Review Special Issues

Morphology and ultrastructure of retrovirus particles

  • Retrovirus morphogenesis entails assembly of Gag proteins and the viral genome on the host plasma membrane, acquisition of the viral membrane and envelope proteins through budding, and formation of the core through the maturation process. Although in both immature and mature retroviruses, Gag and capsid proteins are organized as paracrystalline structures, the curvatures of these protein arrays are evidently not uniform within one or among all virus particles. The heterogeneity of retroviruses poses significant challenges to studying the protein contacts within the Gag and capsid lattices. This review focuses on current understanding of the molecular organization of retroviruses derived from the sub-nanometer structures of immature virus particles, helical capsid protein assemblies and soluble envelope protein complexes. These studies provide insight into the molecular elements that maintain the stability, flexibility and infectivity of virus particles. Also reviewed are morphological studies of retrovirus budding, maturation, infection and cell-cell transmission, which inform the structural transformation of the viruses and the cells during infection and viral transmission, and lead to better understanding of the interplay between the functioning viral proteins and the host cell.

    Citation: Wei Zhang, Sheng Cao, Jessica L. Martin, Joachim D. Mueller, Louis M. Mansky. Morphology and ultrastructure of retrovirus particles[J]. AIMS Biophysics, 2015, 2(3): 343-369. doi: 10.3934/biophy.2015.3.343

    Related Papers:

    [1] Ashok Chakraborty, Anil Diwan, Jayant Tatake . Prospect of nanomaterials as antimicrobial and antiviral regimen. AIMS Microbiology, 2023, 9(3): 444-466. doi: 10.3934/microbiol.2023024
    [2] Anna-Maria Gierke, Petra Vatter, Martin Hessling . Fungal photoinactivation doses for UV radiation and visible light–a data collection. AIMS Microbiology, 2024, 10(3): 694-722. doi: 10.3934/microbiol.2024032
    [3] Chengcang C. Wu, Andrea A. Stierle, Donald B. Stierle, Hongyu Chen, Michael Swyers, Timothy Decker, Emili Borkowski, Peter Korajczyk, Rosa Ye, Niel Mondava . Activation of cryptic biosynthetic gene clusters by fungal artificial chromosomes to produce novel secondary metabolites. AIMS Microbiology, 2023, 9(4): 757-779. doi: 10.3934/microbiol.2023039
    [4] Xiao Zhang, Jia Hua, Zule Song, Kejun Li . A review: Marine aquaculture impacts marine microbial communities. AIMS Microbiology, 2024, 10(2): 239-254. doi: 10.3934/microbiol.2024012
    [5] Manuela Oliveira, Eva Cunha, Luís Tavares, Isa Serrano . P. aeruginosa interactions with other microbes in biofilms during co-infection. AIMS Microbiology, 2023, 9(4): 612-646. doi: 10.3934/microbiol.2023032
    [6] Daniela Silva, Patrícia Nunes, Jessie Melo, Célia Quintas . Microbial quality of edible seeds commercially available in southern Portugal. AIMS Microbiology, 2022, 8(1): 42-52. doi: 10.3934/microbiol.2022004
    [7] Bambang Irawan, Aandi Saputra, Salman Farisi, Yulianty Yulianty, Sri Wahyuningsih, Noviany Noviany, Yandri Yandri, Sutopo Hadi . The use of cellulolytic Aspergillus sp. inoculum to improve the quality of Pineapple compost. AIMS Microbiology, 2023, 9(1): 41-54. doi: 10.3934/microbiol.2023003
    [8] Jorge Barriuso . Quorum sensing mechanisms in fungi. AIMS Microbiology, 2015, 1(1): 37-47. doi: 10.3934/microbiol.2015.1.37
    [9] Divakar Dahiya, Caoimhin Mackin, Poonam Singh Nigam . Studies on bioactivities of Manuka and regional varieties of honey for their potential use as natural antibiotic agents for infection control related to wound healing and in pharmaceutical formulations. AIMS Microbiology, 2024, 10(2): 288-310. doi: 10.3934/microbiol.2024015
    [10] Patrick Di Martino . Antimicrobial agents and microbial ecology. AIMS Microbiology, 2022, 8(1): 1-4. doi: 10.3934/microbiol.2022001
  • Retrovirus morphogenesis entails assembly of Gag proteins and the viral genome on the host plasma membrane, acquisition of the viral membrane and envelope proteins through budding, and formation of the core through the maturation process. Although in both immature and mature retroviruses, Gag and capsid proteins are organized as paracrystalline structures, the curvatures of these protein arrays are evidently not uniform within one or among all virus particles. The heterogeneity of retroviruses poses significant challenges to studying the protein contacts within the Gag and capsid lattices. This review focuses on current understanding of the molecular organization of retroviruses derived from the sub-nanometer structures of immature virus particles, helical capsid protein assemblies and soluble envelope protein complexes. These studies provide insight into the molecular elements that maintain the stability, flexibility and infectivity of virus particles. Also reviewed are morphological studies of retrovirus budding, maturation, infection and cell-cell transmission, which inform the structural transformation of the viruses and the cells during infection and viral transmission, and lead to better understanding of the interplay between the functioning viral proteins and the host cell.


    1. Introduction

    Handling of flour dust and raw materials in the food industry can be associated with health problems as raw materials may be associated with allergen sensitization and fungal colonization [1,2,3,4,5,6]. Several reports on the relation between fungi levels in diverse occupational environments and health effects [7,8,9,10,11,12,13,14,15] corroborate that fungi are potential occupational health hazards that should be taken into account in risk assessment strategies in occupational settings, including bakeries.

    Exposure to flour dust and related bioaerosols in the bakery industry is described to occur mainly during grinding, sifting and mixing operations [16]. When mixing occurs, abundant organic dust particles originating from flour dust disperse into the air and are suspended for a long time before deposited on the floor due to gravitational sedimentation. Consequently, high spreading of fungi and their spores and metabolites, such as volatile organic compounds and mycotoxins, will also probably be suspended [17].

    Raw materials used in bakeries consists of finely milled cereal or grains (e.g., wheat, rye, barley, oats, rice, malt, carob, corn) and additional non-cereal ingredients (e.g., enzymes, antioxidants, flavorings and spices, baker's yeast, sugar powder) that are used for dough improvement [16]. Some of these raw materials are ideal microbial growth substrates and can generate elevated levels of bioaerosols [18,19]. The genus Aspergillus, including A. fumigatus, is ubiquitous in nature and one of the most prevalent in crops and cereals such as corn, wheat, barley, oat, rice, and sorghum [20].

    Aspergillus disease affects a broad patient population, from patients with asthma to immunocompromised patients [21]. Invasive fungal diseases, such as aspergillosis, are still a life-threatening complication for immunocompromised patients [22]. Azole drugs are critical in long-term therapy for chronic pulmonary aspergillosis, as they are the only anti-Aspergillus agents orally available. This class includes itraconazole (available for clinical use since 1997), voriconazole (since 2002), posaconazole (since 2006), and, most recently, isavuconazole [23,24]. However, azole resistance has been increasingly reported in both clinical and environmental Aspergillus strains [25,26,27,28,29].

    It is currently discussed whether azole-resistance in environmental strains of A. fumigatus can be caused by fungal selection pressure exerted by agricultural triazole fungicide use, such as in crop protection [30], due to the structure similarity of clinical triazoles with triazole fungicides. Azole-resistance mechanisms are increasingly being studied and identified for Aspergillus sp., threatening the role of the azole class in the management of fungal diseases [31,32,33]. Improved diagnosis and application of fungi-active prophylaxis has led to a reduced incidence of disease due to Aspergillus genus. On the other hand, previously rare infectious fungal agents such as Fusarium sp. and Mucorales order are on the rise [34,35,36]. In this scenario, increasing resistance to the limited arsenal of antifungal drugs is a serious concern, especially for Aspergillus and Mucorales infections, for which the therapeutic options have become limited, currently restricted to azoles, echinocandins, polyenes, and flucytosine [37,38,39].

    Until now, no data regarding exposure to bioaerosols nor azole-resistance distribution in bakeries have been reported for Portugal, and this omission has delayed the application of preventive measures for the protection of workers health. Therefore, the aim of this study was to assess fungal contamination in ten bakeries in Portugal and to determine the prevalence of azole-resistant fungal species in this occupational setting.


    2. Materials and Method

    This study was conducted between May 2016 and June 2017 in 10 Portuguese bakeries located in the Lisbon district and is part of an enlarged exploratory study with financial support from the Portuguese Authority for Working Conditions aiming to characterize occupational exposure to fungi and particles on Portuguese bakeries. While being part of a larger study in which additional environmental characterization was carried out, this paper presents the preliminary results regarding environmental samples collected by passive methods in which azole-resistance monitoring was performed.


    2.1. Bakeries characteristics

    Most bakeries were organized in three different areas: Production—where kneading machines and ovens were located and where dough shaping was performed; Raw material warehouse—where workers collected the raw materials for dough preparation for several times during process; Store—where final product was sold (bread or pastry). In one bakery with no store a distinct area was characterized: Expedition—where distribution of final product for other units occurs. One bakery was dedicated to pastry. The sampling sites and collection periods for each bakery were determined based on the high amount of time spent by workers on those places or dislocation frequency during their occupational activity. In these settings environmental samples (settled dust and electrostatic dust cloth) and several raw materials were collected for the assessment of fungal burden and screening of azole resistance.


    2.2. Environmental and raw material samples

    In total, 34 environmental samples and 26 raw material samples were collected and analysed by culture-based methods (Table 1).

    Table 1. Type and number of samples collected in ten bakeries.
    Bakery Settled dust EDC Raw material
    1 NA 2 NA
    2 NA 3 NA
    3 1 2 NA
    4 1 2 7
    5 1 3 5
    6 1 3 5
    7 1 3 4
    8 1 3 4
    9 1 3 NA
    10 NA 3 NA
    n = 7 n = 27 n = 26
    NA: not applicable.
     | Show Table
    DownLoad: CSV

    One settled dust sample in each bakery unit (7/10) was collected, by collecting the floor dust into a sterilized bag. After sampling, 4.4 g of the collected floor settled dust were weighted and extracted with 40 mL of distilled water for 20 minutes at 200 rpm, as previously described [40,41,42,43].

    Another approach was used to collect bioaerosols using electrostatic dust cloths (EDCs). This collection device is increasingly being used because it is electrostatic, inexpensive, easy to obtain, and effective at collecting dust [44,45]. EDCs employ electric fibers which have revealed to increase allergen particle retention [46]. As such, 2–3 EDC samples were collected in each evaluated bakery at distinct working areas, in a total of 27 EDC samples. Each EDC had a surface exposure area of 0.0209 m (19 × 11 cm). The EDCs were placed at a minimum 0.93 m above floor level, and dust was allowed to settle for, at least, 15 days. Each EDC was weighted after sampling and the mean of 10 EDCs weighted before sampling was subtracted. Dust from EDC cloths was extracted with 20 mL 0.9% NaCl with 0.05% Tween80™ by orbital shaking (250 rpm, 60 minutes, at room temperature [40].

    Twenty six samples of bread/pastry raw material, including different types of flour, sugar and/or spices, were collected (4 to 7 samples per unit) from half of the bakeries evaluated in this study (5 out of 10 units) and prepared as follows: 4.4 g of raw material was weighted and washed with 40 mL of distilled water for 20 minutes at 200 rpm [40,41,42,43].


    2.3. Culture-based methods and screening of azole-resistance

    The fungal burden was determined in environmental and raw material samples through the inoculation of 150 µL of the wash suspension on 2% malt extract agar (MEA) supplemented with chloramphenicol (0.05%) and dichloran glycerol (DG18). DG18 was used due to its ability to restrict the colony size of fast-growing genera [47], allowing a more complete characterization of fungal growth in complex matrices such as environmental and substrate samples. The prevalence of azole-resistance was determined in all the collected samples using azole-supplemented media by seeding 150 µL of the wash suspension on Saboraud agar supplemented with 4 mg/L itraconazole, 1 mg/L voriconazole, or 0.5 mg/L posaconazole, according to the EUCAST guidelines [48]. All of the collected samples were incubated at 27 ℃ for 5–7 days, in order to allow the growth of all fungal species present in the samples.


    2.4. Fungal contamination characterization

    After laboratory processing and incubation of the collected samples, quantitative (colony-forming units: CFU/m2 and CFU/g) and qualitative results were obtained, with identification of the isolated fungal species or genera. When overgrowth was observed in EDC (>500 CFU) colony count was determined as follows: CFU/(3.14 × area) × dilution factor. In the other samples (settled dust and raw materials), 500 CFU/g was considered as previous applied [41,42,43]. For species identification, microscopic mounts were performed using tease mount or Scotch tape mount and lactophenol cotton blue mount procedures. Morphological identification was achieved through macro and microscopic characteristics as noted by De Hoog et al. [49].


    2.5. Data analysis

    The data analysis was performed using univariate descriptive statistics using frequency (n; %), median and graphical representations appropriate to the nature of the data.


    3. Results

    Seven different fungal species were detected in EDC samples from all analyzed bakery units (Figure 1). Considering MEA and DG18 combined (Table 2), Chrysonilia sitophila was the predominant species (79.3%), followed by Penicillium sp. (12.1%) and Cladosporium sp. (7.8%). In addition, Aspergillus sp. (0.8%) and Paecilomyces sp. (0.1%) were also isolated. Among Aspergillus genera, four different species were isolated belonging to three different sections, namely, Candidi (0.5%), Circumdati (0.2%) and Restricti (0.1%) (Table 3). Regarding fungal load distribution among work areas (Table 3), higher fungal counts (CFU/m2) were determined either in store/expedition (units n° 5, 6, 8 and 9), production (units n° 3, 4 and 7), or warehouse/packing areas (units n° 1, 2 and 10), with Penicillium sp. and Cladosporium sp. being the most prevalent species, with one exception (unit n° 10, presenting countless CFU/m2 of Chrysonilia sitophila at all sampling sites). No fungal growth was detected in settled dust samples.

    Figure 1. Fungal load in EDC after inoculation onto MEA and DG18 media.
    Table 2. Fungal distribution in EDC and raw material samples (fungal count for MEA and DG18 combined).
    Fungal species EDC (CFU/m2 EDC) (n; %) Fungal species Raw material (CFU/g) (n; %)
    Chrysonilia sitophila 74,642; 79.3 Penicillium sp. 14; 63.6
    Penicillium sp. 11,346; 12.1 Aspergillus sp. 6; 27.3
    Cladosporium sp. 7,315; 7.8 Mucorales order 2; 9.1
    Aspergillus sp. 746; 0.8
    Paecilomyces sp. 100; 0.1
    CFU were calculated as follows: (n) = (CFU in MEA + CFU in DG18); (%) = (CFU in MEA + CFU in DG18)/(total CFU in MEA + total CFU in DG18) × 100
     | Show Table
    DownLoad: CSV
    Table 3. Fungal distribution in different work areas assessed by EDC.
    Bakery Work site MEA (CFU/m2 EDC) Fungal species DG18 (CFU/m2 EDC) Fungal species
    1 Warehouse 50 Aspergillus section Circumdati 6,419 Penicillium sp., Cladosporium sp.
    Production 199 Aspergillus section Candidi 0
    2 Production 0 0
    Packing 100 Aspergillus section Circumdati 1,841 Penicillium sp., Cladosporium sp.
    Store 0 0
    3 Warehouse 0 0
    Production 0 50 Penicillium sp.
    4 Warehouse 0 0
    Production 0 199 Penicillium sp., Cladosporium sp.
    5 Production 0 0
    Warehouse 0 0
    Store 199 Penicillium sp. 100 Penicillium sp., Paecilomyces sp.
    6 Warehouse 0 100 Penicillium sp., Aspergillus section Restricti
    Production 0 0
    Store 0 149 Aspergillus section Candidi, Cladosporium
    7 Production 199 Penicillium sp., Paecilomyces sp. 448 Penicillium sp.
    Warehouse 100 Penicillium sp., Cladosporium sp. 199 Penicillium sp.
    Store 0 100 Penicillium sp.
    8 Production 0 50 Penicillium sp.
    Warehouse 0 50 Penicillium sp.
    Store 3,135 Penicillium sp., Aspergillus section Restricti 2,936 Cladosporium sp.
    9 Production 249 Penicillium sp., Cladosporium sp. 299 Penicillium sp.
    Warehouse 199 Cladosporium sp., Aspergillus section Candidi 0
    Store 1,939 Penicillium sp. 0
    10 Production 24,881 Chrysonilia sitophila 100 Penicillium sp.
    Warehouse 24,881 Chrysonilia sitophila 348 Penicillium sp., Cladosporium sp.
    Store 24,881 Chrysonilia sitophila 299 Penicillium sp., Aspergillus section Candidi
     | Show Table
    DownLoad: CSV

    Of note, ten different azole-resistant species were identified in 56% (15/27) of the EDC samples from 8 out of 10 assessed bakeries. The most prevalent azole-resistant species were Chrysonilia sitophila (49,761 CFU/m2 EDC; 64.8%) and Rhizopus sp. (Mucorales order) (24,930 CFU/m2 EDC; 32.5%), both species not susceptible to 1 mg/L voriconazole, followed by four other azole-resistant species with fungal counts above 100 CFU/m2 EDC, namely, Cladosporium sp., Penicillium sp., Chrysosporium sp., and Aureobasidium sp., and four other species with lower fungal counts, including Aspergillus section Circumdati, (Table 4).

    Table 4. Azole-resistant fungal species distribution after EDC inoculation onto azole-supplemented Saboraud media.
    EDC (CFU/m2 EDC) (n; %)
    Fungal species 4 mg/L ITC 1 mg/L VRC 0.05 mg/L PSC Total
    Chrysonilia sitophila 0; 0 49,761; 65.8 0; 0 49,761; 64.8
    Rhizopus sp. 0; 0 24,930; 33.0 0; 0 24,930; 32.5
    Cladosporium sp. 498; 71.4 249; 0.3 249; 55.6 995; 1.3
    Penicillium sp. 100; 14.3 398; 0.5 149; 33.3 647; 0.8
    Chrysosporium sp. 0; 0 100; 0.1 50; 11.1 149; 0.2
    Aureobasidium sp. 50; 7.1 50; 0.1 0; 0 100; 0.1
    Aspergillus section Circumdati 0; 0 50; 0.1 0; 0 50; 0.1
    Paecilomyces sp. 50; 7.1 0; 0 0; 0 50; 0.1
    Chrysonilia sp. 0; 0 50; 0.1 0; 0 50; 0.1
    Alternaria sp. 0; 0 50; 0.1 0; 0 50; 0.1
    ITC, itraconazole; VRC, voriconazole; PSC, posaconazole; N, number of species isolates; %, number of species isolates per total of resistant isolates.
     | Show Table
    DownLoad: CSV

    Regarding raw material samples, six different groups of fungal species were isolated (Figure 2). Considering MEA and DG18 combined (Table 2), Penicillium sp. was the most prevalent genera (63.6%), followed by Aspergillus sp. (27.3%) and Mucorales group (9.1%). This fungal contamination was present in 27% (7/26) of the raw material samples collected in four of the five assessed bakeries (Table 5). Among Aspergillus genera, four different species were isolated belonging to the sections Versicolores (18.2%), Candidi (4.5%) and Circumdati (4.5%). Among Mucorales, the isolated species were Mucor sp. (4.5%), and Syncephalastrum racemosum (4.5%). Two azole-resistant fungal species were identified in two distinct raw materials, namely Chrysosporium sp. (1 CFU/g) not susceptible to 4 mg/L itraconazole, and Mucor sp. (1 CFU/g) not susceptible to 1 mg/L voriconazole (Table 6). No azole-resistant Aspergillus species were identified in raw material samples.

    Figure 2. Fungal load in raw material after inoculation onto MEA and DG18 media.
    Table 5. Fungal distribution in raw materials (n = 26) collected at five bakeries (CFU/g).
    Raw material ID* (Code) MEA (CFU/g) Fungal species DG18 (CFU/g) Fungal species
    4A 0 0
    4B 0 0
    4C 0 0
    4D 1 Aspergillus section Versicolores 0
    4E 0 0
    4F 0 0
    4G 0 0
    5E 0 0
    5B 0 0
    5G 1 Aspergillus section Versicolores 0
    5C 0 0
    5F 3 Aspergillus section Versicolores, Mucor sp. 1 Penicillium sp.
    6H 0 0
    6I 0 13 Penicillium sp.
    6J 0 0
    6K 0 1 Syncephalastrum racemosum
    6L 0 1 Aspergillus section Candidi
    7M 0 0
    7N 0 1 Aspergillus section Circumdati
    7O 0 0
    7P 0 0
    8B 0 0
    8F 0 0
    8Q 0 0
    8G 0 0
    8E 0 0
    * Code "Number, letter" refers to "Bakery unit, raw material type".
     | Show Table
    DownLoad: CSV
    Table 6. Azole-resistant fungal species distribution after raw material inoculation onto azole-supplemented Saboraud media.
    Raw material (CFU/g) (n; %)
    Fungal species 4 mg/L ITC 1 mg/L VRC 0.05 mg/L PSC Total
    Chrysosporium sp. 1; 100 1; 50
    Mucor sp. 1; 100 1; 50
    ITC, itraconazole; VRC, voriconazole; PSC, posaconazole.
     | Show Table
    DownLoad: CSV

    4. Discussion

    This is the first study in Portugal determining the fungal load and prevalence of antifungal-resistant species in bakeries. Overall, with the exception of Chrysonilia sitophila for one bakery, the most prevalent fungi isolated in both media were Cladosporium sp. and Penicillium sp.. Other species with recognized toxigenic potential belonging to the genus Aspergillus were also isolated both in the environment and in raw materials.

    Exposure to bioaerosols in bakeries may potentially place workers at higher health risk, since exposure to high levels of flour dust potentiates the exposure to airborne microorganisms, which may reach infectious levels within a confined space more readily [3,7,16]. In our study, the highest fungal load was found in the production area (1,793 CFU/m2 EDC, in MEA and DG18), followed by the warehouse (1,052 CFU/m2 EDC, in MEA and DG18) and the store/packing area (957 CFU/m2 EDC, in MEA and DG18). Previous studies identified being near the kneading machines during ingredients mixing as the task with higher values for the smallest particles [15,16]. One possible explanation for this might be related with the use of open machines for mixing without localized exhaustion [15], which is of most importance when, as was the case in the present study, none of the workers used respiratory protection devices.

    In the assessment of EDC fungal contamination, different results were obtained using different culture media regarding both fungal load and mycobiota diversity. As an example, the isolates from Chrysonilia sitophila were only identified on MEA media. This is due to the ability of DG18 to restrict the colony size of fast-growing genera, such as Chrysonilia sitophila, allowing a different and a more complete characterization of fungal contamination. Noteworthy, the use of both media allowed to identify toxigenic genus Penicillium and Aspergillus (sections Candidi, Circumdati and Versicolores) in the analyzed samples, unveiling a common scenario of potential co-exposure to more than one risk factor—mycobiota and mycotoxins (e.g., aflatoxin) in the baking industry.

    Concerning the azole-resistance prevalence in the assessed bakeries, eleven different azole-resistant species, including isolates identified as Aspergillus sp. and Mucor sp., were detected in the environment and in raw materials. Of note, the number of azole-resistant isolates belonging to the genus Aspergillus may be underestimated, in general and in our study, due to the dominance of other genera in the azole-supplemented media with faster growth rates [50]. Aspergillus growth restriction can be circumvented by using higher incubation temperatures, as most Aspergilli are highly thermotolerant. However, since the evaluation of occupational exposure aims to characterize the complete bioburden, not only Aspergillus genera, conventional incubation temperatures were used. The identification of Mucor sp. in raw materials is also of concern because invasive fungal diseases due to Mucorales are increasing [34,35,36]. Belonging to the order Mucorales, Mucor is one of the most commonly identified human pathogenic genera in Europe [51]. Mucorales are not susceptible to voriconazole, the first-line antifungal drug for invasive aspergillosis. The dominant and fast growth of these species in voriconazole screening media may hinder the presence of Aspergillus and other species [52].

    Although most isolates were not susceptible to 1 mg/L voriconazole only, in four EDC from distinct bakery units three other genus (Penicillium sp., Cladosporium sp., Aureobasidium sp.) were identified as not susceptible to more than one azole. Azole-resistant Penicillium and Cladosporium spp. were previously reported in clinical isolates for itraconazole and voriconazole [53]. High MICs of voriconazole and isavuconazole were also reported in vitro for Aureobasidium pullulans in both clinical and environmental isolates [54]. Intrinsic resistance to available antifungals reported in some fungi such as Fusarium, Rhizopus, Rhizomucor and Scedosporium spp. has been pointed out as a major issue by Alhanout and colleagues [55]. However, little is known regarding intrinsic azole-resistance of Penicillium sp., Cladosporium sp., and Aureobasidium sp. In fact, data on intrinsic resistance to azoles are still very limited for non-A. fumigatus fungal species. One known example is the intrinsic resistance of Aspergillus section Terrei to itraconazole [56]. The fact that overall reported MIC-distributions include only a limited number of clinical isolates for most non-A. section Fumigati species compared to A. section Fumigati hinders our ability to distinguish in vitro susceptibility at species level. Therefore, molecular identification remains important to gain more insight into the efficacy of antifungal agents [55].

    The presence of toxigenic species and azole-resistant species indicates that preventive and protective measures should be implemented to protect both workers' and consumers' health. For instance, most of the Aspergillus species from the section Versicolores are able to produce sterigmatocystin [57], reported as tumorigenic after oral, intraperitoneal, subcutaneous and/or dermal administration in animals [58]. Also Aspergillus section Circumdati, and Penicillium species can produce ochratoxin A, an hazard for human health due to its carcinogenic, nephrotoxic, hepatotoxic, immunotoxic, and teratogenic effects in animals [59]. One possible measure to reduce fungal burden in this setting would be the use of cleaning products containing fungicides. However, several antifungal substances used as pesticides have been described as potential inducers of azole resistance in environmental Aspergillus section Fumigati species. This is due to the fact that fungicides present similar structures to the molecules of clinical azoles [60,61]. Therefore, it is important to characterize the setting in relation to the prevalence of antifungal resistant species in order to determine which specific biocidals can be used [39,62].

    While the emergence of drug-resistant bacteria such as methicillin-resistant Staphylococcus aureus and extensively drug-resistant Mycobacterium tuberculosis are already under surveillance policies, it was not until recently that the global problem of antifungal resistance has been recognized as an issue [39]. The increasing occurrence of cryptic species, often drug resistant, as well as of emerging species that are resistant to all antifungal classes [63] illustrates the importance of molecular biology techniques in association with culture-based methodologies [64] for the assessment of occupational exposure to mycobiota [65,66,67], as well as for the correct identification of Aspergillus species of the section Fumigati [68]. This study also corroborates the importance of passive methods (EDC, settled dust and raw material) to complement the exposure assessment. The use of EDC adds information regarding the cumulative presence of bioaerosols in the environment (as they are placed at 1.5 m height and stay in place for 15 days), needing, however, an integrated analysis from the obtained data. It should be pointed out that the main advantage from passive methods is that they can collect contamination from a larger period of time (weeks to several months), whereas air samples can only reflect the load from a shorter period of time (mostly minutes) [69]. Further molecular analyses will be performed in future studies to Aspergillus isolates to support a wider project aiming to characterize the prevalence and distribution of Aspergillus genera and Mucorales order in different Portuguese occupational environments.

    Global warming is increasing the prevalence of crop fungal pathogens, and may also increase the prevalence of fungal disease in humans as fungi adapt to survive in warmer temperatures [70]. It is, therefore, of the outmost importance to perform surveillance studies both in clinical settings and in the environment, including the characterization of azole-resistance prevalence in specific environment compartments (water, soil) and in occupational settings where high fungal load and azole pressure might be expected [67,71,72]. International and collaborative efforts are required to understand how resistance develops in the environment to allow effective measures to be implemented aimed at retaining the use of azoles both for food production and human medicine.


    5. Conclusion

    In conclusion, azole-resistant fungal species were detected in Portuguese bakeries. Fungal species resistant to different azoles have been isolated both in environmental samples and in raw materials, including Aspergillus sp. and Mucorales. In a context of global azole resistance emerging as a threat to clinical success in the treatment of fungal infections, our results can help in improving prevention. This study provides some approaches to complement conventional exposure assessment process, particularly in highly contaminated occupational settings, with additional sampling (EDC) and screening methods. In order to improve the assessment of occupational exposure to mycobiota and antifungal resistance, both culture-based and molecular methods should be used.


    Acknowledgments

    The authors are grateful to Portuguese Authority for Working Conditions for funding the Project "Occupational exposure assessment to particulate matter and fungi and health effects of workers from Portuguese Bakeries" (005DBB/12) and also to Occupational Health Services from the Bakeries engaged in this study.


    Conflict of Interest

    All authors declare no conflicts of interest in this paper.


    [1] Ganser-Pornillos BK, Yeager M, Pornillos O (2012) Assembly and architecture of HIV. Adv Exp Med Biol 726: 441-465. doi: 10.1007/978-1-4614-0980-9_20
    [2] Sundquist WI, Krausslich HG (2012) HIV-1 assembly, budding, and maturation. Cold Spring Harb Perspect Med 2: a006924.
    [3] Borggren M, Jansson M (2015) The Evolution of HIV-1 Interactions with Coreceptors and Mannose C-Type Lectin Receptors. Prog Mol Biol Transl Sci 129C: 109-140.
    [4] Miyauchi K, Kim Y, Latinovic O, et al. (2009) HIV enters cells via endocytosis and dynamin-dependent fusion with endosomes. Cell 137: 433-444. doi: 10.1016/j.cell.2009.02.046
    [5] Moulard M, Decroly E (2000) Maturation of HIV envelope glycoprotein precursors by cellular endoproteases. Biochim Biophys Acta 1469: 121-132. doi: 10.1016/S0304-4157(00)00014-9
    [6] Low JT, Garcia-Miranda P, Mouzakis KD, et al. (2014) Structure and dynamics of the HIV-1 frameshift element RNA. Biochemistry 53: 4282-4291. doi: 10.1021/bi5004926
    [7] Stephenson JD, Li H, Kenyon JC, et al. (2013) Three-dimensional RNA structure of the major HIV-1 packaging signal region. Structure 21: 951-962. doi: 10.1016/j.str.2013.04.008
    [8] Watts JM, Dang KK, Gorelick RJ, et al. (2009) Architecture and secondary structure of an entire HIV-1 RNA genome. Nature 460: 711-716. doi: 10.1038/nature08237
    [9] Swanstrom R, Wills JW (1997) Synthesis, Assembly, and Processing of Viral Proteins. In: Coffin JM HS, Varmus HE, editor. Retroviruses. Cold Spring Harbor, New York: Cold Spring Harbor Laboratory Press.
    [10] Checkley MA, Luttge BG, Freed EO (2011) HIV-1 envelope glycoprotein biosynthesis, trafficking, and incorporation. J Mol Biol 410: 582-608. doi: 10.1016/j.jmb.2011.04.042
    [11] Postler TS, Desrosiers RC (2013) The tale of the long tail: the cytoplasmic domain of HIV-1 gp41. J Virol 87: 2-15. doi: 10.1128/JVI.02053-12
    [12] Bharat TA, Davey NE, Ulbrich P, et al. (2012) Structure of the immature retroviral capsid at 8 A resolution by cryo-electron microscopy. Nature 487: 385-389. doi: 10.1038/nature11169
    [13] Maldonado JO, Martin JL, Mueller JD, et al. (2014) New insights into retroviral Gag-Gag and Gag-membrane interactions. Front Microbiol 5: 302.
    [14] Sonnino S, Prinetti A (2013) Membrane domains and the “lipid raft” concept. Curr Med Chem 20: 4-21.
    [15] Levin JG, Mitra M, Mascarenhas A, et al. (2010) Role of HIV-1 nucleocapsid protein in HIV-1 reverse transcription. RNA Biol 7: 754-774. doi: 10.4161/rna.7.6.14115
    [16] Jiang J, Aiken C (2007) Maturation-dependent human immunodeficiency virus type 1 particle fusion requires a carboxyl-terminal region of the gp41 cytoplasmic tail. J Virol 81: 9999-10008. doi: 10.1128/JVI.00592-07
    [17] Wyma DJ, Jiang J, Shi J, et al. (2004) Coupling of human immunodeficiency virus type 1 fusion to virion maturation: a novel role of the gp41 cytoplasmic tail. J Virol 78: 3429-3435. doi: 10.1128/JVI.78.7.3429-3435.2004
    [18] Aiken C, Zhang P (2013) HIV-1 Maturation. In: Freed EO, editor. Advances in HIV-1 Assembly and Release: Springer.
    [19] Forshey BM, von Schwedler U, Sundquist WI, et al. (2002) Formation of a human immunodeficiency virus type 1 core of optimal stability is crucial for viral replication. J Virol 76: 5667-5677. doi: 10.1128/JVI.76.11.5667-5677.2002
    [20] Ganser-Pornillos BK, Yeager M, Sundquist WI (2008) The structural biology of HIV assembly. Curr Opin Struct Biol 18: 203-217. doi: 10.1016/j.sbi.2008.02.001
    [21] Bush DL, Vogt VM (2014) In Vitro Assembly of Retroviruses. Annual Reviews in Virology 1: 561-580. doi: 10.1146/annurev-virology-031413-085427
    [22] Briggs JA (2013) Structural biology in situ--the potential of subtomogram averaging. Curr Opin Struct Biol 23: 261-267. doi: 10.1016/j.sbi.2013.02.003
    [23] Merk A, Subramaniam S (2013) HIV-1 envelope glycoprotein structure. Curr Opin Struct Biol 23: 268-276. doi: 10.1016/j.sbi.2013.03.007
    [24] Briggs JA, Simon MN, Gross I, et al. (2004) The stoichiometry of Gag protein in HIV-1. Nat Struct Mol Biol 11: 672-675. doi: 10.1038/nsmb785
    [25] Butan C, Winkler DC, Heymann JB, et al. (2008) RSV capsid polymorphism correlates with polymerization efficiency and envelope glycoprotein content: implications that nucleation controls morphogenesis. J Mol Biol 376: 1168-1181. doi: 10.1016/j.jmb.2007.12.003
    [26] Fuller SD, Wilk T, Gowen BE, et al. (1997) Cryo-electron microscopy reveals ordered domains in the immature HIV-1 particle. Curr Biol 7: 729-738. doi: 10.1016/S0960-9822(06)00331-9
    [27] Kingston RL, Olson NH, Vogt VM (2001) The organization of mature Rous sarcoma virus as studied by cryoelectron microscopy. J Struct Biol 136: 67-80. doi: 10.1006/jsbi.2001.4423
    [28] Yeager M, Wilson-Kubalek EM, Weiner SG, et al. (1998) Supramolecular organization of immature and mature murine leukemia virus revealed by electron cryo-microscopy: implications for retroviral assembly mechanisms. Proc Natl Acad Sci U S A 95: 7299-7304. doi: 10.1073/pnas.95.13.7299
    [29] Carlson LA, Briggs JA, Glass B, et al. (2008) Three-dimensional analysis of budding sites and released virus suggests a revised model for HIV-1 morphogenesis. Cell Host Microbe 4: 592-599. doi: 10.1016/j.chom.2008.10.013
    [30] Briggs JA, Johnson MC, Simon MN, et al. (2006) Cryo-electron microscopy reveals conserved and divergent features of gag packing in immature particles of Rous sarcoma virus and human immunodeficiency virus. J Mol Biol 355: 157-168. doi: 10.1016/j.jmb.2005.10.025
    [31] Briggs JA, Riches JD, Glass B, et al. (2009) Structure and assembly of immature HIV. Proc Natl Acad Sci U S A 106: 11090-11095. doi: 10.1073/pnas.0903535106
    [32] Keller PW, Huang RK, England MR, et al. (2013) A two-pronged structural analysis of retroviral maturation indicates that core formation proceeds by a disassembly-reassembly pathway rather than a displacive transition. J Virol 87: 13655-13664. doi: 10.1128/JVI.01408-13
    [33] Wright ER, Schooler JB, Ding HJ, et al. (2007) Electron cryotomography of immature HIV-1 virions reveals the structure of the CA and SP1 Gag shells. EMBO J 26: 2218-2226. doi: 10.1038/sj.emboj.7601664
    [34] de Marco A, Davey NE, Ulbrich P, et al. (2010) Conserved and variable features of Gag structure and arrangement in immature retrovirus particles. J Virol 84: 11729-11736. doi: 10.1128/JVI.01423-10
    [35] Datta SA, Temeselew LG, Crist RM, et al. (2011) On the role of the SP1 domain in HIV-1 particle assembly: a molecular switch? J Virol 85: 4111-4121. doi: 10.1128/JVI.00006-11
    [36] Liang C, Hu J, Russell RS, et al. (2002) Characterization of a putative alpha-helix across the capsid-SP1 boundary that is critical for the multimerization of human immunodeficiency virus type 1 gag. J Virol 76: 11729-11737. doi: 10.1128/JVI.76.22.11729-11737.2002
    [37] Briggs JA, Wilk T, Welker R, et al. (2003) Structural organization of authentic, mature HIV-1 virions and cores. EMBO J 22: 1707-1715. doi: 10.1093/emboj/cdg143
    [38] Ganser BK, Li S, Klishko VY, et al. (1999) Assembly and analysis of conical models for the HIV-1 core. Science 283: 80-83. doi: 10.1126/science.283.5398.80
    [39] Heymann JB, Butan C, Winkler DC, et al. (2008) Irregular and Semi-Regular Polyhedral Models for Rous Sarcoma Virus Cores. Comput Math Methods Med 9: 197-210. doi: 10.1080/17486700802168106
    [40] Cao S, Maldonado JO, Grigsby IF, et al. (2015) Analysis of human T-cell leukemia virus type 1 particles using cryo-electron tomography. J Virol 89: 2430-2435. doi: 10.1128/JVI.02358-14
    [41] Li S, Hill CP, Sundquist WI, et al. (2000) Image reconstructions of helical assemblies of the HIV-1 CA protein. Nature 407: 409-413. doi: 10.1038/35030177
    [42] Thomas D, Schultz P, Steven AC, et al. (1994) Mass analysis of biological macromolecular complexes by STEM. Biol Cell 80: 181-192. doi: 10.1111/j.1768-322X.1994.tb00929.x
    [43] Fogarty KH, Zhang W, Grigsby IF, et al. (2011) New insights into HTLV-1 particle structure, assembly, and Gag-Gag interactions in living cells. Viruses 3: 770-793. doi: 10.3390/v3060770
    [44] Johnson J, Chen Y, Mueller JD (2010) Characterization of brightness and stoichiometry of bright particles by flow-fluorescence fluctuation spectroscopy. Biophys J 99: 3084-3092. doi: 10.1016/j.bpj.2010.08.057
    [45] Parker SD, Wall JS, Hunter E (2001) Analysis of Mason-Pfizer monkey virus Gag particles by scanning transmission electron microscopy. J Virol 75: 9543-9548. doi: 10.1128/JVI.75.19.9543-9548.2001
    [46] Vogt VM, Simon MN (1999) Mass determination of rous sarcoma virus virions by scanning transmission electron microscopy. J Virol 73: 7050-7055.
    [47] Yu F, Joshi SM, Ma YM, et al. (2001) Characterization of Rous sarcoma virus Gag particles assembled in vitro. J Virol 75: 2753-2764. doi: 10.1128/JVI.75.6.2753-2764.2001
    [48] Chen Y, Wu B, Musier-Forsyth K, et al. (2009) Fluorescence fluctuation spectroscopy on viral-like particles reveals variable gag stoichiometry. Biophys J 96: 1961-1969. doi: 10.1016/j.bpj.2008.10.067
    [49] Grigsby IF, Zhang W, Johnson JL, et al. (2010) Biophysical analysis of HTLV-1 particles reveals novel insights into particle morphology and Gag stochiometry. Retrovirology 7: 75. doi: 10.1186/1742-4690-7-75
    [50] Lanman J, Lam TT, Emmett MR, et al. (2004) Key interactions in HIV-1 maturation identified by hydrogen-deuterium exchange. Nat Struct Mol Biol 11: 676-677. doi: 10.1038/nsmb790
    [51] Briggs JA, Watson BE, Gowen BE, et al. (2004) Cryoelectron microscopy of mouse mammary tumor virus. J Virol 78: 2606-2608. doi: 10.1128/JVI.78.5.2606-2608.2004
    [52] Forster F, Medalia O, Zauberman N, et al. (2005) Retrovirus envelope protein complex structure in situ studied by cryo-electron tomography. Proc Natl Acad Sci U S A 102: 4729-4734. doi: 10.1073/pnas.0409178102
    [53] Briggs JA, Grunewald K, Glass B, et al. (2006) The mechanism of HIV-1 core assembly: insights from three-dimensional reconstructions of authentic virions. Structure 14: 15-20. doi: 10.1016/j.str.2005.09.010
    [54] Hamann MV, Mullers E, Reh J, et al. (2014) The cooperative function of arginine residues in the Prototype Foamy Virus Gag C-terminus mediates viral and cellular RNA encapsidation. Retrovirology 11: 87. doi: 10.1186/s12977-014-0087-7
    [55] Roux KH, Taylor KA (2007) AIDS virus envelope spike structure. Curr Opin Struct Biol 17: 244-252. doi: 10.1016/j.sbi.2007.03.008
    [56] Liu J, Bartesaghi A, Borgnia MJ, et al. (2008) Molecular architecture of native HIV-1 gp120 trimers. Nature 455: 109-113. doi: 10.1038/nature07159
    [57] Zanetti G, Briggs JA, Grunewald K, et al. (2006) Cryo-electron tomographic structure of an immunodeficiency virus envelope complex in situ. PLoS Pathog 2: e83. doi: 10.1371/journal.ppat.0020083
    [58] Harris A, Borgnia MJ, Shi D, et al. (2011) Trimeric HIV-1 glycoprotein gp140 immunogens and native HIV-1 envelope glycoproteins display the same closed and open quaternary molecular architectures. Proc Natl Acad Sci U S A 108: 11440-11445. doi: 10.1073/pnas.1101414108
    [59] Meyerson JR, Tran EE, Kuybeda O, et al. (2013) Molecular structures of trimeric HIV-1 Env in complex with small antibody derivatives. Proc Natl Acad Sci U S A 110: 513-518. doi: 10.1073/pnas.1214810110
    [60] Tran EE, Borgnia MJ, Kuybeda O, et al. (2012) Structural mechanism of trimeric HIV-1 envelope glycoprotein activation. PLoS Pathog 8: e1002797. doi: 10.1371/journal.ppat.1002797
    [61] White TA, Bartesaghi A, Borgnia MJ, et al. (2011) Three-dimensional structures of soluble CD4-bound states of trimeric simian immunodeficiency virus envelope glycoproteins determined by using cryo-electron tomography. J Virol 85: 12114-12123. doi: 10.1128/JVI.05297-11
    [62] White TA, Bartesaghi A, Borgnia MJ, et al. (2010) Molecular architectures of trimeric SIV and HIV-1 envelope glycoproteins on intact viruses: strain-dependent variation in quaternary structure. PLoS Pathog 6: e1001249. doi: 10.1371/journal.ppat.1001249
    [63] Loving R, Wu SR, Sjoberg M, et al. (2012) Maturation cleavage of the murine leukemia virus Env precursor separates the transmembrane subunits to prime it for receptor triggering. Proc Natl Acad Sci U S A 109: 7735-7740. doi: 10.1073/pnas.1118125109
    [64] Sjoberg M, Wu SR, Loving R, et al. (2014) Furin cleavage of the Moloney murine leukemia virus Env precursor reorganizes the spike structure. Proc Natl Acad Sci U S A 111: 6034-6039. doi: 10.1073/pnas.1317972111
    [65] Wu SR, Sjoberg M, Wallin M, et al. (2008) Turning of the receptor-binding domains opens up the murine leukaemia virus Env for membrane fusion. EMBO J 27: 2799-2808. doi: 10.1038/emboj.2008.187
    [66] Zhu P, Liu J, Bess J, Jr., et al. (2006) Distribution and three-dimensional structure of AIDS virus envelope spikes. Nature 441: 847-852. doi: 10.1038/nature04817
    [67] Schur FK, Hagen WJ, Rumlova M, et al. (2015) Structure of the immature HIV-1 capsid in intact virus particles at 8.8 A resolution. . Nature 517: 505-508.
    [68] Pettersen EF, Goddard TD, Huang CC, et al. (2004) UCSF Chimera--a visualization system for exploratory research and analysis. J Comput Chem 25: 1605-1612. doi: 10.1002/jcc.20084
    [69] Zhao G, Perilla JR, Yufenyuy EL, et al. (2013) Mature HIV-1 capsid structure by cryo-electron microscopy and all-atom molecular dynamics. Nature 497: 643-646. doi: 10.1038/nature12162
    [70] Cardone G, Purdy JG, Cheng N, et al. (2009) Visualization of a missing link in retrovirus capsid assembly. Nature 457: 694-698. doi: 10.1038/nature07724
    [71] Hyun JK, Radjainia M, Kingston RL, et al. (2010) Proton-driven assembly of the Rous Sarcoma virus capsid protein results in the formation of icosahedral particles. J Biol Chem 285: 15056-15064. doi: 10.1074/jbc.M110.108209
    [72] Ganser-Pornillos BK, Cheng A, Yeager M (2007) Structure of full-length HIV-1 CA: a model for the mature capsid lattice. Cell 131: 70-79. doi: 10.1016/j.cell.2007.08.018
    [73] Bartesaghi A, Merk A, Borgnia MJ, et al. (2013) Prefusion structure of trimeric HIV-1 envelope glycoprotein determined by cryo-electron microscopy. Nat Struct Mol Biol 20: 1352-1357. doi: 10.1038/nsmb.2711
    [74] Lyumkis D, Julien JP, de Val N, et al. (2013) Cryo-EM structure of a fully glycosylated soluble cleaved HIV-1 envelope trimer. Science 342: 1484-1490. doi: 10.1126/science.1245627
    [75] Bartesaghi A, Lecumberry F, Sapiro G, et al. (2012) Protein secondary structure determination by constrained single-particle cryo-electron tomography. Structure 20: 2003-2013. doi: 10.1016/j.str.2012.10.016
    [76] Schur FK, Hagen WJ, de Marco A, et al. (2013) Determination of protein structure at 8.5A resolution using cryo-electron tomography and sub-tomogram averaging. . J Struct Biol 184: 394-400.
    [77] Tang C, Ndassa Y, Summers MF (2002) Structure of the N-terminal 283-residue fragment of the immature HIV-1 Gag polyprotein. Nat Struct Biol 9: 537-543.
    [78] Pornillos O, Ganser-Pornillos BK, Kelly BN, et al. (2009) X-ray structures of the hexameric building block of the HIV capsid. Cell 137: 1282-1292. doi: 10.1016/j.cell.2009.04.063
    [79] Macek P, Chmelik J, Krizova I, et al. (2009) NMR structure of the N-terminal domain of capsid protein from the mason-pfizer monkey virus. J Mol Biol 392: 100-114. doi: 10.1016/j.jmb.2009.06.029
    [80] Bharat TA, Castillo Menendez LR, Hagen WJ, et al. (2014) Cryo-electron microscopy of tubular arrays of HIV-1 Gag resolves structures essential for immature virus assembly. Proc Natl Acad Sci U S A 111: 8233-8238. doi: 10.1073/pnas.1401455111
    [81] Mao Y, Wang L, Gu C, et al. (2012) Subunit organization of the membrane-bound HIV-1 envelope glycoprotein trimer. Nat Struct Mol Biol 19: 893-899. doi: 10.1038/nsmb.2351
    [82] Mao Y, Wang L, Gu C, et al. (2013) Molecular architecture of the uncleaved HIV-1 envelope glycoprotein trimer. Proc Natl Acad Sci U S A 110: 12438-12443. doi: 10.1073/pnas.1307382110
    [83] Cohen J Structural biology. Is high-tech view of HIV too good to be true? Science 341: 443-444.
    [84] Henderson R Avoiding the pitfalls of single particle cryo-electron microscopy: Einstein from noise. Proc Natl Acad Sci U S A 110: 18037-18041.
    [85] Mao Y, Castillo-Menendez LR, Sodroski JG Reply to Subramaniam, van Heel, and Henderson: Validity of the cryo-electron microscopy structures of the HIV-1 envelope glycoprotein complex. Proc Natl Acad Sci U S A 110: E4178-4182.
    [86] Frank GA, Narayan K, Bess JW, Jr., et al. (2015) Maturation of the HIV-1 core by a non-diffusional phase transition. Nat Commun 6: 5854. doi: 10.1038/ncomms6854
    [87] van Heel M Finding trimeric HIV-1 envelope glycoproteins in random noise. Proc Natl Acad Sci U S A 110: E4175-4177.
    [88] Mammano F, Ohagen A, Hoglund S, et al. (1994) Role of the major homology region of human immunodeficiency virus type 1 in virion morphogenesis. J Virol 68: 4927-4936.
    [89] von Schwedler UK, Stray KM, Garrus JE, et al. (2003) Functional surfaces of the human immunodeficiency virus type 1 capsid protein. J Virol 77: 5439-5450. doi: 10.1128/JVI.77.9.5439-5450.2003
    [90] Chu HH, Chang YF, Wang CT (2006) Mutations in the alpha-helix directly C-terminal to the major homology region of human immunodeficiency virus type 1 capsid protein disrupt Gag multimerization and markedly impair virus particle production. J Biomed Sci 13: 645-656. doi: 10.1007/s11373-006-9094-6
    [91] Gamble TR, Yoo S, Vajdos FF, et al. (1997) Structure of the carboxyl-terminal dimerization domain of the HIV-1 capsid protein. Science 278: 849-853. doi: 10.1126/science.278.5339.849
    [92] Ono A, Ablan SD, Lockett SJ, et al. (2004) Phosphatidylinositol (4,5) bisphosphate regulates HIV-1 Gag targeting to the plasma membrane. Proc Natl Acad Sci U S A 101: 14889-14894. doi: 10.1073/pnas.0405596101
    [93] Saad JS, Miller J, Tai J, et al. (2006) Structural basis for targeting HIV-1 Gag proteins to the plasma membrane for virus assembly. Proc Natl Acad Sci U S A 103: 11364-11369. doi: 10.1073/pnas.0602818103
    [94] Fogarty KH, Chen Y, Grigsby IF, et al. (2011) Characterization of cytoplasmic Gag-gag interactions by dual-color z-scan fluorescence fluctuation spectroscopy. Biophys J 100: 1587-1595. doi: 10.1016/j.bpj.2011.02.008
    [95] Lindwasser OW, Resh MD (2004) Human immunodeficiency virus type 1 Gag contains a dileucine-like motif that regulates association with multivesicular bodies. J Virol 78: 6013-6023. doi: 10.1128/JVI.78.11.6013-6023.2004
    [96] Muriaux D, Mirro J, Harvin D, et al. (2001) RNA is a structural element in retrovirus particles. Proc Natl Acad Sci U S A 98: 5246-5251. doi: 10.1073/pnas.091000398
    [97] Poole E, Strappe P, Mok HP, et al. (2005) HIV-1 Gag-RNA interaction occurs at a perinuclear/centrosomal site; analysis by confocal microscopy and FRET. Traffic 6: 741-755. doi: 10.1111/j.1600-0854.2005.00312.x
    [98] Bailey GD, Hyun JK, Mitra AK, et al. (2012) A structural model for the generation of continuous curvature on the surface of a retroviral capsid. J Mol Biol 417: 212-223. doi: 10.1016/j.jmb.2012.01.014
    [99] Mortuza GB, Haire LF, Stevens A, et al. (2004) High-resolution structure of a retroviral capsid hexameric amino-terminal domain. Nature 431: 481-485. doi: 10.1038/nature02915
    [100] Byeon IJ, Meng X, Jung J, et al. (2009) Structural convergence between Cryo-EM and NMR reveals intersubunit interactions critical for HIV-1 capsid function. Cell 139: 780-790. doi: 10.1016/j.cell.2009.10.010
    [101] Yang H, Ji X, Zhao G, et al. (2012) Structural insight into HIV-1 capsid recognition by rhesus TRIM5alpha. Proc Natl Acad Sci U S A 109: 18372-18377. doi: 10.1073/pnas.1210903109
    [102] Zhao G, Ke D, Vu T, et al. (2011) Rhesus TRIM5alpha disrupts the HIV-1 capsid at the inter-hexamer interfaces. PLoS Pathog 7: e1002009. doi: 10.1371/journal.ppat.1002009
    [103] Gres AT, Kirby KA, KewalRamani VN, et al. (2015) X-ray crystal structures of native HIV-1 capsid protein reveal conformational variability. Science.
    [104] Dalgleish AG, Beverley PC, Clapham PR, et al. (1984) The CD4 (T4) antigen is an essential component of the receptor for the AIDS retrovirus. Nature 312: 763-767. doi: 10.1038/312763a0
    [105] Trkola A, Dragic T, Arthos J, et al. (1996) CD4-dependent, antibody-sensitive interactions between HIV-1 and its co-receptor CCR-5. Nature 384: 184-187. doi: 10.1038/384184a0
    [106] Wyatt R, Sodroski J (1998) The HIV-1 envelope glycoproteins: fusogens, antigens, and immunogens. Science 280: 1884-1888. doi: 10.1126/science.280.5371.1884
    [107] Buzon V, Natrajan G, Schibli D, et al. (2010) Crystal structure of HIV-1 gp41 including both fusion peptide and membrane proximal external regions. PLoS Pathog 6: e1000880. doi: 10.1371/journal.ppat.1000880
    [108] Chan DC, Fass D, Berger JM, et al. (1997) Core structure of gp41 from the HIV envelope glycoprotein. Cell 89: 263-273. doi: 10.1016/S0092-8674(00)80205-6
    [109] Tan K, Liu J, Wang J, et al. (1997) Atomic structure of a thermostable subdomain of HIV-1 gp41. Proc Natl Acad Sci U S A 94: 12303-12308. doi: 10.1073/pnas.94.23.12303
    [110] Weissenhorn W, Dessen A, Harrison SC, et al. (1997) Atomic structure of the ectodomain from HIV-1 gp41. Nature 387: 426-430. doi: 10.1038/387426a0
    [111] Chen L, Kwon YD, Zhou T, et al. (2009) Structural basis of immune evasion at the site of CD4 attachment on HIV-1 gp120. Science 326: 1123-1127. doi: 10.1126/science.1175868
    [112] Huang CC, Lam SN, Acharya P, et al. (2007) Structures of the CCR5 N terminus and of a tyrosine-sulfated antibody with HIV-1 gp120 and CD4. Science 317: 1930-1934. doi: 10.1126/science.1145373
    [113] Huang CC, Tang M, Zhang MY, et al. (2005) Structure of a V3-containing HIV-1 gp120 core. Science 310: 1025-1028. doi: 10.1126/science.1118398
    [114] Huang J, Ofek G, Laub L, et al. (2012) Broad and potent neutralization of HIV-1 by a gp41-specific human antibody. Nature 491: 406-412. doi: 10.1038/nature11544
    [115] Kwong PD, Wyatt R, Robinson J, et al. (1998) Structure of an HIV gp120 envelope glycoprotein in complex with the CD4 receptor and a neutralizing human antibody. Nature 393: 648-659. doi: 10.1038/31405
    [116] McLellan JS, Pancera M, Carrico C, et al. (2011) Structure of HIV-1 gp120 V1/V2 domain with broadly neutralizing antibody PG9. Nature 480: 336-343. doi: 10.1038/nature10696
    [117] Pejchal R, Doores KJ, Walker LM, et al. (2011) A potent and broad neutralizing antibody recognizes and penetrates the HIV glycan shield. Science 334: 1097-1103. doi: 10.1126/science.1213256
    [118] Ward AB, Wilson IA (2015) Insights into the trimeric HIV-1 envelope glycoprotein structure. Trends Biochem Sci 40: 101-107. doi: 10.1016/j.tibs.2014.12.006
    [119] Zhou T, Georgiev I, Wu X, et al. (2010) Structural basis for broad and potent neutralization of HIV-1 by antibody VRC01. Science 329: 811-817. doi: 10.1126/science.1192819
    [120] Zhou T, Xu L, Dey B, et al. (2007) Structural definition of a conserved neutralization epitope on HIV-1 gp120. Nature 445: 732-737. doi: 10.1038/nature05580
    [121] Dutta M, Liu J, Roux KH, et al. (2014) Visualization of retroviral envelope spikes in complex with the V3 loop antibody 447-52D on intact viruses by cryo-electron tomography. J Virol 88: 12265-12275. doi: 10.1128/JVI.01596-14
    [122] Harris AK, Bartesaghi A, Milne JL, et al. (2013) HIV-1 envelope glycoprotein trimers display open quaternary conformation when bound to the gp41 membrane-proximal external-region-directed broadly neutralizing antibody Z13e1. J Virol 87: 7191-7196. doi: 10.1128/JVI.03284-12
    [123] Hu G, Liu J, Taylor KA, et al. (2011) Structural comparison of HIV-1 envelope spikes with and without the V1/V2 loop. J Virol 85: 2741-2750. doi: 10.1128/JVI.01612-10
    [124] Zhu P, Winkler H, Chertova E, et al. (2008) Cryoelectron tomography of HIV-1 envelope spikes: further evidence for tripod-like legs. PLoS Pathog 4: e1000203. doi: 10.1371/journal.ppat.1000203
    [125] Sanders RW, Vesanen M, Schuelke N, et al. (2002) Stabilization of the soluble, cleaved, trimeric form of the envelope glycoprotein complex of human immunodeficiency virus type 1. J Virol 76: 8875-8889. doi: 10.1128/JVI.76.17.8875-8889.2002
    [126] Earl LA, Lifson JD, Subramaniam S (2013) Catching HIV 'in the act' with 3D electron microscopy. Trends Microbiol 21: 397-404. doi: 10.1016/j.tim.2013.06.004
    [127] Lucic V, Rigort A, Baumeister W (2013) Cryo-electron tomography: the challenge of doing structural biology in situ. J Cell Biol 202: 407-419. doi: 10.1083/jcb.201304193
    [128] Jun S, Ke D, Debiec K, et al. (2011) Direct visualization of HIV-1 with correlative live-cell microscopy and cryo-electron tomography. Structure 19: 1573-1581. doi: 10.1016/j.str.2011.09.006
    [129] Jun S, Zhao G, Ning J, et al. (2013) Correlative microscopy for 3D structural analysis of dynamic interactions. J Vis Exp.
    [130] Majorovits E, Nejmeddine M, Tanaka Y, et al. (2008) Human T-lymphotropic virus-1 visualized at the virological synapse by electron tomography. PLoS One 3: e2251. doi: 10.1371/journal.pone.0002251
    [131] Martin N, Welsch S, Jolly C, et al. (2010) Virological synapse-mediated spread of human immunodeficiency virus type 1 between T cells is sensitive to entry inhibition. J Virol 84: 3516-3527. doi: 10.1128/JVI.02651-09
    [132] Do T, Murphy G, Earl LA, et al. (2014) Three-dimensional imaging of HIV-1 virological synapses reveals membrane architectures involved in virus transmission. J Virol 88: 10327-10339. doi: 10.1128/JVI.00788-14
    [133] Drobne D (2013) 3D imaging of cells and tissues by focused ion beam/scanning electron microscopy (FIB/SEM). Methods Mol Biol 950: 275-292.
    [134] Risco C, Castro IFd, Sanz-Sánchez L, et al. (2014) Three-Dimensional Imaging of Viral Infections. Annual Review of Virology 1: 453-473. doi: 10.1146/annurev-virology-031413-085351
    [135] Kukulski W, Schorb M, Welsch S, et al. (2011) Correlated fluorescence and 3D electron microscopy with high sensitivity and spatial precision. J Cell Biol 192: 111-119. doi: 10.1083/jcb.201009037
    [136] Sartori A, Gatz R, Beck F, et al. (2007) Correlative microscopy: bridging the gap between fluorescence light microscopy and cryo-electron tomography. J Struct Biol 160: 135-145. doi: 10.1016/j.jsb.2007.07.011
    [137] Zhang P (2013) Correlative cryo-electron tomography and optical microscopy of cells. Curr Opin Struct Biol 23: 763-770. doi: 10.1016/j.sbi.2013.07.017
    [138] Woodward CL, Cheng SN, Jensen GJ (2014) Electron cryo-tomography studies of maturing HIV-1 particles reveal the assembly pathway of the viral core. J Virol.
    [139] Carlson LA, de Marco A, Oberwinkler H, et al. (2010) Cryo electron tomography of native HIV-1 budding sites. PLoS Pathog 6: e1001173. doi: 10.1371/journal.ppat.1001173
    [140] Dobro MJ, Samson RY, Yu Z, et al. (2013) Electron cryotomography of ESCRT assemblies and dividing Sulfolobus cells suggests that spiraling filaments are involved in membrane scission. Mol Biol Cell 24: 2319-2327. doi: 10.1091/mbc.E12-11-0785
    [141] Effantin G, Dordor A, Sandrin V, et al. (2013) ESCRT-III CHMP2A and CHMP3 form variable helical polymers in vitro and act synergistically during HIV-1 budding. Cell Microbiol 15: 213-226. doi: 10.1111/cmi.12041
    [142] Shen QT, Schuh AL, Zheng Y, et al. (2014) Structural analysis and modeling reveals new mechanisms governing ESCRT-III spiral filament assembly. J Cell Biol 206: 763-777. doi: 10.1083/jcb.201403108
    [143] Van Engelenburg SB, Shtengel G, Sengupta P, et al. (2014) Distribution of ESCRT machinery at HIV assembly sites reveals virus scaffolding of ESCRT subunits. Science 343: 653-656. doi: 10.1126/science.1247786
    [144] de Marco A, Muller B, Glass B, et al. (2010) Structural analysis of HIV-1 maturation using cryo-electron tomography. PLoS Pathog 6: e1001215. doi: 10.1371/journal.ppat.1001215
    [145] de Marco A, Heuser AM, Glass B, et al. (2012) Role of the SP2 domain and its proteolytic cleavage in HIV-1 structural maturation and infectivity. J Virol 86: 13708-13716. doi: 10.1128/JVI.01704-12
    [146] Konnyu B, Sadiq SK, Turanyi T, et al. (2013) Gag-Pol processing during HIV-1 virion maturation: a systems biology approach. PLoS Comput Biol 9: e1003103. doi: 10.1371/journal.pcbi.1003103
    [147] Keller PW, Adamson CS, Heymann JB, et al. (2011) HIV-1 maturation inhibitor bevirimat stabilizes the immature Gag lattice. J Virol 85: 1420-1428. doi: 10.1128/JVI.01926-10
    [148] Benjamin J, Ganser-Pornillos BK, Tivol WF, et al. (2005) Three-dimensional structure of HIV-1 virus-like particles by electron cryotomography. J Mol Biol 346: 577-588. doi: 10.1016/j.jmb.2004.11.064
    [149] Levandovsky A, Zandi R (2009) Nonequilibirum assembly, retroviruses, and conical structures. Phys Rev Lett 102: 198102. doi: 10.1103/PhysRevLett.102.198102
    [150] Yu Z, Dobro MJ, Woodward CL, et al. (2013) Unclosed HIV-1 capsids suggest a curled sheet model of assembly. J Mol Biol 425: 112-123. doi: 10.1016/j.jmb.2012.10.006
    [151] Sougrat R, Bartesaghi A, Lifson JD, et al. (2007) Electron tomography of the contact between T cells and SIV/HIV-1: implications for viral entry. PLoS Pathog 3: e63. doi: 10.1371/journal.ppat.0030063
    [152] Cardone G, Brecher M, Fontana J, et al. (2012) Visualization of the two-step fusion process of the retrovirus avian sarcoma/leukosis virus by cryo-electron tomography. J Virol 86: 12129-12137. doi: 10.1128/JVI.01880-12
    [153] Felts RL, Narayan K, Estes JD, et al. (2010) 3D visualization of HIV transfer at the virological synapse between dendritic cells and T cells. Proc Natl Acad Sci U S A 107: 13336-13341. doi: 10.1073/pnas.1003040107
    [154] Sherer NM, Lehmann MJ, Jimenez-Soto LF, et al. (2007) Retroviruses can establish filopodial bridges for efficient cell-to-cell transmission. Nat Cell Biol 9: 310-315. doi: 10.1038/ncb1544
    [155] Pique C, Jones KS (2012) Pathways of cell-cell transmission of HTLV-1. Front Microbiol 3: 378.
    [156] Hill CP, Worthylake D, Bancroft DP, et al. (1996) Crystal structures of the trimeric human immunodeficiency virus type 1 matrix protein: implications for membrane association and assembly. Proc Natl Acad Sci U S A 93: 3099-3104. doi: 10.1073/pnas.93.7.3099
    [157] Rao Z, Belyaev AS, Fry E, et al. (1995) Crystal structure of SIV matrix antigen and implications for virus assembly. Nature 378: 743-747. doi: 10.1038/378743a0
  • This article has been cited by:

    1. Carla Viegas, Marta Dias, Ana Monteiro, Tiago Faria, Joana Lage, Elisabete Carolino, Liliana Aranha Caetano, Anita Quintal Gomes, Susana Marta Almeida, Sandra Cabo Verde, Joana Belo, Nuno Canha, Bioburden in sleeping environments from Portuguese dwellings, 2021, 273, 02697491, 116417, 10.1016/j.envpol.2020.116417
    2. Katharina Rosam, Brian C. Monk, Michaela Lackner, Sterol 14α-Demethylase Ligand-Binding Pocket-Mediated Acquired and Intrinsic Azole Resistance in Fungal Pathogens, 2020, 7, 2309-608X, 1, 10.3390/jof7010001
    3. Liliana Aranha Caetano, Tiago Faria, Jan Springer, Juergen Loeffler, Carla Viegas, Antifungal-resistant Mucorales in different indoor environments, 2019, 10, 2150-1203, 75, 10.1080/21501203.2018.1551251
    4. Carla Viegas, Tiago Faria, Liliana Aranha Caetano, Elisabete Carolino, Anita Quintal-Gomes, Magdalena Twarużek, Robert Kosicki, Susana Viegas, Characterization of Occupational Exposure To Fungal Burden in Portuguese Bakeries, 2019, 7, 2076-2607, 234, 10.3390/microorganisms7080234
    5. Pedro Sousa, Carla Viegas, 2020, 9780128096338, 10.1016/B978-0-12-809633-8.21579-3
    6. Raquel Sabino, Cristina Veríssimo, Carla Viegas, Susana Viegas, João Brandão, Magna Alves-Correia, Luís-Miguel Borrego, Karl V Clemons, David A Stevens, Malcolm Richardson, The role of occupational Aspergillus exposure in the development of diseases, 2019, 57, 1369-3786, S196, 10.1093/mmy/myy090
    7. Pedro Sousa, Carla Viegas, 2021, 9780128096338, 10.1016/B978-0-12-819990-9.00041-X
    8. Susana Viegas, Ricardo Assunção, Carla Nunes, Bernd Osteresch, Magdalena Twarużek, Robert Kosicki, Jan Grajewski, Carla Martins, Paula Alvito, Ana Almeida, Carla Viegas, Exposure Assessment to Mycotoxins in a Portuguese Fresh Bread Dough Company by Using a Multi-Biomarker Approach, 2018, 10, 2072-6651, 342, 10.3390/toxins10090342
    9. Liliana Aranha Caetano, Beatriz Almeida, Carla Viegas, 2019, Chapter 29, 978-3-030-24066-0, 248, 10.1007/978-3-030-24067-7_29
    10. Carla Viegas, Gerard T. A. Fleming, Abdul Kadir, Beatriz Almeida, Liliana Aranha Caetano, Anita Quintal Gomes, Magdalena Twarużek, Robert Kosicki, Susana Viegas, Ann Marie Coggins, Occupational Exposures to Organic Dust in Irish Bakeries and a Pizzeria Restaurant, 2020, 8, 2076-2607, 118, 10.3390/microorganisms8010118
    11. Carla Viegas, Flávio Sá, Margarida Mateus, Patrícia Santos, Beatriz Almeida, Liliana Aranha Caetano, Anita Quintal Gomes, Susana Viegas, Commercial green tea from Portugal: Comprehensive microbiologic analyses, 2020, 333, 01681605, 108795, 10.1016/j.ijfoodmicro.2020.108795
    12. Carla Viegas, Ana Monteiro, Edna Ribeiro, Liliana Aranha Caetano, Elisabete Carolino, Ricardo Assunção, Susana Viegas, Organic dust exposure in veterinary clinics: a case study of a small-animal practice in Portugal, 2018, 69, 0004-1254, 309, 10.2478/aiht-2018-69-3171
    13. Carla Viegas, Ana Monteiro, Elisabete Carolino, Susana Viegas, Occupational exposure to bioburden in Portuguese bakeries: an approach to sampling viable microbial load, 2018, 69, 0004-1254, 250, 10.2478/aiht-2018-69-3116
    14. Carla Viegas, Marta Dias, Susana Viegas, Electrostatic Dust Cloth: A Useful Passive Sampling Method When Assessing Exposure to Fungi Demonstrated in Studies Developed in Portugal (2018–2021), 2022, 11, 2076-0817, 345, 10.3390/pathogens11030345
    15. Carla Viegas, 2022, Chapter 17, 978-3-030-89616-4, 187, 10.1007/978-3-030-89617-1_17
    16. Genevieve Marchand, Loïc Wingert, Carla Viegas, Liliana Caetano, Susana Viegas, Magdalena Twaruzek, Nancy Lacombe, Delphine Lanoie, Isabelle Valois, Francois Gouin, Ewelina Soszczyńska, Robert Kosicki, Marta Dias, Maximilien Debia, Assessment of waste workers occupational risk to microbial agents and cytotoxic effects of mixed contaminants present in the air of waste truck cabin and ventilation filters, 2024, 1096-2247, 10.1080/10962247.2023.2299424
    17. Katherin Castro-Ríos, Maria Clara Shiroma Buri, Arla Daniela Ramalho da Cruz, Paulo Cezar Ceresini, Aspergillus fumigatus in the Food Production Chain and Azole Resistance: A Growing Concern for Consumers, 2025, 11, 2309-608X, 252, 10.3390/jof11040252
  • Reader Comments
  • © 2015 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(17633) PDF downloads(2479) Cited by(53)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog