Loading [MathJax]/jax/output/SVG/jax.js
Review Special Issues

Etiology of dental implant complication and failure—an overview

  • Received: 20 December 2022 Revised: 21 April 2023 Accepted: 22 April 2023 Published: 17 May 2023
  • Dental implant treatment is turning into a widely accepted and popular treatment option for patients. With the growing era of dental implant therapy, complications and failures have also become common. Such intricacies are becoming a vexing issue for clinicians as well as patients. Implant failures can be due to mechanical or biological reasons. Failure of osseointegration of the implant falls under biological failures, whereas mechanical complications include fracture of the implant, framework or prosthetic components. Diligently observing the implant after placement is the first step in managing the declining circumstances. It is important to have a thorough understanding of how and why implants fail to achieve successful treatment outcomes in the long run. In dentistry, nanoparticles are used to make antibacterial chemicals that improve dental implants. They can be used in conjunction with acrylic resins for fabricating removable dentures during prosthetic treatments, composite resins for direct restoration during restorative treatments, endodontic irrigants and obturation materials during endodontic procedures, orthodontic adhesives and titanium coating during dental implant procedures. This article aimed to review the etiological factors that lead to implant failure and their solutions.

    Citation: Anirudh Gupta, Bhairavi Kale, Deepika Masurkar, Priyanka Jaiswal. Etiology of dental implant complication and failure—an overview[J]. AIMS Bioengineering, 2023, 10(2): 141-152. doi: 10.3934/bioeng.2023010

    Related Papers:

    [1] D. L. Suthar, A. M. Khan, A. Alaria, S. D. Purohit, J. Singh . Extended Bessel-Maitland function and its properties pertaining to integral transforms and fractional calculus. AIMS Mathematics, 2020, 5(2): 1400-1410. doi: 10.3934/math.2020096
    [2] Iqra Nayab, Shahid Mubeen, Rana Safdar Ali, Gauhar Rahman, Abdel-Haleem Abdel-Aty, Emad E. Mahmoud, Kottakkaran Sooppy Nisar . Estimation of generalized fractional integral operators with nonsingular function as a kernel. AIMS Mathematics, 2021, 6(5): 4492-4506. doi: 10.3934/math.2021266
    [3] A. Belafhal, N. Nossir, L. Dalil-Essakali, T. Usman . Integral transforms involving the product of Humbert and Bessel functions and its application. AIMS Mathematics, 2020, 5(2): 1260-1274. doi: 10.3934/math.2020086
    [4] Shahid Mubeen, Rana Safdar Ali, Iqra Nayab, Gauhar Rahman, Kottakkaran Sooppy Nisar, Dumitru Baleanu . Some generalized fractional integral inequalities with nonsingular function as a kernel. AIMS Mathematics, 2021, 6(4): 3352-3377. doi: 10.3934/math.2021201
    [5] Saima Naheed, Shahid Mubeen, Thabet Abdeljawad . Fractional calculus of generalized Lommel-Wright function and its extended Beta transform. AIMS Mathematics, 2021, 6(8): 8276-8293. doi: 10.3934/math.2021479
    [6] Mohra Zayed, Waseem Ahmad Khan, Cheon Seoung Ryoo, Ugur Duran . An exploratory study on bivariate extended $ q $-Laguerre-based Appell polynomials with some applications. AIMS Mathematics, 2025, 10(6): 12841-12867. doi: 10.3934/math.2025577
    [7] Mohamed Abdalla . On Hankel transforms of generalized Bessel matrix polynomials. AIMS Mathematics, 2021, 6(6): 6122-6139. doi: 10.3934/math.2021359
    [8] Rana Safdar Ali, Saba Batool, Shahid Mubeen, Asad Ali, Gauhar Rahman, Muhammad Samraiz, Kottakkaran Sooppy Nisar, Roshan Noor Mohamed . On generalized fractional integral operator associated with generalized Bessel-Maitland function. AIMS Mathematics, 2022, 7(2): 3027-3046. doi: 10.3934/math.2022167
    [9] Sabila Ali, Shahid Mubeen, Rana Safdar Ali, Gauhar Rahman, Ahmed Morsy, Kottakkaran Sooppy Nisar, Sunil Dutt Purohit, M. Zakarya . Dynamical significance of generalized fractional integral inequalities via convexity. AIMS Mathematics, 2021, 6(9): 9705-9730. doi: 10.3934/math.2021565
    [10] Ruma Qamar, Tabinda Nahid, Mumtaz Riyasat, Naresh Kumar, Anish Khan . Gould-Hopper matrix-Bessel and Gould-Hopper matrix-Tricomi functions and related integral representations. AIMS Mathematics, 2020, 5(5): 4613-4623. doi: 10.3934/math.2020296
  • Dental implant treatment is turning into a widely accepted and popular treatment option for patients. With the growing era of dental implant therapy, complications and failures have also become common. Such intricacies are becoming a vexing issue for clinicians as well as patients. Implant failures can be due to mechanical or biological reasons. Failure of osseointegration of the implant falls under biological failures, whereas mechanical complications include fracture of the implant, framework or prosthetic components. Diligently observing the implant after placement is the first step in managing the declining circumstances. It is important to have a thorough understanding of how and why implants fail to achieve successful treatment outcomes in the long run. In dentistry, nanoparticles are used to make antibacterial chemicals that improve dental implants. They can be used in conjunction with acrylic resins for fabricating removable dentures during prosthetic treatments, composite resins for direct restoration during restorative treatments, endodontic irrigants and obturation materials during endodontic procedures, orthodontic adhesives and titanium coating during dental implant procedures. This article aimed to review the etiological factors that lead to implant failure and their solutions.



    The Bessel function [1,2,3,4,5,6,7,8] has great importance in the field of mathematics, physics and engineering due to its applications. Researchers and mathematicians developed a new class of Bessel functions in the sense of multi-index functions, which motivate the future research work in the field of special functions and fractional calculus. The theory of multi-index multivariate Bessel function discussed by Dattoli et al. [9] in 1997.

    Generalized multi-index Mittag-Leffler function was defined by Choi et al. in [10]. Kamarujjama et al. [11] introduced and studied the extended multi-index Bessel function. Suthar et al. [12] discussed a large number of results for the generalized multi-index Bessel function. Recently, many authors worked on generalized multi-index Bessel functions [13,14,15]. We describe extension of extended generalized multi-index Bessel function (E1GMBF) which is generalized version of generalized multi-index Bessel function.

    Definition 1.1. [11] Kamarujjama et al. introduced and studied the extended generalized multi-index Bessel function, defined as:

    J(αj)m,γ,c(βj)m,k,b,δ(z)=n=0(γ)kn(cz)n(δ)nmj=1Γ(αjn+βj+1+b2),mN. (1.1)

    where αj,βj,b,δ,γ,cC (j=1,2m) be such that mj=1(αj)>max{0;(k)1}; k>0, (βj)>1, (γ)>0, (δ)>0.

    Definition 1.2. [16] Generalized fractional integral operator is defined for α,ˊα,β,ˊβ,λC, and x>0 as follows:

    Iα,ˊα,β,ˊβ,λ0+f(t)=xαΓ(λ)x0(xt)λ1tˊαF3(α,ˊα,β,ˊβ;λ;1tx;1xt)f(t)dt, (1.2)

    and

    Iα,ˊα,β,ˊβ,λf(t)=xˊαΓ(λ)x(tx)λ1tαF3(α,ˊα,β,ˊβ;λ;1xt;1tx)f(t)dt. (1.3)

    where F3 is the Appell function.

    Definition 1.3. [17] Appell function F3 also called the (Horn function) and defined for α,ˊα,β,ˊβ,λC, as follows:

    F3(α,ˊα,β,ˊβ;λ;x;y)=m,n=0(α)m(ˊα)n(β)m(ˊβ)n(λ)m+nm!n!xmyn,max{|x|,|y|}<1 (1.4)

    Definition 1.4. [18,19] The integral representation of gamma function is defined for (s)>0, as follows:

    Γ(s)=0us1eudu. (1.5)

    Definition 1.5. [18,19] Classical beta function is defined for (x)>0 and (y)>0, as follows:

    B(x,y)=10tx1(1t)y1dt (1.6)
    =Γ(x)Γ(y)Γ(x+y). (1.7)

    Definition 1.6. [20,21] Extended beta function is defined for (x)>0, (y)>0, (p)>0 as follows:

    Bp(x,y)=10tx1(1t)y1exp(pt(1t))dt, (1.8)

    if p=0, then extended beta function Bp(x,y) reduces into the classical beta function.

    Definition 1.7. [22] Generalized Wright type hypergeometric function is defined as follows:

    rψs(z)=rψs[(yj,hj)1,r(xi,qi)1,s|z]n=0rj=1Γ(yj+hjn)si=1Γ(xi+qin)znn!. (1.9)

    where zC, yj,xiC and hj,qi (j=1,2r;i=1,2s).

    Definition 1.8. [23] Laplace transform is defined (s)>0, as follows:

    Ł[f(t)]=f(s)=0estf(t)dt. (1.10)

    Definition 1.9. [24] Euler transform of a function f(z) is defined as follows:

    B{f(z);a,b}=10za1(1z)b1f(z)dz((a)>0,(b)>0). (1.11)

    Definition 1.10. [24] Mellin transform of the function f(z) is defined as follows:

    M{f(z);s}=0zs1f(z)dz=f(s),(s)>0, (1.12)

    then inverse Mellin transform

    f(z)=M1[f(s);z]=12πiλ+iλifzsds,λ>0. (1.13)

    Definition 1.11. The Pochhammer symbol defined as

    (δ)n={1,n=0δ(δ+1)(δ+2)(δ+n1),n=1,2 (1.14)

    or

    (δ)n=Γ(δ+n)Γ(δ) (1.15)
    (δ)kn=Γ(δ+kn)Γ(δ), (1.16)

    where δC and n,kN.

    Definition 1.12. The E1GMBF J(αj)m,γ,c(βj)m,k,b,δ(z) is defined in the following way:

    Jc,b,δ(γ,d);k[(αj,βj)m;(z;p)]=Jk,c,(γ,d);kδ,b,(αj,βj)m(z;p)=n=0Bp(γ+kn,dγ)B(γ,dγ)cn(d)kn(z)n(δ)nmj=1Γ(αjn+βj+1+b2). (1.17)

    where αj,βj,b,d,δ,γ,cC (j=1,2m), p0 be such that mj=1(αj)>max{0;(k)1}; k>0, (βj)>1, (d)>0, (γ)>0, (δ)>0.

    Remark 1.1. The E1GMBF can also be write as

    Jc,b,δ(γ,d);k[(αj,βj)m;(z;p)]=Jb,δ(γ,d);k[(αj,βj)m;(cz;p)]. (1.18)

    In this section, we establish some particular special cases of E1GMBF as below

    ● if we set p=0, then E1GMBF reduce into extended multi-index Bessel function

    Jc,b,δγ;k[(αj,βj)m;(z)]=J(αj)m,γ,c(βj)m,k,b,δ(z)=n=0(c)n(γ)kn(z)n(δ)nmj=1Γ(αjn+βj+1+b2). (2.1)

    ● when p=0, c=b=δ=1, then

    J1,1,1γ;k[(αj,βj)m;(z)]=J(αj)m,γ(βj)m,k(z)=n=0(γ)kn(z)nn!mj=1Γ(αjn+βj+1). (2.2)

    ● if we put p=0, c=b=δ=m=1, then E1GMBF reduce to the generalized Bessel-Maitland function as,

    J1,1,1γ;k[(α,β);(z)]=Jα,γβ,k(z)=n=0(γ)kn(z)nn!Γ(αn+β+1). (2.3)

    ● when p=0, k=0, δ=c=b=1, then E1GMBF reduce to the Bessel-Maitland function as given below

    J1,1,1γ[(α,β);(z)]=Jαβ(z)=n=0(z)nn!Γ(αn+β+1). (2.4)

    ● if we put p=0, c=δ=1, z=z and set βj=βj1, then E1GMBF reduce to the multi-index Mittag Leffler function as given below

    J1,b,1γ;k[(αj,βj)m;(z)]=Eγ,k[(αj,β)j)mj=1]=n=0(γ)knmj=1(αjn+βj)znn!. (2.5)

    ● if we set p=k=0, b=c=m=1, α1=δ=1, β1=ν and replace z=z24 then E1GMBF reduce into Bessel function of fist kind

    J1,1,1γ;0[(1,ν)m;(z24)]=n=0(z)nn!Γ(n+ν+1). (2.6)

    In this section, we investigate the E1GMBF, and studied some important observations. Moreover, we develop integral and differential of E1GMBF in the form of theorems.

    Theorem 3.1. The E1GMBF can be able to represent with αj,βj,b,δ,γ,cC (j=1,2m) be such that mj=1(αj)>max{0;(k)1}; k>0, (βj)>1, (γ)>0, (δ)>0 then following relation holds

    Jk,c,(γ,d);kδ,b,(αj,βj)m(z;p)=1B(γ,dγ)10tγ1(1t)dγ1ept(1t)J(αj)m,γ,c(βj)m,k,b,δ(tkz)dt. (3.1)

    Proof. Using the definition of Eq (1.8) in (1.17), we obtain

    Jk,c,(γ,d);kδ,b,(αj,βj)m(z;p)=n=0{10tγ+kn1(1t)dγ1ept(1t)}×cn(d)kn(z)nB(γ,dγ)(δ)nmj=1Γ(αjn+βj+1+b2)dt. (3.2)

    Changing the order of summation and integration, and after simplification of Eq (3.2), we get

    Jk,c,(γ,d);kδ,b,(αj,βj)m(z;p)=1B(γ,dγ)10tγ1(1t)dγ1ept(1t)n=0cn(d)kn(tkz)n(δ)nmj=1Γ(αjn+βj+1+b2)dt. (3.3)

    Using Eq (1.1) in Eq (3.3), we obtain the desired result in theorem 3.1.

    Corollary 3.1. Let αj,βj,b,δ,γ,cC (j=1,2m) be such that mj=1(αj)>max{0;(k)1}; k>0, (βj)>1, (γ)>0, (δ)>0. Taking t=r1+r in theorem 3.1, then following relation holds

    Jk,c,(γ,d);kδ,b,(αj,βj)m(z;p)=1B(γ,dγ)0rγ1(1+r)dep(1+r)2rJ(αj)m,γ,c(βj)m,k,b,δ(rkz(1+r)k)dr. (3.4)

    Corollary 3.2. Let αj,βj,b,δ,γ,cC (j=1,2m) be such that mj=1(αj)>max{0;(k)1}; k>0, (βj)>1, (γ)>0, (δ)>0 and consider t=cos2θ in theorem 3.1, then following relation holds

    Jk,c,(γ,d);kδ,b,(αj,βj)m(z;p)=2B(γ,dγ)π20(cosθ)2γ1(sinθ)2d2γ1exp(psin2θcos2θ)×J(αj)m,γ,c(βj)m,k,b,δ(zcos2kθ)dθ. (3.5)

    Theorem 3.2. Let α,β,b,δ,γ,cC be such that (α)>max{0;(k)1}; k>0, (β)>1, (γ)>0, (δ)>0, then the following recurrence relation holds in the definition (1.17) for j=1 as

    Jk,c,(γ,d);kδ,b,α,β(z;p)=(β+b+12)Jk,c,(γ,d);kδ,b,α,β+1(z;p)+αzddzJk,c,(γ,d);kδ,b,(α,β+1)(z;p). (3.6)

    Proof. Consider the definition of (1.17) for j=1, and the right side of the Eq (3.6), we get

    (β+b+12)Jk,c,(γ,d);kδ,b,(α,β+1)(z;p)+αzddzJk,c,(γ,d);kδ,b,(α,β+1)(z;p)=(β+b+12)n=0Bp(γ+kn,dγ)B(γ,dγ)cn(d)kn(z)n(δ)nΓ(αn+β+1+1+b2)+αzddzn=0Bp(γ+kn,dγ)B(γ,dγ)cn(d)kn(z)n(δ)nΓ(αn+β+1+1+b2)=n=0Bp(γ+kn,dγ)B(γ,dγ)cn(d)kn(δ)n×[(β+b+12)(z)nΓ(αn+β+1+1+b2)+αzddz(z)nΓ(αn+β+1+1+b2)]=n=0Bp(γ+kn,dγ)B(γ,dγ)cn(d)kn(z)n(αn+β+1+b2)(δ)nΓ(αn+β+1+1+b2)=n=0Bp(γ+kn,dγ)B(γ,dγ)cn(d)kn(z)n(δ)nΓ(αn+β+1+b2)=Jk,c,(γ,d);kδ,b,(α,β)(z;p) (3.7)

    Theorem 3.3. For the E1GMBF we have the following higher derivative formula for δ=1, is given below

    dndznJk,c,(γ,d);k1,b,(αj,βj)m(z;p)=(c)n(d)k(d+k)k(d+(n1)k)kJk,c,(γ+kn,d+kn);k1,b,(αj,βj+αjn)m(z;p). (3.8)

    where αj,βj,b,γ,cC (j=1,2m) be such that mj=1(αj)>max{0;(k)1}; k>0, (βj)>1, (γ)>0.

    Proof. Differentiation with respect to z in Eq (1.17), we get

    ddzJk,c,(γ,d);k1,b,(αj,βj)m(z;p)=n=1Bp(γ+kn,dγ)B(γ,dγ)cn(d)kn(1)nnzn1n!mj=1Γ(αjn+βj+1+b2)=n=1Bp(γ+k(n1)+k,dγ)B(γ,dγ)(c)n(d)k(n1)+knzn1n(n1)!mj=1Γ(αjn+βj+1+b2) (3.9)

    we can write the pochhammer symbols as

    (d)k(n1)+k=Γ(d+k(n1)+k)Γ(d)=Γ(d+k(n1)+k)Γ(d+k)Γ(d+k)Γ(d)=(d+k)(n1)k(d)k. (3.10)

    Now, using the Eq (3.10) in Eq (3.9), we have

    ddzJk,c,(γ,d);k1,b,(αj,βj)m(z;p)=(c)(d)kn=1Bp(γ+k+k(n1),dγ)(c)n1(d+k)k(n1)zn1B(γ,dγ)(n1)!mj=1Γ(αj(n1)+αj+βj+1+b2)=(c)(d)kJk,c,(γ+k,d+k);k1,b,(αj,βj+αj)m(z;p). (3.11)

    Again differentiation with respect to z in Eq (3.9), we have

    d2dz2Jk,c,(γ,d);k1,b,(αj,βj)m(z;p)=(c)2(d)k(d+k)kJk,c,(γ+2k,d+2k);k1,b,(αj,βj+2αj)m(z;p),

    continue this technique up to n times, we obtain the desired result which state in the theorem 3.3.

    Theorem 3.4. Let αj,βj,d,γ,c,λC (j=1,2m), p0 be such that mj=1(αj)>max{0;(k)1}; k>0, (βj)>0, (d)>0, (γ)>0, (δ)>0 then the following relation holds as:

    dndzn{zβ1βm1Jk,c,(γ,d);k1,1,(αj,βj)m(λzα1αm;p)}=Jk,c,(γ,d);k1,1,(αj,βjn)m(λzα1αm;p)znβ1βm+1. (3.12)

    Proof. Replacing z by λzαjαj, b=1 and δ=1 in Eq (1.17), take its product zβ1βj, and after taking differentiation with respect to z up to n times, we obtain our required result.

    In this section, we establish some integral transforms (Euler, Mellin and Laplace transform) of E1GMBF in the form of theorems, and also discuss its sub cases.

    Theorem 4.1. Euler transform of E1GMBF holds for αj,βj,b,δ,γ,cC (j=1,2m) be such that mj=1(αj)>max{0;(k)1}; k>0, (βj)>1, (γ)>0, (δ)>0.

    B{Jk,c,(γ,d);kδ,1,(αj,βj)m(λzαj;p);β1βm,1}=Jk,c,(γ,d);kδ,1,(αj,βj+1)m(λ;p). (4.1)

    Proof. Apply the definition of Euler transform (1.9) in Eq (1.17), we get

    B{Jk,c,(γ,d);kδ,1,(αj,βj)m(λzαj;p);β1βm,1}=10zβ1βm1(1z)11n=0Bp(γ+kn,dγ)B(γ,dγ)×cn(d)kn(1)n(λzαj)n(δ)nmj=1Γ(αjn+βj)dz. (4.2)

    Interchanging the order of summations and integration in Eq (4.2), we get

    B{Jk,c,(γ,d);kδ,1,(αj,βj)m(λzαj;p);β1βm,1}=n=0Bp(γ+kn,dγ)B(γ,dγ)cn(d)kn(λ)n(δ)nmj=1Γ(αjn+βj)×10zβ1βm+αjn1(1z)11dz. (4.3)

    Using the Eq (1.6) and Eq (1.7) in Eq (4.3), then we obtain

    B{Jk,c,(γ,d);kδ,1,(αj,βj)m(λzαj;p);β1βm,1}=n=0Bp(γ+kn,dγ)cn(d)kn(λ)nB(γ,dγ)(δ)nmj=1Γ(αjn+βj+1)=Jk,c,(γ,d);kδ,1,(αj,βj+1)m(λ;p). (4.4)

    Theorem 4.2. The Mellin transform of E1GMBF is given by for αj,βj,b,δ,γ,cC (j=1,2m) be such that mj=1(αj)>max{0;(k)1}; k>0, (βj)>1, (γ)>0, (δ)>0. Then the following relation holds

    M{Jk,c,(γ,d);kδ,b,(αj,βj)m(z;p);s}=Γ(s)Γ(δ)Γ(d)Γ(dγ+s)[Γ(γ)]2Γ(dγ)3ψm+2[(γ,k)(γ+s,k)(1,1)(δ,1)(d+2s,k)(βj+1+b2,αj)|mj=1|cz].

    Proof. By applying the definition of the Mellin transform to the E1GMBF, we have

    M{Jk,c,(γ,d);kδ,b,(αj,βj)m(z;p);s}=0ps1Jk,c,(γ,d);kδ,b,(αj,βj)m(z;p)dp. (4.5)

    Using theorem 3.1 in right side of Eq (4.5), we get

    M{Jk,c,(γ,d);kδ,b,(αj,βj)m(z;p);s}=1B(γ,dγ)0ps1{10tγ1(1t)dγ1ept(1t)J(αj)m,γ,c(βj)m,k,b,δ(tkz)dt}dp. (4.6)

    Interchanging the order of integration in Eq (4.6), then we have

    M{Jk,c,(γ,d);kδ,b,(αj,βj)m(z;p);s}=1B(γ,dγ)10tγ1(1t)dγ1J(αj)m,γ,c(βj)m,k,b,δ(tkz){0ps1ept(1t)dp}dt. (4.7)

    Now, putting pt(1t)=u in Eq (4.7), and applying the mathematical formula of Eq (1.5), we get

    M{Jk,c,(γ,d);kδ,b,(αj,βj)m(z;p);s}=Γ(s)B(γ,dγ)10tγ+s1(1t)dγ+s1J(αj)m,γ,c(βj)m,k,b,δ(tkz)dt. (4.8)

    Using Eq (1.1), and interchanging the order of integration and summation in Eq (4.8), we obtain

    M{Jk,c,(γ,d);kδ,b,(αj,βj)m(z;p);s}=Γ(s)B(γ,dγ)n=0(c)n(γ)kn(z)n(δ)nmj=1Γ(αjn+βj+1+b2)10tγ+s+kn1(1t)dγ+s1dt. (4.9)

    Using Eq (1.6) and Eq (1.7) in Eq (4.9), we get

    M{Jk,c,(γ,d);kδ,b,(αj,βj)m(z;p);s}=Γ(s)B(γ,dγ)n=0(c)n(γ)kn(z)n(δ)nmj=1Γ(αjn+βj+1+b2)Γ(γ+s+kn)Γ(dγ+s)Γ(2s+kn+d). (4.10)

    After simplification in Eq (4.10), we get

    M{Jk,c,(γ,d);kδ,b,(αj,βj)m(z;p);s}=Γ(s)Γ(δ)Γ(d)Γ(dγ+s)[Γ(γ)]2Γ(dγ)n=0Γ(γ+kn)(cz)nΓ(δ+n)mj=1Γ(αjn+βj+1+b2)Γ(γ+s+kn)Γ(2s+kn+d)=Γ(s)Γ(δ)Γ(d)Γ(dγ+s)[Γ(γ)]2Γ(dγ)3ψm+2[(γ,k)(γ+s,k)(1,1)(δ,1)(d+2s,k)(βj+1+b2,αj)|mj=1|cz].

    Corollary 4.1. Let αj,βj,b,δ,γ,cC (j=1,2m) be such that mj=1(αj)>max{0;(k)1}; k>0, (βj)>1, (γ)>0, (δ)>0. Taking s=1 in theorem 4.2, then the following relation holds

    0Jk,c,(γ,d);kδ,b,(αj,βj)m(z;p)dp=(dγ)Γ(δ)Γ(γ)3ψm+2[(γ,k)(γ+1,k)(1,1)(δ,1)(d+2,k)(βj+1+b2,αj)|mj=1|cz]. (4.11)

    Corollary 4.2. Let αj,βj,b,δ,γ,cC (j=1,2m) be such that mj=1(αj)>max{0;(k)1}; k>0, (βj)>1, (γ)>0, (δ)>0. Applying the inverse Mellin transform on left and right side of Eq (1.17), we gain the important complex integral representation as follows:

    M1{Jk,c,(γ,d);kδ,b,(αj,βj)m(z;p);s}=12πiΓ(γ)Γ(dγ)λ+iλiΓ(s)Γ(δ)Γ(dγ+s)×3ψm+2[(γ,k)(γ+s,k)(1,1)(δ,1)(d+2s,k)(βj+1+b2,αj)|mj=1|cz]psds. (4.12)

    Theorem 4.3. The Laplace transform of E1GMBF is given as for αj,βj,b,δ,γ,cC (j=1,2m) be such that mj=1(αj)>max{0;(k)1}; k>0, (βj)>1, (γ)>0, (δ)>0.

    Ł(Jk,c,(γ,d);k1,b,(αj,βj)m(z;p))=1sJk,c,(γ,d);k1,b,(αj,βj)m(1s;p). (4.13)

    Proof. Using the definition of Laplace transform (1.8) in Eq (1.17), we have

    Ł(Jk,c,(γ,d);k1,b,(αj,βj)m(z;p))=0estn=0Bp(γ+kn,dγ)B(γ,dγ)cn(d)kn(t)nn!mj=1Γ(αjn+βj+1+b2)dt=n=0Bp(γ+kn,dγ)B(γ,dγ)cn(d)kn(1)nn!mj=1Γ(αjn+βj+1+b2)0esttndt=n=0Bp(γ+kn,dγ)B(γ,dγ)cn(d)kn(1)nn!mj=1Γ(αjn+βj+1+b2)n!sn+1=1sn=0Bp(γ+kn,dγ)B(γ,dγ)cn(d)kn(s)nmj=1Γ(αjn+βj+1+b2)=1sJk,c,(γ,d);k1,b,(αj,βj)m(1s;p). (4.14)

    In this section, the authors represent the E1GMBF in terms of Laguerre polynomial, and Whittaker function in the form of theorems.

    Theorem 5.1. Let αj,βj,b,d,δ,γ,cC (j=1,2m), p0 be such that mj=1(αj)>max{0;(k)1}; k>0, (βj)>0, (d)>0, (γ)>0, (δ)>0, then the E1GMBF holds

    e2pJk,c,(γ,d);kδ,b,(αj,βj)m(z;p)=Γ(δ)a,b=0Lb(p)La(p)Γ(b+dγ+1)Γ(γ)B(γ,dγ)×3ψm+2[(γ,k)(a+γ+1,k)(1,1)(δ,1)(a+b+d+2,k)(βj+1+b2,αj)|mj=1|cz]. (5.1)

    Proof. We being recalling the valuable identity [25] which is

    ept(1t)=e2pa,b=0Lb(p)La(p)ta+1(1t)b+1,(0<t<1). (5.2)

    Applying Eq (5.2) in theorem 3.1, we get

    Jk,c,(γ,d);kδ,b,(αj,βj)m(z;p)=1B(γ,dγ)10tγ1(1t)dγ1e2pa,b=0Lb(p)La(p)ta+1(1t)b+1J(αj)m,γ,c(βj)m,k,b,δ(tkz)dt=1B(γ,dγ)10tγ1(1t)dγ1e2pa,b=0Lb(p)La(p)ta+1(1t)b+1×n=0(c)n(γ)kn(tkz)n(δ)nmj=1Γ(αjn+βj+1+b2)dt. (5.3)

    Interchanging the order of integration and summations in Eq (5.3), we obtain

    Jk,c,(γ,d);kδ,b,(αj,βj)m(z;p)=e2pB(γ,dγ)a,b,n=0Lb(p)La(p)(γ)kn(cz)n(δ)nmj=1Γ(αjn+βj+1+b2)10ta+kn+γ(1t)b+dγdt. (5.4)

    Using Eq (1.6) and Eq (1.7) in Eq (5.4), then we have

    e2pJk,c,(γ,d);kδ,b,(αj,βj)m(z;p)=1B(γ,dγ)a,b,n=0Lb(p)La(p)(γ)kn(cz)n(δ)nmj=1Γ(αjn+βj+1+b2)Γ(a+kn+γ+1)Γ(b+dγ+1)Γ(a+b+d+kn+2)=Γ(δ)a,b=0Lb(p)La(p)Γ(b+dγ+1)Γ(γ)B(γ,dγ)×3ψm+2[(γ,k)(a+γ+1,k)(1,1)(δ,1)(a+b+d+2,k)(βj+1+b2,αj)|mj=1|cz]. (5.5)

    Theorem 5.2. For the E1GMBF with αj,βj,b,δ,γ,cC (j=1,2m) be such that mj=1(αj)>max{0;(k)1}; k>0, (βj)>1, (γ)>0, (δ)>0, we have

    e3p2Jk,c,(γ,d);kδ,b,(αj,βj)m(z;p)=epB(γ,dγ)a,n=0La(p)(δ)kn(cz)n(δ)nmj=1Γ(αjn+βj+b+12)×Γ(dγ+1)pγ+kn2W1+γ2dkn2,γ+kn2. (5.6)

    Proof. Allowing for the following equality ept(1t)=e(p1t)e(pt) and via generating function related to the Laguerre polynomial [25], we obtain

    ept(1t)=epept(1t)a=0La(p)tn. (5.7)

    Using Eq (5.7) in Eq (1.17), we have

    Jk,c,(γ,d);kδ,b,(αj,βj)m(z;p)=1B(γ,dγ)10tγ1(1t)dγ1epept(1t)a=0La(p)tnJ(αj)m,γ,c(βj)m,k,b,δ(tkz)dt=epB(γ,dγ)a,n=0La(p)(δ)kn(cz)n(δ)nmj=1Γ(αjn+βj+b+12)10tγ+kn1(1t)dγeptdt. (5.8)

    Now, integral representation of Whittaker function is defined [26] as follows

    10tμ1(1t)ν1eptdt=Γ(ν)pμ12ep2W1μ2ν2,μ2(p). (5.9)

    Using Eq (5.9) in Eq (5.8), then we have

    Jk,c,(γ,d);kδ,b,(αj,βj)m(z;p)=epB(γ,dγ)a,n=0La(p)(δ)kn(cz)n(δ)nmj=1Γ(αjn+βj+b+12)×Γ(dγ+1)pγ+kn2ep2W1+γ2dkn2,γ+kn2. (5.10)

    Theorem 5.3. Let αj,βj,b,d,δ,γ,σ,η,cC (j=1,2m), p0 be such that mj=1(αj)>max{0;(k)1}; k>0, (βj)>0, (d)>0, (γ)>0, (δ)>0 the E1GMBF holds

    (Iα,ˊα,β,ˊβ,λ0+Jc,b,δ(γ,d);k[(αj,βj)m;(tσ+η;p)])(x)=n=0Bp(γ+kn,dγ)(c)nxσnηn+αλ+ˊαΓ[(d+kn)(δ)(λˊασn+ηnαβ+1)(γ)(dγ)(δ+n)(λˊασn+ηnβ+1)×(1ˊασn+ηn+ˊβ)(1σn+ηn)(1σn+ηn+ˊβ)(λˊασn+ηnα+1)(αjn+βj+1+b2)|mj=1].

    Proof. Consider the composition of generalized fractional integral operator having Appell function as its kernel with the E1GMBF,

    (Iα,ˊα,β,ˊβ,λ0+Jc,b,δ(γ,d);k[(αj,βj)m;(tσ+η;p)])(x)=xαΓ(λ)x0(xt)λ1tˊαF3(α,ˊα,β,ˊβ;λ;1tx;1xt)n=0Bp(γ+kn,dγ)B(γ,dγ)×cn(d)kn(1)ntσn+ηn(δ)nmj=1Γ(αjn+βj+1+b2)dt=xα+λ1Γ(λ)Jk,c,(γ,d);kδ,b,(αj,βj)m(1;p)|n=0x0(1tx)λ1tˊασn+ηnm,s=0(α)m(ˊα)s(β)m(ˊβ)sλm+sm!s!×(1tx)m(1xt)sdt=xα+λ1Γ(λ)Jk,c,(γ,d);kδ,b,(αj,βj)m(1;p)|n=0m,s=0(α)m(ˊα)s(β)m(ˊβ)sλm+sm!s!x0(1tx)m+λ1×(1xt)stˊασn+ηndt. (5.11)

    Putting these values tx=τ dτ=xdt, t=xτ=1 and t=0τ=0 in Eq (5.11), then we have

    (Iα,ˊα,β,ˊβ,λ0+Jc,b,δ(γ,d);k[(αj,βj)m;(tσ+η;p)])(x)=xα+λ1Γ(λ)Jk,c,(γ,d);kδ,b,(αj,βj)m(1;p)|n=0m,s=0(α)m(ˊα)s(β)m(ˊβ)sλm+sm!s!10(1τ)m+λ1×(11τ)s(xτ)ˊασn+ηnxdτ=xαˊα+λΓ(λ)Jk,c,(γ,d);kδ,b,(αj,βj)m(xηxσ;p)|n=0m,s=0(α)m(ˊα)s(β)m(ˊβ)s(1)sλm+sm!s!10(1τ)s+m+λ1×τˊασn+ηnsdτ. (5.12)

    Using Eqs (1.6) and (1.7) in Eq (5.12), we obtain

    (Iα,ˊα,β,ˊβ,λ0+Jc,b,δ(γ,d);k[(αj,βj)m;(tσ+η;p)])(x)xα+λˊαJk,c,(γ,d);kδ,b,(αj,βj)m(xηxσ;p)|n=0=m,s=0(α)m(ˊα)s(β)m(ˊβ)s(1)sλm+sm!s!Γ(s+m+λ)Γ(ˊασn+ηns+1)Γ(λ)Γ(m+λˊασn+ηn+1)=Γ(ˊασn+ηn+1)Γ(λˊασn+ηn+1)m=0(α)m(β)m(λˊασn+ηn+1)mm!s=0(ˊα)s(ˊβ)s(ˊα+σnηn)ss!=Γ(ˊασn+ηn+1)Γ(λˊασn+ηnαβ+1)Γ(ˊα+σnηn)Γ(σnηnˊβ)Γ(λˊασn+ηnα+1)Γ(λˊασn+ηnβ+1)Γ(σnηn)Γ(ˊα+σnηnˊβ)=Γ(λˊασn+ηnαβ+1)Γ(1ˊασn+ηn+ˊβ)Γ(1σn+ηn)Γ(λˊασn+ηnα+1)Γ(λˊασn+ηnβ+1)Γ(1σn+ηn+ˊβ). (5.13)

    we have the required result

    (Iα,ˊα,β,ˊβ,λ0+Jc,b,δ(γ,d);k[(αj,βj)m;(tσ+η;p)])(x)=n=0Bp(γ+kn,dγ)(c)nxσnηn+αλ+ˊαΓ[(d+kn)(δ)(λˊασn+ηnαβ+1)(γ)(dγ)(δ+n)(λˊασn+ηnβ+1)×(1ˊασn+ηn+ˊβ)(1σn+ηn)(1σn+ηn+ˊβ)(λˊασn+ηnα+1)(αjn+βj+1+b2)|mj=1].

    Theorem 5.4. Let αj,βj,b,d,δ,γ,σ,η,cC (j=1,2m), p0 be such that mj=1(αj)>max{0;(k)1}; k>0, (βj)>0, (d)>0, (γ)>0, (δ)>0, then the E1GMBF holds true:

    (Iα,ˊα,β,ˊβ,λJc,b,δ(γ,d);k[(αj,βj)m;(tσdη+b;p)])(x)=n=0Bp(γ+kn,dγ)(c)nxσnηn+αλ+ˊαΓ[(d+kn)(δ)((dσ)n(η+b)nβ)((dσ)n(η+b)n+αλ+ˊβ)(γ)(dγ)(δ+n)((dσ)n(η+b)n)((dσ)n(η+b)n+αβ)×((dσ)n(η+b)n+αλ+ˊα)((dσ)n(η+b)n+αλ+ˊα+ˊβ)(αjn+βj+1+b2)|mj=1].

    Proof. Consider the composition of right side generalized fractional integral operator with the E1GMBF \newpage

    (Iα,ˊα,β,ˊβ,λJc,b,δ(γ,d);k[(αj,βj)m;(tσdη+b;p)])(x)=xˊαΓ(λ)x(tx)λ1tαF3(α,ˊα,β,ˊβ;λ;1xt;1tx)n=0Bp(γ+kn,dγ)B(γ,dγ)×cn(d)kn(1)ntσndnηn+bn(δ)nmj=1Γ(αjn+βj+1+b2)dt=xˊαΓ(λ)Jk,c,(γ,d);kδ,b,(αj,βj)m(1;p)|n=0x(1xt)λ1t(σd)n(η+b)nα+λ1m,s=0(α)m(ˊα)s(β)m(ˊβ)sλm+sm!s!×(1xt)m(1tx)sdt=xˊαΓ(λ)Jk,c,(γ,d);kδ,b,(αj,βj)m(1;p)|n=0m,s=0(α)m(ˊα)s(β)m(ˊβ)sλm+sm!s!x(1xt)λ+m1(1tx)s×t(σd)n(η+b)nα+λ1dt. (5.14)

    Putting these values xt=u xu2du=dt, t=xu=1 and t=u=0 in Eq (5.14), then we have

    (Iα,ˊα,β,ˊβ,λJc,b,δ(γ,d);k[(αj,βj)m;(tσdη+b;p)])(x)xˊαΓ(λ)Jk,c,(γ,d);kδ,b,(αj,βj)m(1;p)|n=0=m,s=0(α)m(ˊα)s(β)m(ˊβ)sλm+sm!s!01(1u)λ+m1(11u)s(xu)(σd)n(η+b)nα+λ1(xu2)du=m,s=0(α)m(ˊα)s(β)m(ˊβ)s(1)sλm+sm!s!x(σd)n(η+b)nα+λ10(1u)λ+m+s1u(dσ)n(η+b)n+αλs1du. (5.15)

    Using Eqs (1.6) and (1.7) in Eq (5.15), we have

    (Iα,ˊα,β,ˊβ,λJc,b,δ(γ,d);k[(αj,βj)m;(tσdη+b;p)])(x)xˊα+λαJk,c,(γ,d);kδ,b,(αj,βj)m(xσdη+b;p)|n=0=m,s=0(α)m(ˊα)s(β)m(ˊβ)s(1)sλm+sm!s!Γ(λ+m+s)Γ((dσ)n(η+b)n+αλs)Γ(λ)Γ((dσ)n(η+b)n+α+m)=Γ((dσ)n(η+b)n+αλ)Γ((dσ)n(η+b)n+α)m=0(α)m(β)m((dσ)n(η+b)n+α)mm!s=o(ˊα)s(ˊβ)s(1(dσ)n(η+b)nα+λ)ss!=Γ((dσ)n(η+b)n+αλ)Γ((dσ)n(η+b)nβ)Γ((dσ)n(η+b)n)Γ((dσ)n(η+b)n+αβ)Γ(1(dσ)n(η+b)nα+λ)Γ(1(dσ)n(η+b)nα+λˊαˊβ)Γ(1(dσ)n(η+b)nα+λˊα)Γ(1(dσ)n(η+b)nα+λˊβ)=Γ((dσ)n(η+b)nβ)Γ((dσ)n(η+b)n+αλ+ˊβ)Γ((dσ)n(η+b)n+αλ+ˊα)Γ((dσ)n(η+b)n)Γ((dσ)n(η+b)n+αβ)Γ((dσ)n(η+b)n+αλ+ˊα+ˊβ).

    We have a desired result

    (Iα,ˊα,β,ˊβ,λJc,b,δ(γ,d);k[(αj,βj)m;(tσdη+b;p)])(x)=n=0Bp(γ+kn,dγ)(c)nxσnηn+αλ+ˊαΓ[(d+kn)(δ)((dσ)n(η+b)nβ)((dσ)n(η+b)n+αλ+ˊβ)(γ)(dγ)(δ+n)((dσ)n(η+b)n)((dσ)n(η+b)n+αβ)×((dσ)n(η+b)n+αλ+ˊα)((dσ)n(η+b)n+αλ+ˊα+ˊβ)(αjn+βj+1+b2)|mj=1].

    In this research, we described extension of extended generalized multi-index Bessel function (E1GMBF) and developed some results with the Laguerre polynomial and Whittaker function, integral representation, derivatives and solved integral transforms (beta transform, Laplace transform, Mellin transforms). Moreover, we discussed the composition of the generalized fractional integral operator having Appell function as a kernel with the E1GMBF and obtained results in terms of Wright functions.

    The authors declare that they have no competing interests.



    Use of AI tools declaration



    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    Conflict of interest



    The authors declare no conflict of interest.

    [1] Khungar PN, Dahane TM, Revankar RP, et al. (2020) Customized treatment option for malpositioned dental implant placed in aesthetic zone. J Evolution Med Dent Sci 9: 2930-2934. https://doi.org/10.14260/jemds/2020/642
    [2] Kochar SP, Reche A, Paul P (2022) The etiology and management of dental implant failure: a review. Cureus 14: e30455. https://doi.org/10.7759/cureus.30455
    [3] Moraschini V, Poubel LD, Ferreira VF, et al. (2015) Evaluation of survival and success rates of dental implants reported in longitudinal studies with a follow-up period of at least 10 years: a systematic review. Int J Oral Max Surg 44: 377-388. https://doi.org/10.1016/j.ijom.2014.10.023
    [4] Hjalmarsson L, Gheisarifar M, Jemt T (2016) A systematic review of survival of single implants as presented in longitudinal studies with a follow-up of at least 10 years. Eur J Oral Implantol 9: S155-S162.
    [5] Jung RE, Zembic A, Pjetursson BE, et al. (2012) Systematic review of the survival rate and the incidence of biological, technical, and aesthetic complications of single crowns on implants reported in longitudinal studies with a mean follow-up of 5 years. Clin Oral Implants Res 23: 2-21. https://doi.org/10.1111/j.1600-0501.2012.02547.x
    [6] Pjetursson BE, Thoma D, Jung R, et al. (2012) A systematic review of the survival and complication rates of implant-supported fixed dental prostheses (FDP s) after a mean observation period of at least 5 years. Clin Oral Implants Res 23: 22-38. https://doi.org/10.1111/j.1600-0501.2012.02546.x
    [7] Raikar S, Talukdar P, Kumari S, et al. (2017) Factors affecting the survival rate of dental implants: a retrospective study. J Int Soc Prev Community Dent 7: 351-355. https://doi.org/10.4103/jispcd.JISPCD_380_17
    [8] Do TA, Le HS, Shen YW, et al. (2020) Risk factors related to late failure of dental implant—A systematic review of recent studies. Int J Environ Res Public Health 17: 3931. https://doi.org/10.3390/ijerph17113931
    [9] Rail R, Tabassum A, Prema AG (2019) Implant failures–a review. Int J Sci Res 8: 547-552.
    [10] El Askary AS, Meffert RM, Griffin T (1999) Why do dental implants fail? Part I. Implant Dent 8: 173-185. https://doi.org/10.1097/00008505-199908020-00011
    [11] Truhlar RS (1998) Peri-implantitis: causes and treatment. Oral Maxil Surg Clin 10: 299-308. https://doi.org/10.1016/S1042-3699(20)30332-0
    [12] Misch K, Wang HL (2008) Implant surgery complications: etiology and treatment. Implant Dent 17: 159-168. https://doi.org/10.1097/ID.0b013e3181752f61
    [13] Prashanti E, Sajjan S, Reddy JM (2011) Failures in implants. Indian J Dent Res 22: 446-453. https://doi.org/10.4103/0970-9290.87069
    [14] Ardekian L, Dodson TB (2003) Complications associated with the placement of dental implants. Oral Maxil Surg Clin 15: 243-249. https://doi.org/10.1016/S1042-3699(03)00014-1
    [15] Jo KH, Yoon KH, Park KS, et al. (2011) Thermally induced bone necrosis during implant surgery: 3 case reports. J Korean Assoc Oral Maxillofac Surg 37: 406-414. https://doi.org/10.5125/jkaoms.2011.37.5.406
    [16] Patil SS, Arunachaleshwar S, Balkunde, et al. (2015) Complications of immediate implant placement and its management: a review article. Int J Curr Med Appl Sci 8: 78-80.
    [17] Annibali S, Ripari M, La Monaca G, et al. (2008) Local complications in dental implant surgery: prevention and treatment. Oral Implantol 1: 21-33.
    [18] Goodacre CJ, Bernal G, Rungcharassaeng K, et al. (2003) Clinical complications with implants and implant prostheses. J Prosthet Dent 90: 121-132. https://doi.org/10.1016/S0022-3913(03)00212-9
    [19] Dreyer H, Grischke J, Tiede C, et al. (2018) Epidemiology and risk factors of peri-implantitis: A systematic review. J Periodontal Res 53: 657-681. https://doi.org/10.1111/jre.12562
    [20] Gupta S, Gupta H, Tandan A (2015) Technical complications of implant-causes and management: a comprehensive review. Natl J Maxillofac Surg 6: 3-8. https://doi.org/10.4103/0975-5950.168233
    [21] Hanif A, Qureshi S, Sheikh Z, et al. (2017) Complications in implant dentistry. Eur J Dent 11: 135-140. https://doi.org/10.4103/ejd.ejd_340_16
    [22] Bakaeen LG, Winkler S, Neff PA (2001) The effect of implant diameter, restoration design, and occlusal table variations on screw loosening of posterior single-tooth implant restorations. J Oral Implantol 27: 63-72. https://doi.org/10.1563/1548-1336(2001)027<0063:TEOIDR>2.3.CO;2
    [23] Shinde DM, Godbole SR, Dhamande MM, et al. (2020) Aesthetic rehabilitation of maxillary anterior teeth with implant supported fixed partial prosthesis. J Evol Med Dent Sci 9: 3079-3082. https://doi.org/10.14260/jemds/2020/676
    [24] Blustein R, Jackson R, Rotskoff K, et al. (1986) Use of splint material in the placement of implants. Int J Oral Max Impl 1: 47-49.
    [25] Fragkioudakis I, Tseleki G, Doufexi AE, et al. (2021) Current concepts on the pathogenesis of peri-implantitis: a narrative review. Eur J Dent 15: 379-387. https://doi.org/10.1055/s-0040-1721903
    [26] Lee FK, Tan KB, Nicholls JI (2010) Critical bending moment of four implant-abutment interface designs. Int J Oral Max Impl 25: 744-751.
    [27] Misch CE, Suzuki JB, Misch-Dietsh FM, et al. (2005) A positive correlation between occlusal trauma and peri-implant bone loss: literature support. Implant Dent 14: 108-116. https://doi.org/10.1097/01.id.0000165033.34294.db
    [28] Neidlinger J, Lilien BA, Kalant DC (1993) Surgical implant stent: a design modification and simplified fabrication technique. J Prosthet Dent 69: 70-72. https://doi.org/10.1016/0022-3913(93)90243-h
    [29] Dubey A, Dangorekhasbage S, Bhowate R (2019) Assessment of maxillo-mandibular implant sites by digitized volumetric tomography. J Evolution Med Dent Sci 8: 3780-3784. https://doi.org/10.14260/jemds/2019/819
    [30] Ghoshal PK, Kamble RH, Shrivastav SS, et al. (2019) Radiographic evaluation of alveolar bone dimensions in the inter radicular area between maxillary central incisors as “safe zone” for the placement of mini-screw implants in different growth patterns--a digital volume tomographical study. J Evolution Med Dent Sci 8: 3836-3840. https://doi.org/10.14260/jemds/2019/831
    [31] Ribas BR, Nascimento EH, Freitas DQ, et al. (2020) Positioning errors of dental implants and their associations with adjacent structures and anatomical variations: a CBCT-based study. Imaging Sci Dent 50: 281-290. https://doi.org/10.5624/isd.2020.50.4.281
    [32] Mahale KM, Yeshwante BJ, Baig N, et al. (2013) Iatrogenic complications of implant surgery. J Dent Implant 3: 157-159. https://doi.org/10.4103/0974-6781.118857
    [33] Schimmel M, Srinivasan M, McKenna G, et al. (2018) Effect of advanced age and/or systemic medical conditions on dental implant survival: A systematic review and meta-analysis. Clin Oral Implant Res 29: 311-330. https://doi.org/10.1111/clr.13288
    [34] Papi P, Letizia C, Pilloni A, et al. (2018) Peri-implant diseases and metabolic syndrome components: a systematic review. Eur Rev Med Pharmacol Sci 22: 866-875. https://doi.org/10.26355/eurrev_201802_14364
    [35] Bazli L, Chahardehi AM, Arsad H, et al. (2020) Factors influencing the failure of dental implants: a systematic review. J Compos Compd 2: 18-25. https://doi.org/10.29252/jcc.2.1.3
    [36] Esposito M, Hirsch JM, Lekholm U, et al. (1998) Biological factors contributing to failures of osseointegrated oral implants,(I). Success criteria and epidemiology. Eur J Oral Sci 106: 527-551. https://doi.org/10.1046/j.0909-8836..t01-2-.x
    [37] Albrektsson T, Dahlin C, Jemt T, et al. (2014) Is marginal bone loss around oral implants the result of a provoked foreign body reaction?. Clin Implant Dent R 16: 155-165. https://doi.org/10.1111/cid.12142
    [38] Zhang Y, Gulati K, Li Z, et al. (2021) Dental implant nano-engineering: advances, limitations and future directions. Nanomaterials 11: 2489. https://doi.org/10.3390/nano11102489
    [39] Somsanith N, Kim YK, Jang YS, et al. (2018) Enhancing of osseointegration with propolis-loaded TiO2 nanotubes in rat mandible for dental implants. Materials 11: 61. https://doi.org/10.3390/ma11010061
    [40] Lee YH, Kim JS, Kim JE, et al. (2017) Nanoparticle mediated PPARγ gene delivery on dental implants improves osseointegration via mitochondrial biogenesis in diabetes mellitus rat model. Nanomed-Nanotechnol 13: 1821-1832. https://doi.org/10.1016/j.nano.2017.02.020
    [41] Lee SH, An SJ, Lim YM, et al. (2017) The efficacy of electron beam irradiated bacterial cellulose membranes as compared with collagen membranes on guided bone regeneration in peri-implant bone defects. Materials 10: 1018. https://doi.org/10.3390/ma10091018
    [42] Shin YS, Seo JY, Oh SH, et al. (2014) The effects of Erh BMP-2-/EGCG-coated BCP bone substitute on dehiscence around dental implants in dogs. Oral Dis 20: 281-287. https://doi.org/10.1111/odi.12109
    [43] Tahmasebi E, Alam M, Yazdanian M, et al. (2020) Current biocompatible materials in oral regeneration: A comprehensive overview of composite materials. J Mater Res Technol 9: 11731-11755. https://doi.org/10.1016/j.jmrt.2020.08.042
    [44] Hossain N, Islam MA, Chowdhury MA, et al. (2022) Advances of nanoparticles employment in dental implant applications. Appl Surf Sci Adv 12: 100341. https://doi.org/10.1016/j.apsadv.2022.100341
    [45] Yan X, Wan P, Tan L, et al. (2018) Corrosion and biological performance of biodegradable magnesium alloys mediated by low copper addition and processing. Mater Sci Eng 93: 565-581. https://doi.org/10.1016/j.msec.2018.08.013
    [46] Liu C, Fu X, Pan H, et al. (2016) Biodegradable Mg-Cu alloys with enhanced osteogenesis, angiogenesis, and long-lasting antibacterial effects. Sci Rep 6: 27374. https://doi.org/10.1038/srep27374
    [47] Ohkubo C, Hanatani S, Hosoi T (2008) Present status of titanium removable dentures–a review of the literature. J Oral Rehabil 35: 706-714. https://doi.org/10.1111/j.1365-2842.2007.01821.x
    [48] Memarzadeh K, Sharili AS, Huang J, et al. (2015) Nanoparticulate zinc oxide as a coating material for orthopedic and dental implants. J Biomed Mater Res A 103: 981-989. https://doi.org/10.1002/jbm.a.35241
    [49] Shayani Rad M, Kompany A, Khorsand Zak A, et al. (2013) Microleakage and antibacterial properties of ZnO and ZnO: Ag nanopowders prepared via a sol–gel method for endodontic sealer application. J Nanopart Res 15: 1925. https://doi.org/10.1007/s11051-013-1925-6
    [50] Hu C, Sun J, Long C, et al. (2019) Synthesis of nano zirconium oxide and its application in dentistry. Nanotechnol Rev 8: 396-404. https://doi.org/10.1515/ntrev-2019-0035
    [51] Gaihre B, Jayasuriya AC (2018) Comparative investigation of porous nano-hydroxyapaptite/chitosan, nano-zirconia/chitosan and novel nano-calcium zirconate/chitosan composite scaffolds for their potential applications in bone regeneration. Mater Sci Eng 91: 330-339. https://doi.org/10.1016/j.msec.2018.05.060
    [52] Kordbacheh Changi K, Finkelstein J, et al. (2019) Peri-implantitis prevalence, incidence rate, and risk factors: A study of electronic health records at a US dental school. Clin Oral Implant Res 30: 306-314. https://doi.org/10.1111/clr.13416
    [53] Zitzmann NU, Berglundh T (2008) Definition and prevalence of peri-implant diseases. J clin periodontol 35: 286-291. https://doi.org/10.1111/j.1600-051X.2008.01274.x
    [54] Thiebot N, Hamdani A, Blanchet F, et al. (2022) Implant failure rate and the prevalence of associated risk factors: a 6-year retrospective observational survey. J Oral Med Oral Surg 28: 19. https://doi.org/10.1051/mbcb/2021045
    [55] Pyare MAR, Lade AY, Manhas N, et al. (2022) Evaluation of prevalence of dental implants failures with various risk factors: A 15 years retrospective study. J Pharm Negat Results 2022: 1308-1312. https://doi.org/10.47750/pnr.2022.13.S06.171
  • This article has been cited by:

    1. Iqra Nayab, Shahid Mubeen, Rana Safdar Ali, Gauhar Rahman, Abdel-Haleem Abdel-Aty, Emad E. Mahmoud, Kottakkaran Sooppy Nisar, Estimation of generalized fractional integral operators with nonsingular function as a kernel, 2021, 6, 2473-6988, 4492, 10.3934/math.2021266
    2. Virginia Kiryakova, Unified Approach to Fractional Calculus Images of Special Functions—A Survey, 2020, 8, 2227-7390, 2260, 10.3390/math8122260
    3. Mohamed Abdalla, On Hankel transforms of generalized Bessel matrix polynomials, 2021, 6, 2473-6988, 6122, 10.3934/math.2021359
    4. Maged G. Bin-Saad, Mohannad J. S. Shahwan, Jihad A. Younis, Hassen Aydi, Mohamed A. Abd El Salam, Barbara Martinucci, On Gaussian Hypergeometric Functions of Three Variables: Some New Integral Representations, 2022, 2022, 2314-4785, 1, 10.1155/2022/1914498
    5. Rana Safdar Ali, Aiman Mukheimer, Thabet Abdeljawad, Shahid Mubeen, Sabila Ali, Gauhar Rahman, Kottakkaran Sooppy Nisar, Some New Harmonically Convex Function Type Generalized Fractional Integral Inequalities, 2021, 5, 2504-3110, 54, 10.3390/fractalfract5020054
    6. Mohamed Abdalla, Salah Boulaaras, Mohamed Akel, On Fourier–Bessel matrix transforms and applications, 2021, 44, 0170-4214, 11293, 10.1002/mma.7489
    7. Sabila Ali, Shahid Mubeen, Rana Safdar Ali, Gauhar Rahman, Ahmed Morsy, Kottakkaran Sooppy Nisar, Sunil Dutt Purohit, M. Zakarya, Dynamical significance of generalized fractional integral inequalities via convexity, 2021, 6, 2473-6988, 9705, 10.3934/math.2021565
    8. Rana Safdar Ali, Shahid Mubeen, Sabila Ali, Gauhar Rahman, Jihad Younis, Asad Ali, Umair Ali, Generalized Hermite–Hadamard-Type Integral Inequalities forh-Godunova–Levin Functions, 2022, 2022, 2314-8888, 1, 10.1155/2022/9113745
    9. Yaqun Niu, Rana Safdar Ali, Naila Talib, Shahid Mubeen, Gauhar Rahman, Çetin Yildiz, Fuad A. Awwad, Emad A. A. Ismail, Wilfredo Urbina, Exploring Advanced Versions of Hermite‐Hadamard and Trapezoid‐Type Inequalities by Implementation of Fuzzy Interval‐Valued Functions, 2024, 2024, 2314-8896, 10.1155/2024/1988187
    10. Miguel Vivas-Cortez, Rana Safdar Ali, Humira Saif, Mdi Begum Jeelani, Gauhar Rahman, Yasser Elmasry, Certain Novel Fractional Integral Inequalities via Fuzzy Interval Valued Functions, 2023, 7, 2504-3110, 580, 10.3390/fractalfract7080580
    11. Rana Safdar Ali, Humira Sif, Gauhar Rehman, Ahmad Aloqaily, Nabil Mlaiki, Significant Study of Fuzzy Fractional Inequalities with Generalized Operators and Applications, 2024, 8, 2504-3110, 690, 10.3390/fractalfract8120690
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3095) PDF downloads(211) Cited by(0)

Figures and Tables

Tables(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog