Change 5: 230-234. doi: 10.1038/nclimate2488 |
[42] | Van Vuuren DP, van Vliet J, Stehfest E (2009) Future bio-energy potential under various natural constraints. Energ Policy 37: 4220-4230. doi: 10.1016/j.enpol.2009.05.029 |
[43] | Intergovernmental Panel on Climate Change (IPCC) (2015) Climate Change 2014: Synthesis Report. Cambridge UK, CUP. |
[44] | Hall CAS, Lambert JG, Balogh SB (2014) EROI of different fuels and the implications for society. Energ Policy 64: 141-152. doi: 10.1016/j.enpol.2013.05.049 |
[45] | Gasol CM, Gabarrell X, Anton A, et al. (2007) Life cycle assessment of a Brassica carinata bioenergy cropping system in southern Europe. Biomass Bioenerg 31: 543-555. |
[46] | Murphy F, Devlin G, McDonnell K (2013) Miscanthus production and processing in Ireland: An analysis of energy requirements and environmental impacts. Renew Sust Energ Rev 23: 412-420. |
[47] | de Castro C, Carpintero O, Frechoso F, et al. (2014) A top-down approach to assess physical and ecological limits of biofuels. Energy 64: 506-512. |
[48] | Wang M, Han J, Dunn JB, et al. (2012) Well-to-wheels energy use and greenhouse gas emissions of ethanol from corn, sugarcane and cellulosic biomass for US use. Environ Res Lett 7: 045905, 1-13. |
[49] | Creutzig F, Ravindranath NH, Bernde G, et al. (2015) Bioenergy and climate change mitigation: an assessment. Glob Change Biol: Bioenerg 7: 916-944. |
[50] | Searle S, Malins C (2015) A reassessment of global bioenergy potential in 2050. Glob Change Biol: Bioenerg 7: 328-336. |
[51] | Smith KW, Zhao M, Running SW (2012) Global bioenergy capacity as constrained by observed biospheric productivity rates. BioSci 62: 911-922. doi: 10.1525/bio.2012.62.10.11 |
[52] | Field CB, Campbell JE, Lobell DB (2008) Biomass energy: the scale of the potential resource. Trends Ecol Evol 23(2): 65-72. |
[53] | Johnston M, Foley JA, Holloway T, et al. (2009) Resetting global expectations from agricultural biofuels. Environ Res Lett 4: 014004, 1-9. |
[54] | Searle SY, Malins CJ (2014) Will energy crop yields meet expectations? Biomass Bioenerg 65: 3-12. |
[55] | Slade R, Bauen A, Gross R (2014) Global bioenergy resources Nature Clim Change 4: 99-105. |
[56] | Hennig C, Brosowski A, Majer S (2016) Sustainable feedstock potential—a limitation for the bio-based economy? J Clean Prod 123: 200-202. doi: 10.1016/j.jclepro.2015.06.130 |
[57] | Davis SC, Anderson-Teixeira KJ, DeLucia EH (2009) Life-cycle analysis and the ecology of biofuels. Trends Plant Sci 14: 140-146. doi: 10.1016/j.tplants.2008.12.006 |
[58] | Canadell JG, Schulze ED (2014) Global potential of biospheric carbon management for climate mitigation. Nature Comm 5: 5282 (DOI: 10.1038/ncomms6282). |
[59] | Karlen DL, Lal R, Follett RF, et al. (2009) Crop residues: the rest of the story. Environ Sci Technol 43: 8011-8015. doi: 10.1021/es9011004 |
[60] | European Commission (2009) Renewable energy directive. EU 2009. Available from: https://ec.europa.eu/energy/en/topics/renewable-energy/renewable-energy-directive. |
[61] | Hendrick MF, Cleveland S, Phillips NG (2016) Unleakable carbon. Clim Pol. Available from: http://dx.doi.org/10.1080/14693062.2016.1202808. |
[62] | Pöyry Energy Consulting (2009) CO2 storage in depleted gas fields. A report to the IEA GHG R& D program. Available from: http://hub.globalccsinstitute.com/sites/default/files/publications/95786/co2-storage-depleted-gas-fields.pdf. |
[63] | Fearnside PM (2015) Tropical hydropower in the clean development mechanism: Brazil’s Santo Antônio Dam as an example of the need for change. Clim Change 131: 575-589. |
[64] | Zeng N (2008) Carbon sequestration via wood burial. Carbon Balance Manag 3(1). |
[65] | Lovett R (2008) Carbon lockdown. New Sci 3: 32-35. |
[66] | Strand S, Benford G (2009) Ocean sequestration of crop residue carbon: Recycling fossil fuel carbon back to deep sediments. Environ Sci Technol 43: 1000-1007. doi: 10.1021/es8015556 |
[67] | Liska AJ, Yang H, Milner M, et al. (2014) Biofuels from crop residue can reduce soil carbon and increase CO2 emissions. Nature Clim Change 4: 398-401. doi: 10.1038/nclimate2187 |
[68] | Searchinger TD, Estes L, Thornton PK, et al. (2015) High carbon and biodiversity costs from converting Africa’s wet savannahs to cropland. Nature Clim Change 5: 481-486. doi: 10.1038/nclimate2584 |
[69] | West PC, Gibbs HK, Monfreda C, et al. (2010) Trading carbon for food: Global comparison of carbon stocks vs. crop yields on agricultural land. PNAS 107: 19645-19648. |
[70] | Popp J, Lakner Z, Harangi-Rákos M, et al. (2014) The effect of bioenergy expansion: food, energy, and environment. Renew Sust Energ Rev 32: 559-578. doi: 10.1016/j.rser.2014.01.056 |
[71] | Roder M, Whittaker C, Thornley P (2015) How certain are greenhouse gas reductions from bioenergy? Life cycle assessment and uncertainty analysis of wood pellet-to-electricity supply chains from forest residues. Biomass Bioenerg 79: 50-63. |
[72] | Campbell JE, Lobell DB, Field CB (2009) Greater transportation energy and GHG offsets from bioelectricity than ethanol. Science 324: 1055-1057. doi: 10.1126/science.1168885 |
[73] | Van Vuuren DP, Stehfest E, Elzen MG, et al. (2011) RCP2.6: exploring the possibility to keep global mean temperature increase below 2 °C. Clim Change 109: 95-116. |
[74] | Anderson K (2015) Duality in climate science. Nature Geosci 8: 898-900. doi: 10.1038/ngeo2559 |
[75] | Pizzi A (2016) Wood products and green chemistry. Annals Forest Sci 73: 185-203. |
[76] | Fouquet M, Levasseur A, Margni M, et al. (2015) Methodological challenges and developments in LCA of low energy buildings: Application to biogenic carbon and global warming assessment. Build Environ 90: 51-59. |
[77] | Mead J (2013) Sustainable management of radiata pine plantations. FAO Forestry Paper 170, Available from: http://www.fao.org/docrep/018/i3274e/i3274e.pdf. |
[78] | Mora C, Caldwell IR, Caldwell JM, et al. (2015) Suitable days for plant growth disappear under projected climate change: potential human and biotic vulnerability. PLoS Biol 13(6): e1002167. |
[79] | Moriarty P, Honnery D (2011) Is there an optimum level for renewable energy? Energy Policy 39: 2748-2753. doi: 10.1016/j.enpol.2011.02.044 |
[80] | Moriarty P, Honnery D (2017) Sustainable energy resources: prospects and policy. Chapter 1 in M.G. Rasul et al. (Eds) Clean Energy For Sustainable Development. London, Academic Press/Elsevier. |
[81] | Adee S (2016) Not a drop to drink. New Sci 13: 16-17. |