We proved Hölder regularity for the particle trajectories of an interacting particle system in one dimension. The particle velocities were given by the nonlocal and singular interactions with the other particles. Particle collisions occur in finite time. Prior to collisions the particle velocities become unbounded, and thus the trajectories fail to be of class $ C^1 $. Our Hölder-regularity result supplements earlier studies on the well-posedness of the particle system which implies only continuity of the trajectories. Moreover, it extends and unifies several of the previously obtained estimates on the trajectories. Our proof method relied on standard ODE techniques: we transformed the system into different variables to expose and exploit the hidden monotonicity properties.
Citation: Thomas Geert de Jong, Patrick van Meurs. Hölder regularity for the trajectories of generalized charged particles in 1D[J]. Communications in Analysis and Mechanics, 2025, 17(3): 707-724. doi: 10.3934/cam.2025028
We proved Hölder regularity for the particle trajectories of an interacting particle system in one dimension. The particle velocities were given by the nonlocal and singular interactions with the other particles. Particle collisions occur in finite time. Prior to collisions the particle velocities become unbounded, and thus the trajectories fail to be of class $ C^1 $. Our Hölder-regularity result supplements earlier studies on the well-posedness of the particle system which implies only continuity of the trajectories. Moreover, it extends and unifies several of the previously obtained estimates on the trajectories. Our proof method relied on standard ODE techniques: we transformed the system into different variables to expose and exploit the hidden monotonicity properties.
| [1] |
P. van Meurs, M. A. Peletier, N. Požár, Discrete-to-continuum convergence of charged particles in 1D with annihilation, Arch. Ration. Mech. Anal., 246 (2022), 241–297. https://doi.org/10.1007/s00205-022-01812-1 doi: 10.1007/s00205-022-01812-1
|
| [2] |
P. van Meurs, Discrete-to-continuum limits of interacting particle systems in one dimension with collisions, J. Math. Anal. Appl., 539 (2024), 128537. https://doi.org/10.1016/j.jmaa.2024.128537 doi: 10.1016/j.jmaa.2024.128537
|
| [3] |
J. Berendsen, M. Burger, J. Pietschmann, On a cross-diffusion model for multiple species with nonlocal interaction and size exclusion, Nonlinear Anal., 159 (2017), 10–39. https://doi.org/10.1016/j.na.2017.03.010 doi: 10.1016/j.na.2017.03.010
|
| [4] | M. Di Francesco, A. Esposito, M. Schmidtchen, Many-particle limit for a system of interaction equations driven by Newtonian potentials, arXiv: 2008.11106, 2020. |
| [5] |
M. Di Francesco, S. Fagioli, Measure solutions for non-local interaction pdes with two species, Nonlinearity, 26 (2013), 2777–2808. https://doi.org/10.1088/0951-7715/26/10/2777 doi: 10.1088/0951-7715/26/10/2777
|
| [6] |
M. Di Francesco, S. Fagioli, A nonlocal swarm model for predators–prey interactions, Math. Models Methods Appl. Sci., 26 (2016), 319–355. https://doi.org/10.1142/S0218202516400042 doi: 10.1142/S0218202516400042
|
| [7] |
S. Serfaty, Vortex collisions and energy-dissipation rates in the Ginzburg–Landau heat flow. Part ⅱ: The dynamics, J. Eur. Math. Soc., 9 (2007), 383–426. https://doi.org/10.4171/JEMS/84 doi: 10.4171/JEMS/84
|
| [8] |
D. Smets, F. Bethuel, G. Orlandi, Quantization and motion law for Ginzburg–Landau vortices, Arch. Ration. Mech. Anal., 183 (2007), 315–370. https://doi.org/10.1007/s00205-006-0018-4 doi: 10.1007/s00205-006-0018-4
|
| [9] |
J. Zinsl, Geodesically convex energies and confinement of solutions for a multi-component system of nonlocal interaction equations, Nonlinear Differ. Equ. Appl., 23 (2016), 1–43. https://doi.org/10.1007/s00030-016-0399-5 doi: 10.1007/s00030-016-0399-5
|
| [10] | J. P. Hirth, J. Lothe, Theory of Dislocations, John Wiley & Sons, New York, 1982. |
| [11] | D. Hull, D. J. Bacon. Introduction to Dislocations, volume 37. Elsevier, Oxford, 2011. |
| [12] |
C. L. Hall, S. J. Chapman, J. R. Ockendon, Asymptotic analysis of a system of algebraic equations arising in dislocation theory, SIAM J. Appl. Math., 70 (2010):2729–2749. https://doi.org/10.1137/090778444 doi: 10.1137/090778444
|
| [13] |
S. J. Chapman, Y. Xiang, Y. Zhu, Homogenization of a row of dislocation dipoles from discrete dislocation dynamics, SIAM J. Appl. Math., 76 (2016), 750–775. https://doi.org/10.1137/15M1017910 doi: 10.1137/15M1017910
|
| [14] |
A. Roy, R. H. J. Peerlings, M. G. D. Geers, Y. Kasyanyuk, Continuum modeling of dislocation interactions: Why discreteness matters? Mater. Sci. Eng.: A, 486 (2008), 653–661. https://doi.org/10.1016/j.msea.2007.09.074 doi: 10.1016/j.msea.2007.09.074
|
| [15] |
M. G. D. Geers, R. H. J. Peerlings, M. A. Peletier, L. Scardia, Asymptotic behaviour of a pile-up of infinite walls of edge dislocations, Arch. Ration. Mech. Anal., 209 (2013), 495–539. https://doi.org/10.1007/s00205-013-0635-7 doi: 10.1007/s00205-013-0635-7
|
| [16] |
P. van Meurs, Many-particle limits and non-convergence of dislocation wall pile-ups, Nonlinearity, 31 (2018), 165–225. https://doi.org/10.1088/1361-6544/aa999e doi: 10.1088/1361-6544/aa999e
|
| [17] |
S. Patrizi, E. Valdinoci, Crystal dislocations with different orientations and collisions, Arch. Ration. Mech. Anal., 217 (2015), 231–261. https://doi.org/10.1007/s00205-014-0832-z doi: 10.1007/s00205-014-0832-z
|
| [18] |
S. Patrizi, E. Valdinoci, Relaxation times for atom dislocations in crystals, Calc. Var., 55 (2016), 71. https://doi.org/10.1007/s00526-016-1000-0 doi: 10.1007/s00526-016-1000-0
|
| [19] |
S. Patrizi, E. Valdinoci, Long-time behavior for crystal dislocation dynamics, Math. Models Methods Appl. Sci., 27 (2017), 2185–2228. https://doi.org/10.1142/S0218202517500427 doi: 10.1142/S0218202517500427
|
| [20] |
S. Patrizi, T. Sangsawang, Derivation of the 1-D Groma–Balogh equations from the Peierls–Nabarro model, Calc. Var., 62 (2023), 242. https://doi.org/10.1007/s00526-023-02575-7 doi: 10.1007/s00526-023-02575-7
|
| [21] |
P. van Meurs, S. Patrizi, Discrete dislocations dynamics with annihilation as the limit of the Peierls-Nabarro model in one dimension, SIAM J. Math. Analy., 56 (2024), 197–233. https://doi.org/10.1137/22M1527052 doi: 10.1137/22M1527052
|
| [22] | V. I. Arnold, Ordinary differential equations, Springer Science & Business Media, 1992. |
| [23] |
D. C. Heggie, A global regularisation of the gravitational N-body problem, Celestial Mechanics, 10 (1974), 217–241. https://doi.org/10.1007/BF01227621 doi: 10.1007/BF01227621
|
| [24] |
T. G. de Jong, P. van Meurs, Uniqueness of local, analytic solutions to singular ODEs, Acta Appl. Math., 180 (2022), 14. https://doi.org/10.1007/s10440-022-00517-7 doi: 10.1007/s10440-022-00517-7
|
| [25] | F. N. Diacu, Regularization of partial collisions in the N-body problem, Differential Integral Equations, 5 (1992). |
| [26] |
S. Bianchini, L. V. Spinolo, Invariant manifolds for a singular ordinary differential equation, J. Differential Equations, 250 (2011), 1788–1827. https://doi.org/10.1016/j.jde.2010.11.010 doi: 10.1016/j.jde.2010.11.010
|
| [27] | P. Kustaanheimo, Spinor regularization of the Kepler motion, Ann. Univ. Turkuens. A. I., 73 (1964), 185–205. |
| [28] | P. Kustaanheimo, E. Stiefel, Perturbation theory of Kepler motion based on spinor regularization, J. Reine Angew. Math., 218 (1965), 204–219. |