Processing math: 50%
Review

The rise of nanotoxicology: A successful collaboration between engineering and biology

  • The field of nanotechnology has grown exponentially in the last decade, due to increasing capabilities in material science which allows for the precise and reproducible synthesis of nanomaterials (NMs). However, the unique physicochemical properties of NMs that make them attractive for nanotechnological applications also introduce serious health and safety concerns; thus giving rise to the field of nanotoxicology. Initial efforts focused on evaluating the toxic potential of NMs, however, it became clear that due to their distinctive characteristics it was necessary to design and develop new assessment metrics. Through a prolific collaboration, engineering practices and principles were applied to nanotoxicology in order to accurately evaluate NM behavior, characterize the nano-cellular interface, and measure biological responses within a cellular environment. This review discusses three major areas in which the field of nanotoxicology progressed as a result of a strong engineering-biology partnership: 1) the establishment of standardized characterization tools and techniques, 2) the examination of NM dosimetry and the development of mathematical, predictive models, and 3) the generation of physiologically relevant exposure systems that incorporate fluid dynamics and high-throughput mechanisms. The goal of this review is to highlight the multidisciplinary efforts behind the successes of nanotoxicology and celebrate the partnerships that have emerged from this research field.

    Citation: Kristen K. Comfort. The rise of nanotoxicology: A successful collaboration between engineering and biology[J]. AIMS Bioengineering, 2016, 3(3): 230-244. doi: 10.3934/bioeng.2016.3.230

    Related Papers:

    [1] Majid Alipanah, Sunday Oluwadamilola Usman, Apurba Kumar Saha, Hongyue Jin . Designing profitable supply chains for lithium-ion battery recycling in the United States. Clean Technologies and Recycling, 2024, 4(1): 22-42. doi: 10.3934/ctr.2024002
    [2] Yi Ji, Edwin E. Kpodzro, Chad T. Jafvert, Fu Zhao . Direct recycling technologies of cathode in spent lithium-ion batteries. Clean Technologies and Recycling, 2021, 1(2): 124-151. doi: 10.3934/ctr.2021007
    [3] Dieuwertje L. Schrijvers, Philippe Loubet, Guido W. Sonnemann . The influence of market factors on the potential environmental benefits of the recycling of rare earth elements. Clean Technologies and Recycling, 2022, 2(1): 64-79. doi: 10.3934/ctr.2022004
    [4] Shadia Moazzem, Delwyn Jones, Mathilde Vlieg, Direshni Naiker . Inaccurate polyester textile environmental product declarations. Clean Technologies and Recycling, 2022, 2(1): 47-63. doi: 10.3934/ctr.2022003
    [5] Ruby T. Nguyen, Ange-Lionel Toba, Michael H. Severson, Ethan M. Woodbury, Austin R. Carey, D. Devin Imholte . A market-oriented database design for critical material research. Clean Technologies and Recycling, 2021, 1(1): 34-49. doi: 10.3934/ctr.2021002
    [6] Nighat Afroz Chowdhury, Apurba Kumar Saha, Gwendolyn Bailey, Andrea Di Maria, Dieuwertje Schrijvers, Hongyue Jin . Life cycle assessment of clean technologies and recycling. Clean Technologies and Recycling, 2023, 3(1): 1-3. doi: 10.3934/ctr.2023001
    [7] Joana Beigbeder, Ahmed Allal, Nathalie Robert . Ex-ante life cycle assessment of a partially reusable packaging system for dry-cured ham slices. Clean Technologies and Recycling, 2022, 2(3): 119-135. doi: 10.3934/ctr.2022007
    [8] Chukwuebuka C. Okafor, Christian N. Madu, Charles C. Ajaero, Juliet C. Ibekwe, Chinelo A. Nzekwe . Sustainable management of textile and clothing. Clean Technologies and Recycling, 2021, 1(1): 70-87. doi: 10.3934/ctr.2021004
    [9] Wilson U. Eze, Toyese Oyegoke, Jonathan D. Gaiya, Reginald Umunakwe, David I. Onyemachi . Review of personal protective equipment and their associated wastes, life-cycle and effective management during the Covid-19 pandemic in developing nations. Clean Technologies and Recycling, 2022, 2(1): 1-31. doi: 10.3934/ctr.2022001
    [10] Maryam Salehi, Donya Sharafoddinzadeh, Fatemeh Mokhtari, Mitra Salehi Esfandarani, Shafieh Karami . Electrospun nanofibers for efficient adsorption of heavy metals from water and wastewater. Clean Technologies and Recycling, 2021, 1(1): 1-33. doi: 10.3934/ctr.2021001
  • The field of nanotechnology has grown exponentially in the last decade, due to increasing capabilities in material science which allows for the precise and reproducible synthesis of nanomaterials (NMs). However, the unique physicochemical properties of NMs that make them attractive for nanotechnological applications also introduce serious health and safety concerns; thus giving rise to the field of nanotoxicology. Initial efforts focused on evaluating the toxic potential of NMs, however, it became clear that due to their distinctive characteristics it was necessary to design and develop new assessment metrics. Through a prolific collaboration, engineering practices and principles were applied to nanotoxicology in order to accurately evaluate NM behavior, characterize the nano-cellular interface, and measure biological responses within a cellular environment. This review discusses three major areas in which the field of nanotoxicology progressed as a result of a strong engineering-biology partnership: 1) the establishment of standardized characterization tools and techniques, 2) the examination of NM dosimetry and the development of mathematical, predictive models, and 3) the generation of physiologically relevant exposure systems that incorporate fluid dynamics and high-throughput mechanisms. The goal of this review is to highlight the multidisciplinary efforts behind the successes of nanotoxicology and celebrate the partnerships that have emerged from this research field.


    For the spatial Newtonian n-body problem, the equations of motion for the n masses mk>0 and positions xkR3 with k{1,,n} can be described by Newton's second law and Newton's universal gravitation law:

    mk¨xk=(1s<jnmjms|xjxs|)xk.

    Define

    Ω={x: x=(x1,x2,,xn)(R3)n},

    and let

    =1jsn{x=(x1,x2,,xn)|xj=xs,1jsn}

    be the collision set. As usual, the set Ω is called the configuration space. First, we introduce the definition of central configuration for the Newtonian n-body problem (see [1]).

    Definition 1.1. Given n masses mk>0 with positions qkR3, k=1,,n, we say a configuration qΩ is a central configuration at some moment if there exists a constant λR such that

    {jk1jnmjmk(qjqk)|qjqk|3=λmk(qkx0),  k=1,2,,n,x0=1knmkqk1knmk. (1.1)

    Central configurations play a very important role in the study of the Newtonian n-body problem, and especially, central configurations can lead to rigid-motion solutions and homothetically collapsing solutions [1]. Central configurations of the Newtonian three-body (n=3) problem with any given three masses have long been known, and there are always exactly two kinds of central configurations: Euler collinear central configuration and Lagrange equilateral-triangle central configuration [2,3]. For a planar Newtonian N-body problem with n=N4, Perko and Walter [4] proved that if N masses are located at the vertices of a regular N-polygon (see Figure 1), then they can form a regular polygonal central configuration if and only if all the values of N masses are equal to each other. For more results of planar central configuration with one regular N-polygon, one can refer to [5,6,7,8].

    Figure 1.  Planar N-body problem.

    For a planar central configuration with n=2N and N2 such that two regular N-polygons are concentric and that 2N equal masses are placed at the vertices of the two regular N-polygons (see Figure 2), Zhang and Zhou [9] proved that the values of masses in each separate regular N-polygon were equal. We say that p regular N-polygons with p2 are nested if they are coplanar and have the same number of vertices N and the same center, and the positions of the vertices of the innermost regular N-polygon R(1)j and those of the remaining p-1 regular N-polygons R(k)j with any k{2,,p} satisfy the relation that R(p)j=s1R(p1)j=s2R(p2)j==sp1R(1)j for some scale factors sp1>sp2>>s1>1 and for all j=1,2,,N. For the central configuration such that two regular N-polygons are nested, masses on different regular N-polygons may be different, and Moeckel and Simó [10] proved that for every mass ratio b between the two masses, there were exactly two planar central configurations. Also, for the case of n=2N such that N equal masses are placed at the vertices of one regular N-polygon and the remaining N equal masses are placed at the vertices of the other regular N-polygon, which is rotated exactly at an angle θ=π/N with respect to the former regular N-polygon, Barrabés and Cors [11] proved the existence of the planar central configuration with any value of the mass ratio. For the case of n=pN and p2, Corbera, Delgado, and Llibre [12] proved the existence of the nested central configuration such that pN masses were at the vertices of the p nested regular N-polygon with a common center. Moreover, all the masses on the same regular N-polygon were equal, but masses on a different regular N-polygon could be different. For the case of n=pN+gN with p1 and g1, Zhao and Chen [13] proved the existence of planar central configurations such that p regular N-polygons were nested, and g regular N-polygons were rotated exactly at an angle π/N with respect to the other ones. For more details in this direction, we refer to [14,15,16,17,18,19,20,21] and the references therein.

    Figure 2.  Planar 2N-body problem.

    Note that for a planar central configuration with n=N+1, Chen and Luo [22] proved that if N masses are located at the vertices of one regular N-polygon and the position of the (N+1)-th mass is on the plane containing the regular N-polygon (see Figure 3), then all the values of N masses located at the vertices of the regular N-polygon are equal to each other. For a spatial central configuration with n=N+1 and the (N+1)-th mass off the plane containing the regular N-polygon (see Figure 4), Ouyang, Xie, and Zhang [23] showed that the distance between the (N+1)-th mass and the regular N-polygon was unique.

    Figure 3.  Planar (N+1)-body problem.
    Figure 4.  Spatial (N+1)-body problem.

    In this paper, we consider the spatial central configuration of a Newtonian (2N+1)-body problem in R3 formed by 2N masses placed at the vertices of two paralleled regular N-polygons with distance h>0. It is assumed that the lower layer regular N-polygon lies in a horizontal plane, and the upper regular N-polygon parallels the lower one in R3 with distance h, and the z-axis passes through both centers of the two regular N-polygons (see Figure 5). For convenience, when choosing the coordinates, we treat R3 as the direct product of the complex plane and real axis. For the positions of the 2N+1 masses q=(q1,q2,,q2N,q2N+1)Ω, we have

    {qk=(ρk, 0),   k=1,,N,ql=(aρleiθ, h),   0θ<2π,  l=N+1,,2N,   a>0,   h>0, (1.2)
    Figure 5.  Spatial (2N+1)-body problem.

    where a is the ratio of the sizes of the two regular N-polygons, ρd is the d(modN)-th complex root of unity, i.e., ρk=eiθk with k=1,2,,N, and ρl=eiθl with l=N+1,N+2,,2N and θd=2dπ/N with dZ. Here, we define θ as the twist angle between the two paralleled regular N-polygons with distance h>0. Moreover, for the position of the (2N+1)-th mass and the barycenter x0=(c0,h0), we define

    {q2N+1=(a1eiα, h2N+1),  a10,  0α<2π,  <h2N+1<+,c0=1kNmkρk+N+1l2Namlρleiθ+a1m2N+1eiαm2N+1+1kNmk+N+1l2Nml,h0=N+1l2Nmlh+m2N+1h2N+1m2N+1+1kNmk+N+1l2Nml. (1.3)

    Then, for the spatial twisted configuration with n=2N+1 and the notations (1.2)–(1.3), we have the following results.

    For the existence, we have the following:

    Theorem 1.1. Suppose the values of N masses with N2 located at the vertices of one regular N-polygon are equal to each other, and all of the sides in the two regular N-polygons have the same size. Define the position of q2N+1 as (1.3). Then, the 2N+1 masses form a central configuration if and only if all the values of the 2N masses located at the vertices of the two regular N-polygons are equal to each other, a1=0 and h2N+1=h/2, and the twist angle is θ=sπ/N with s{0,1,,2N1}.

    Remark 1.1. For the spatial twisted central configuration of the Newtonian 2N-body problem, under the assumption that the values of masses in each separate regular N-polygon were equal, Yu and Zhang [24] proved that the twist angle must be θ=0 or θ=π/N (see Figures 6 and 7). Meanwhile, in Theorem 1.1, we consider the spatial twisted central configuration of the Newtonian (2N+1)-body problem. Under the assumptions that the values of the N masses located at the vertices of one regular N-polygon are equal and that all of the sides in the two regular N-polygons have the same size, we not only obtain the values of the twist angle; but also prove that all 2N masses must be equal. Moreover, we know the position of the (2N+1)-th mass is (0,0,h/2).

    Figure 6.  Spatial 2N-body problem with θ=0.
    Figure 7.  Spatial 2N-body problem with θ=π/N.

    For the uniqueness, we have the following:

    Theorem 1.2. For the spatial twisted central configuration, if the values of the N masses located at the vertices of one regular N-polygon are equal to each other and all of the sides in the two regular N-polygons have the same size, then for any N2, both the distance between the two regular N-polygons and the position of the (2N+1)-th mass are unique.

    Lemma 2.1. [24, Lemma 2.9] For any a>0, any γ(,+), any h>0, and any N2, let

    f(γ)=1jNasin(θj+γ)[1+a22acos(θj+γ)+h2]32. (2.1)

    Then,

    f(πN)=0,  f(γ)=f(γ)  and  f(γ+2πN)=f(γ).

    Remark 2.1. In Lemma 2.1, if we choose a=1 and γ=π/N where N2, then

    1jNsin(θjπN)[22cos(θjπN)+h2]32=1jNsin(θj+πN)[22cos(θj+πN)+h2]32=0,  where  h>0.

    Lemma 2.2. [24, Lemma 2.10] If γ(0,π/N) with N2, then for any a>0 and any h>0, we have f(γ)>0.

    Lemma 2.3. If θ=sπ/N with s{0,1,,2N1} and N2, then for any k{1,2,,N}, any l{N+1,N+2,,2N}, and any h>0, we have

    {1kNei(θklθ)1[|ei(θklθ)1|2+h2]32=N+1l2Nei(θlk+θ)1[|ei(θlk+θ)1|2+h2]32=1jNei(θj+θ)1[|ei(θj+θ)1|2+h2]32R,1kNh[|ei(θklθ)1|2+h2]32=N+1l2Nh[|ei(θlk+θ)1|2+h2]32=1jNh[|ei(θj+θ)1|2+h2]32. (2.2)

    Proof. Let ˆμ{1,2,,N}, ˜μ{0,1,,N1}, ˜α(2π,2π), and κ{0,1}. We define a mapping σ by

    {{κN+1,κN+2,,κN+N}σ{˜α,2πN+˜α,...,2(N1)πN+˜α},σ(μ)=[(μˆμ+˜μ)(modN)]2πN+˜α,μ{κN+1,κN+2,,κN+N}. (2.3)

    Notice that both {κN+1,κN+2,,κN+N} and {˜α,(2π)/N+˜α,,2(N1)π/N+˜α} are finite sets; the mapping σ is a surjection. Let us show σ is an injective mapping. The proof for κ=0 is similar to κ=1; we only check for κ=1. Let μ1μ2 and μ1,μ2{N+1,N+2,,2N}. If σ(μ1)=σ(μ2), then there exist s1,s2Z such that

    (μ1ˆμ+˜μ)+s1N=(μ2ˆμ+˜μ)+s2N. (2.4)

    Hence, μ1μ2=(s2s1)N. By the facts that N<μ1μ2<N and s2s1Z, s2=s1, and thus μ1=μ2, which is a contradiction. Therefore, σ is injective, which implies that σ is a bijection.

    Similarly, for l{N+1,N+2,,2N}, ˜s{0,1,,N1}, and θ[0,2π), if we define another mapping σ1 by

    {{1,2,,N}σ1{θ,2πN+θ,,2(N1)πN+θ},σ1(k)=[(lk+˜s)(modN)]2πN+θ,k{1,2,,N}, (2.5)

    then σ1 is a bijection as well. Together with the fact that θ=sπ/N with s{0,1,,2N1} is equivalent to θ=2˜sπ/N or θ=2˜sπ/N+π/N with ˜s{0,1,,N1}, let us show (2.2) holds by considering the following two cases.

    Case 1. θ=2˜sπ/N with ˜s{0,1,,N1}.

    Observing that θj=2jπ/N with j{1,2,,N},

    1jNsinθj[22cosθj+h2]32=1jNsin2πNjN[22cos2πNjN+h2]32=1jNsinθj[22cosθj+h2]32,

    which implies that

    1jNsinθj[22cosθj+h2]32=0. (2.6)

    Let k{1,2,,N} and ˜s{0,1,,N1}. In (2.3), if we choose μ=l, ˆμ=k, ˜μ=˜s, κ=1, and ˜α=0, then the mapping

    {{N+1,N+2,,2N}σ{0,2πN,,2(N1)πN},σ(l)=[(lk+˜s)(modN)]2πN,  l{N+1,N+2,,2N}

    is a bijection. Combining (2.6), and θd=2πd/N with dZ and

    {cos(θlk+2πN˜s)=cos(2πN[(lk+˜s)(modN)]),sin(θlk+2πN˜s)=sin(2πN[(lk+˜s)(modN)])

    for any k{1,2,,N} and any ˜s{0,1,,N1}, we have

    {N+1l2Nsin(θlk+2πN˜s)[22cos(θlk+2πN˜s)+h2]32=N+1l2Nsinθlk+˜s[22cosθlk+˜s+h2]32=1jNsinθj[22cosθj+h2]32=0,N+1l2Ncos(θlk+2πN˜s)1[22cos(θlk+2πN˜s)+h2]32=N+1l2Ncos(θlk+˜s)1[22cos(θlk+˜s)+h2]32=1jNcosθj1[22cosθj+h2]32,N+1l2Nh[22cos(θlk+2πN˜s)+h2]32=N+1l2Nh[22cos(θlk+˜s)+h2]32=1jNh[22cosθj+h2]32. (2.7)

    On the other hand, in (2.3), for any l{N+1,N+2,,2N} and any ˜s{0,1,,N1}, if we let μ=k, ˆμ=l, ˜μ=N˜s, κ=0, and ˜α=0, then we know that the mapping

    {{1,2,,N}σ{0,2πN,,2(N1)πN},σ(k)=[(kl+(N˜s))(modN)]2πN=[(kl˜s)(modN)]2πN,  k{1,2,,N}

    is a bijection as well. Thus, similar to the procedure of obtaining (2.7), for any l{N+1,N+2,,2N}, any ˜s{0,1,,N1}, and any h>0, we have

    {1kNsin(θkl2πN˜s)[22cos(θkl2πN˜s)+h2]32=1jNsinθj[22cosθj+h2]32=0,1kNcos(θkl2πN˜s)1[22cos(θkl2πN˜s)+h2]32=1jNcosθj1[22cosθj+h2]32,1kNh[22cos(θkl2πN˜s)+h2]32=1jNh[22cosθj+h2]32. (2.8)

    Employing (2.7), (2.8), and θd=2πd/N with dZ, we have

    N+1l2Nei(θlk+2πN˜s)1[|ei(θlk+2πN˜s)1|2+h2]32=N+1l2N[cos(θlk+2πN˜s)1]+isin(θlk+2πN˜s)[22cos(θlk+2πN˜s)+h2]32=1jN(cosθj1)+isinθj[22cosθj+h2]32=1jNcosθj1[22cosθj+h2]32=1kN[cos(θkl2πN˜s)1]+isin(θkl2πN˜s)[22cos(θkl2πN˜s)+h2]32=1kNei(θkl2πN˜s)1[|ei(θkl2πN˜s)1|2+h2]32R

    and

    N+1l2Nh[|ei(θlk+2πN˜s)1|2+h2]32=N+1l2Nh[22cos(θlk+2πN˜s)+h2]32=1jNh[22cosθj+h2]32=1jNh[22cosθj+h2]32=1kNh[22cos(θkl2πN˜s)+h2]32=1kNh[|ei(θkl2πN˜s)1|2+h2]32,

    where ˜s{0,1,,N1}, k{1,2,,N}, and l{N+1,N+2,,2N}. Thus, (2.2) holds for the case of θ=2˜sπ/N with ˜s{0,1,2,,N1}.

    Case 2. θ=2˜sπ/N+π/N with ˜s{0,1,2,,N1}.

    For any l{N+1,N+2,,2N} and any ˜s{0,1,,N1}, in (2.3), if we choose μ=k, ˆμ=l, ˜μ=N˜s, κ=0, and ˜α=π/N, then the mapping

    {{1,2,,N}σ{πN,2πNπN,,2(N1)πNπN},σ(k)=[(kl+(N˜s))(modN)]2πNπN=[(kl˜s)(modN)]2πNπN, k{1,2,,N}

    is a bijection. Then, we have

    {1kNsin(θkl2πN˜sπN)[22cos(θkl2πN˜sπN)+h2]32=1kNsin(θkl˜sπN)[22cos(θkl˜sπN)+h2]32=1jNsin(θjπN)[22cos(θjπN)+h2]32,1kNcos(θkl2πN˜sπN)1[22cos(θkl2πN˜sπN)+h2]32=1kNcos(θkl˜sπN)1[22cos(θkl˜sπN)+h2]32=1jNcos(θjπN)1[22cos(θjπN)+h2]32, (2.9)

    where ˜s{0,1,,N1}, l{N+1,N+2,,2N}, and h>0.

    By the first equation of (2.9) and Remark 2.1, for any ˜s{0,1,,N1}, any l{N+1,N+2,,2N}, and any h>0, we see that

    1kNsin(θkl2πN˜sπN)[22cos(θkl+2πN˜sπN)+h2]32=1jNsin(θjπN)[22cos(θjπN)+h2]32=1jNsin(θj+πN)[22cos(θj+πN)+h2]32=0. (2.10)

    Moreover, in (2.5), for any l{N+1,N+2,,2N} and any ˜s{0,1,,N1}, if we choose θ=π/N, then the mapping

    {{1,2,,N}σ1{πN,2πN+πN,,2(N1)πN+πN},σ1(k)=[(lk+˜s)(modN)]2πN+πN, k{1,2,,N}

    is a bijection. Hence, combining (2.10), this leads to

    {1kNsin(θlk+2πN˜s+πN)[22cos(θlk+2πN˜s+πN)+h2]32=1kNsin(θlk+˜s+πN)[22cos(θlk+˜s+πN)+h2]32=1jNsin(θj+πN)[22cos(θj+πN)+h2]32=0,1kNcos(θlk+2πN˜s+πN)1[22cos(θlk+2πN˜s+πN)+h2]32=1kNcos(θlk+˜s+πN)1[22cos(θlk+˜s+πN)+h2]32=1jNcos(θj+πN)1[22cos(θj+πN)+h2]32. (2.11)

    Furthermore, one can verify that

    1jNcos(θj+πN)1[22cos(θj+πN)+h2]321jNcos(θjπN)1[22cos(θjπN)+h2]32=2jN+1cos(θjπN)1[22cos(θjπN)+h2]321jNcos(θjπN)1[22cos(θjπN)+h2]32=1jNcos(θjπN)1[22cos(θjπN)+h2]321jNcos(θjπN)1[22cos(θjπN)+h2]32=0,

    and this implies that

    1jNcos(θj+πN)1[22cos(θj+πN)+h2]32=1jNcos(θjπN)1[22cos(θjπN)+h2]32. (2.12)

    Employing (2.9), (2.10), (2.11), and (2.12), for any l,l{N+1,N+2,,2N} and any ˜s{0,1,,N1}, we have

    {1kNcos(θkl2πN˜sπN)1[22cosθ(kl2πN˜sπN)+h2]32=1kNcos(θlk+2πN˜s+πN)1[22cosθ(lk+2πN˜s+πN)+h2]32=1jNcos(θjπN)1[22cos(θjπN)+h2]32,1kNsin(θkl2πN˜sπN)[22cos(θkl2πN˜sπN)+h2]32=1kNsin(θlk+2πN˜s+πN)[22cos(θlk+2πN˜s+πN)+h2]32=1jNsin(θjπN)[22cos(θjπN)+h2]32=0.

    Thus, (2.2) holds for the case of θ=2˜sπ/N+π/N, where ˜s{0,1,2,,N1}.

    By Cases 1–2, we arrive at the conclusion that (2.2) holds for θ=sπ/N with s{0,1,,2N1}.

    Remark 2.2. Similar to dealing with the mappings σ and σ1, for any k{1,2,,N} and any l{N+1,N+2,,2N} with N2, if one defines σ2 and σ3 by

    {{1,2,,N}{k}σ2{2πN,4πN,,2(N1)πN},σ2(k)=[(kk)(modN)]2πN, k{1,2,,N}{k},

    and

    {{N+1,N+2,,2N}{l}σ3{2πN,4πN,,2(N1)πN},σ3(l)=[(ll)(modN)]2πN, l{N+1,N+2,,2N}{l},

    then σ2 and σ3 are bijections.

    Lemma 2.4. For any θR, N2, a>0, h>0, and m>0, we have

    1kNhm[|eiθkaei(θl+θ)|2+h2]32constant,  l{N+1,N+2,,2N}. (2.13)

    Proof. In fact, (2.13) is equivalent to

    1kNh[|ei(θklθ)a|2+h2]32constant,  l{N+1,N+2,,2N}.

    It is easy to see that klZ. Moreover, in (2.3), for any l{N+1,N+2,,2N} and any θ[0,2π), if we let μ=k, ˆμ=lN, ˜μ=0, κ=0, and α=θ, then the mapping

    {{1,2,,N}σ{θ,2πN+θ,,2(N1)πN+θ},σ(k)=[(k(lN))(modN)]2πN+θ=[(kl)(modN)]2πN+θ,   k{1,2,,N}

    is a bijection, which implies that

    1kNh[|ei(θklθ)a|2+h2]32=1jNh[|ei(θjθ)a|2+h2]32,  l{N+1,N+2,,2N}.

    Thus, Lemma 2.4 is true.

    Lemma 2.5. [4, Page 304] For any N2, 1jN1(1eiθj)/|1eiθj|3=[1jN1csc(jπ/N)]/4.

    Lemma 2.6. [20, Pages 1431 and 1437] For any N2, the inequality

    1jN1+cos(θj+πN)[22cos(θj+πN)]321jN11eiθj|1eiθj|32>0

    holds.

    Now, we introduce the definition of circulant matrix and state its properties.

    Definition 2.1. [25, Pages 65–66] A matrix ˜C=(˜ckj)N×N is circulant if ˜cˆk,ˆj=˜cˆk1,ˆj1 where 1k,j,ˆk,ˆjN and N2.

    In Definition 2.1, we take the circulant matrix ˜C as the following:

    ˜C=:C=(ck,j),    where   ck,j={1ρkj|1ρkj|3,kj,0,k=j. (2.14)

    We have some properties for the special circulant matrix C.

    Lemma 2.7. [4, Page 303] The circulant matrix C has the same forms of the eigenvalues λj(C) and the corresponding eigenvectors ξj; more precisely,

    λj(C)=1kNc1,kρk1j1,ξj=(ρj1,ρ2j1,,ρNj1)T,j=1,2,,N,

    where N2 and ρj1=eiθj1=e2(j1)πi/N.

    Lemma 2.8. [4, Corollary and Lemma 12] For the eigenvalues of C with jN and N4, λj0 except that λ(N+1)/2=0 for odd N.

    Lemma 2.9. [22, Proposition 2.2] The eigenvectors ξj (j=1,2,,N and N3) of circulant matrix C form a basis of CN.

    Lemma 2.10. [25, Page 65] Denote the conjugate transpose of νk by (ˉνk)T. Then,

    (ˉξk)Tξj={N, k=j,0,  kj, (ρ1,ρ2,,ρN)(ˉξN)T=N.

    Let k{1,2,,N} and l{N+1,N+2,,2N}. By Definition 1.1, it suffices to study the following system:

    {(q2N+1qk)m2N+1mk|q2N+1qk|3+N+1l2N(qlqk)mlmk|qlqk|3+1kkN(qkqk)mkmk|qkqk|3=λmk(qkx0),(q2N+1ql)m2N+1ml|q2N+1ql|3+1kN(qkql)mkml|qkql|3+N+1ll2N(qlql)mlml|qkql|3=λml(qlx0),1kN(qkq2N+1)mkm2N+1|qkq2N+1|3+N+1l2N(qlq2N+1)mlm2N+1|qlq2N+1|3=λm2N+1(q2N+1x0). (3.1)

    Thanks to (1.2), (1.3), and (3.1), the 2N+1 masses form a central configuration if and only if

    {(a1eiαeiθk,h2N+1)m2N+1mk[|a1eiαeiθk|2+h22N+1]32+N+1l2N(aei(θl+θ)eiθk,h)mlmk[|aei(θl+θ)eiθk|2+h2]32+1kkN(eiθkeiθk,0)mkmk|eiθkeiθk|3=λmk(eiθkc0,h0),(a1eiαaei(θl+θ),h2N+1h)m2N+1ml[|a1eiαaei(θl+θ)|2+(h2N+1h)2]32+1kN(eiθkaei(θl+θ),h)mkml[|eiθkaei(θl+θ)|2+h2]32+N+1ll2N(aei(θl+θ)aei(θl+θ),0)mlml|aei(θl+θ)aei(θl+θ)|3                    =λml(aei(θl+θ)c0,hh0),1kN(eiθka1eiα,h2N+1)mkm2N+1[|eiθka1eiα|2+h22N+1]32+N+1l2N(aei(θl+θ)a1eiα,hh2N+1)mlm2N+1[|aei(θl+θ)a1eiα|2+(hh2N+1)2]32=λm2N+1(a1eiαc0,h2N+1h0). (3.2)

    By the assumption that the values of N masses located at the vertices of one regular N-polygon are equal to each other, without loss of generality, we suppose that m1=m2==mN:=m>0, and we divide the proof of the necessity into four steps.

    Step 1. We prove that a1=0.

    Employing m1=m2==mN=m>0 and the second equation of (3.2), we have

    (h2N+1h)m2N+1[|a1eiαaei(θl+θ)|2+(h2N+1h)2]32+1kNhm[|eiθkaei(θl+θ)|2+h2]32=λ(hh0), (3.3)

    where l{N+1,N+2,,2N}. Combining Lemma 2.4, (3.3),

    h0=N+1l2Nmlh+m2N+1h2N+1m2N+1+1kNmk+N+1l2Nml,

    and that λ is independent of the choice of l, we deduce that

    (h2N+1h)m2N+1[|a1eiαaei(θl+θ)|2+(h2N+1h)2]32constant,  l{N+1,N+2,,2N}.

    Thus, for any l{N+1,N+2,,2N}, we have |a1eiαaei(θl+θ)|2constant, i.e.,

    |[a1cosαacos(θl+θ)]+i[a1sinαasin(θl+θ)]|2constant,  l{N+1,N+2,,2N}.

    Then, one computes that

    a1acos(θl+θα)constant,  l{N+1,N+2,,2N}.

    Since a represents the ratio of the sizes of the two regular N-polygons, a>0. Hence, if a10, then

    cos(θl+θα)constant,  l{N+1,N+2,,2N}. (3.4)

    In what follows, we assume that a10, and we divide the proof of impossibility of a10 into two cases: N=2 and N3.

    (i) N=2:

    In this case, l{3,4}, and a10. Then, by (3.4), we have cos(3π+θα)=cos(4π+θα), which implies that cos(θα)=0.

    Under the assumption that m1=m2=m, we convert (1.2) and (1.3) into

    {q1=(1, 0),   q2=(1, 0),q3=(aρ3eiθ, h)=(aeiθ, h),  q4=(aρ4eiθ, h)=(aeiθ, h), 0θ<2π, a>0, h0,q5=(a1eiα, h5),  a10,  0α2π,  <h5<+,c0=aeiθ(m4m3)+a1m5eiαm1+m2+m3+m4+m5=aeiθ(m4m3)+a1m5eiα2m+m3+m4+m5,h0=(m3+m4)h+m5h5m1+m2+m3+m4+m5=(m3+m4)h+m5h52m+m3+m4+m5. (3.5)

    First, in (2.3), for any θ[0,2π) and any l{N+1,N+2,,2N} with N2, if we let μ=k, ˆμ=lN, ˜μ=0, κ=0, and ˜α=θ(2π,0], then the mapping

    {{1,2,,N}σ{θ,2πNθ,,2(N1)πNθ},σ(k)=[(k(lN))(modN)]2πNθ=[(kl)(modN)]2πNθ,   k{1,2,,N}

    is a bijection. Then, by the second equation of (3.2) and m1=m2==mN=m>0, we have

    (1a1aei(αθθl))m2N+1[|aa1ei(αθθl)|2+(h2N+1h)2]32+1kN(1ei(θklθ)a)m[|aei(θklθ)|+h2]32+N+1ll2N(1eiθll)mla3|1eiθll|3=(1a1aei(αθθl))m2N+1[|aa1ei(αθθl)|2+(h2N+1h)2]32+1kN(1ei(θkθ)a)m[|aei(θkθ)|2+h2]32+N+1ll2N(1eiθll)mla3|1eiθll|3=λλac0ei(θl+θ),  where  l{N+1,N+2,,2N}. (3.6)

    Note that all of the sides in the two regular N-polygons have the same size, and a represents the ratio of the sizes of the two regular N-polygons, so a=1. Choosing θl=4π with l=4, and then employing (3.6) with a=1 and N=2, we have

    (1a1ei(αθ))m5[|1a1ei(αθ)|2+(h5h)2]32+1k2(1ei(θkθ))m[|1ei(θkθ)|+h2]32+3ll4(1eiθll)ml|1eiθll|3=λλc0eiθ,  where  l{3,4}. (3.7)

    Combining N=2, (3.7) and the definition of circulant matrix C in (2.14),

    CM=˜b1˜ξ1˜b2˜ξ2,

    where

    ˜b1=λ(1a1ei(αθ))m5[|1a1ei(αθ)|2+(h5h)2]321k2(1ei(θkθ))m[|1ei(θkθ)|+h2]32,
    ˜b2=λeiθc0=λeiθaeiθ(m4m3)+a1m2N+1eiαm1+m2+m3+m4+m5,

    M=(m3,m4)T, ˜ξ1=(1,1)T, and ˜ξ2=(ρ1,ρ21)T=(1,1)T. Thus, we have

    (˜b1˜b2ρ1˜b1˜b2ρ2)=(01ρ1|1ρ1|31ρ1|1ρ1|30)(m3m4).

    Then, by ρ1=ρ1+2=ρ1=1, one computes that ˜b2=(m4m3)/8.

    On the other hand, by (3.5), we have

    m4m38=˜b2=λeiθc0=λa(m4m3)+a1m2N+1ei(αθ)2m+m3+m4+m5R.

    In addition, according to lines 1-8 of page 109 of [7], we have \lambda > 0 for Definition 1.1. Combining a\in\mathbb{R} and a_{1}\neq0 , one computes that Im(e^{i(\alpha-\theta)}) = 0 , i.e., \sin(\alpha-\theta) = 0 , which contradicts with \cos(\theta-\alpha) = 0 . Thus, \cos(\theta-\alpha) = 0 is impossible, which implies that for the spatial twisted central configuration with N = 2 , we deduce the conclusion that a_{1} = 0 .

    (ii) N\geq3 :

    For (3.4), if we let \beta = \theta-\alpha and choose l^{\prime} = N+1, N+2 , and N+3 , then

    \begin{eqnarray*} \left\{ \begin{array}{ll} \cos(\frac{4\pi}{N}+\beta)-\cos(\frac{2\pi}{N}+\beta) = 0, \\ \cos(\frac{6\pi}{N}+\beta)-\cos(\frac{2\pi}{N}+\beta) = 0, \end{array} \right. \end{eqnarray*}

    and this is equivalent to

    \begin{eqnarray} \left\{ \begin{array}{ll} \sin\frac{\pi}{N}\sin(\beta+\frac{3\pi}{N}) = 0, \\ \sin\frac{2\pi}{N}\sin(\beta+\frac{4\pi}{N}) = 0. \end{array} \right. \end{eqnarray} (3.8)

    Observing that N\geq3 , \sin(\pi/N)\neq0 , and \sin(2\pi/N)\neq0 . Combining with (3.8), we have

    \begin{eqnarray*} \left\{ \begin{array}{ll} \beta = k_{1}\pi-\frac{3\pi}{N}, \ \ k_{1}\in\mathbb{Z}, \\ \beta = k_{2}\pi-\frac{4\pi}{N}, \ \ k_{2}\in\mathbb{Z}, \end{array} \right. \end{eqnarray*}

    which implies that k_{1}\pi-3\pi/N = k_{2}\pi-4\pi/N . So, (k_{2}-k_{1})\pi = \pi/N where positive integer N\geq3 , and this is impossible. Therefore, (3.4) does not hold. Then, for the spatial twisted central configuration with N\geq3 , we arrive at the conclusion that a_{1} = 0 , too.

    Step 2. We prove that \theta = s\pi/N with s\in\{0, 1, \ldots, 2N-1\} , and we divide the proof into two sub-steps.

    Step 2.1. We show that m_{N+1} = m_{N+2} = \ldots = m_{2N} .

    In fact, inserting a = 1 and a_{1} = 0 into (3.6), we have

    \begin{eqnarray} &&\frac{m_{2N+1}} {[1+(h_{2N+1}-h)^{2}]^{\frac{3}{2}}} +\sum\limits_{{\atop{{1\leq k\leq N}}}}\frac{(1-e^{i(\theta_{k}-\theta)})m}{[|1-e^{i(\theta_{k}-\theta)}|^{2}+h^{2}]^{\frac{3}{2}}} +\sum\limits_{{\atop{{N+1\leq l\neq l^{\prime}\leq 2N}}}}\frac{(1-e^{i\theta_{l-l^{\prime}}})m_{l}}{|1-e^{i\theta_{l-l^{\prime}}}|^{3}}\\ & = &\lambda-\lambda c_{0}e^{-i(\theta_{l^{\prime}}+\theta)}, \ \ {\rm where} \ \ l^{\prime}\in\{N+1, N+2, \ldots, 2N\}. \end{eqnarray} (3.9)

    Combining N\geq2 , m_{1} = m_{2} = \ldots = m_{N} = m , (3.9), \rho_{d} = e^{i\theta_{d}} with \theta_{d} = 2 d\pi/N and d\in \mathbb{Z} , along with the definition of circulant matrix C in (2.14),

    \begin{eqnarray} CM = b_{1}\xi_{1}-b_{2}\xi_{N}, \end{eqnarray} (3.10)

    where

    \begin{eqnarray*} b_{1} = \lambda -\frac{m_{2N+1}} {[1+(h_{2N+1}-h)^{2}]^{\frac{3}{2}}} -\sum\limits_{{\atop{{1\leq k\leq N}}}}\frac{(1-e^{i(\theta_{k}-\theta)})m}{[|1-e^{i(\theta_{k}-\theta)}|+h^{2}]^{\frac{3}{2}}}, \end{eqnarray*}
    \begin{eqnarray} b_{2}& = &\lambda e^{-i\theta}c_{0} = \lambda e^{-i\theta}\frac{ \sum\limits_{1\leq k\leq N}m_{k}\rho_{k} + \sum\limits_{N+1\leq l\leq 2N}m_{l}\rho_{l}e^{i\theta}}{m_{2N+1}+ \sum\limits_{1\leq k\leq N}m_{k} + \sum\limits_{N+1\leq l\leq 2N}m_{l}}\cr & = & \frac{\lambda \sum\limits_{N+1\leq l\leq 2N}m_{l}\rho_{l}}{m_{2N+1}+ \sum\limits_{1\leq k\leq N}m_{k} + \sum\limits_{N+1\leq l\leq 2N}m_{l}}, \end{eqnarray} (3.11)

    M = (m_{N+1}, m_{N+2}, \ldots, m_{2N})^{T} , \xi_{1} = (1, 1, \ldots, 1)^{T} and \xi_{N} = (\rho_{N-1}, \rho^{2}_{N-1}, \ldots, \rho^{N}_{N-1})^{T} .

    In the following, we divide the proof of m_{N+1} = m_{N+2} = \ldots = m_{2N} into three cases: N = 2 , N = 3 , and N\geq4 .

    (i) N = 2 :

    By (3.10) with N = 2 ,

    \begin{eqnarray*} \left( \begin{array}{c} b_{1}-b_{2}\rho_{1} \\ b_{1}-b_{2}\rho_{2} \end{array} \right) = \left( \begin{array}{cc} 0 & \frac{1-\rho_{-1}}{|1-\rho_{-1}|^{3}} \\ \frac{1-\rho_{1}}{|1-\rho_{1}|^{3}}& 0 \end{array} \right) \left( \begin{array}{c} m_{3} \\ m_{4} \end{array} \right). \end{eqnarray*}

    Moreover, when N = 2 , it is easy to see that \rho_{1}+\rho_{2} = 0 and \rho_{-1} = \rho_{1} = -1 . Thus,

    \begin{eqnarray*} 2b_{2} = \frac{1-\rho_{-1}}{|1-\rho_{-1}|^{3}}m_{4}-\frac{1-\rho_{1}}{|1-\rho_{1}|^{3}}m_{3} = \frac{1-\rho_{1}}{|1-\rho_{1}|^{3}}(m_{4}-m_{3}), \end{eqnarray*}

    which implies that b_{2} = (m_{4}-m_{3})/8 . Thus, when N = 2 , then inserting \rho_{3} = -1 , and \rho_{4} = 1 into (3.11) and combining with b_{2} = (m_{4}-m_{3})/8 , we have

    \begin{eqnarray} b_{2} = \frac{\lambda(m_{4}-m_{3})}{ \sum\limits_{1\leq k\leq5}m_{k}} = \frac{(m_{4}-m_{3})}{8}. \end{eqnarray} (3.12)

    In what follows, we prove that for the spatial twisted central configuration with N = 2 , m_{3} = m_{4} , and we prove it by contradiction. We assume m_{3}\neq m_{4} .

    In fact, on the one hand, by m_{3}\neq m_{4} , m_{1} = m_{2} = m , and (3.12), we have

    \begin{eqnarray} \lambda = \frac{(2m+m_{3}+m_{4}+m_{5})}{8}. \end{eqnarray} (3.13)

    Moreover, thanks to N = 2 , a = 1 , a_{1} = 0 , and the fourth equation of (3.5), one computes that

    \begin{eqnarray} c_{0} = \frac{ae^{i\theta}(m_{4}-m_{3})+a_{1}m_{5}e^{i\alpha}}{2m+m_{3}+m_{4}+m_{5}} = \frac{e^{i\theta}(m_{4}-m_{3})}{2m+m_{3}+m_{4}+m_{5}}. \end{eqnarray} (3.14)

    Summing the equations of the first part of (3.2) over k^{\prime} = 1 and k^{\prime} = 2 , by N = 2 , a_{1} = 0 , m_{1} = m_{2} = m , (3.13), and (3.14), we have

    \begin{eqnarray*} &&\sum\limits_{{\atop{{1\leq k^{\prime}\leq 2}}}}\frac{-e^{i\theta_{k^{\prime}}}m_{5}}{[1 +h^{2}_{5}]^{\frac{3}{2}}} +\sum\limits_{{\atop{{1\leq k^{\prime}\leq 2}}}}\sum\limits_{{\atop{{3\leq l\leq 4}}}}\frac{(ae^{i(\theta_{l}+\theta)}-e^{i\theta_{k^{\prime}}})m_{l}}{[|ae^{i(\theta_{l}+\theta)} -e^{i\theta_{k^{\prime}}}|^{2}+h^{2}]^{\frac{3}{2}}} +\sum\limits_{{\atop{{1\leq k^{\prime}\leq 2}}}}\sum\limits_{{\atop{{1\leq k\neq k^{\prime}\leq 2}}}}\frac{(e^{i\theta_{k}}-e^{i\theta_{k^{\prime}}})m_{k}}{|e^{i\theta_{k}}-e^{i\theta_{k^{\prime}}}|^{3}}\\ & = &-\lambda \sum\limits_{{\atop{{1\leq k^{\prime}\leq 2}}}}e^{i\theta_{k^{\prime}}}+2\lambda c_0 = \frac{e^{i\theta}(m_{4}-m_{3})}{4}. \end{eqnarray*}

    Then, combining e^{i\theta_{1}} = e^{i\theta_{-1}} = -1 ( N = 2 ), we have

    \begin{eqnarray*} &&0+\sum\limits_{{\atop{{1\leq k^{\prime}\leq 2}}}}e^{i\theta_{k^{\prime}}}\sum\limits_{{\atop{{3\leq l\leq 4}}}}\frac{(ae^{i(\theta_{l-k^{\prime}}+\theta)}-1)m_{l}}{[|ae^{i(\theta_{l-k^{\prime}}+\theta)} -1|^{2}+h^{2}]^{\frac{3}{2}}} +\sum\limits_{{\atop{{1\leq k^{\prime}\leq 2}}}}\sum\limits_{{\atop{{1\leq k\neq k^{\prime}\leq 2}}}}\frac{(e^{i\theta_{k}}-e^{i\theta_{k^{\prime}}})m}{|e^{i\theta_{k}}-e^{i\theta_{k^{\prime}}}|^{3}}\\ & = &\sum\limits_{{\atop{{1\leq k^{\prime}\leq 2}}}}e^{i\theta_{k^{\prime}}}\sum\limits_{{\atop{{3\leq l\leq 4}}}}\frac{(ae^{i(\theta_{l}+\theta)}-1)m_{l}}{[|ae^{i(\theta_{l}+\theta)} -1|^{2}+h^{2}]^{\frac{3}{2}}} +\sum\limits_{{\atop{{1\leq k^{\prime}\leq 2}}}}e^{i\theta_{k^{\prime}}}\sum\limits_{{\atop{{1\leq k\neq k^{\prime}\leq 2}}}}\frac{(e^{i\theta_{k-k^{\prime}}}-1)m}{|e^{i\theta_{k-k^{\prime}}}-1|^{3}}\\ & = &\frac{(e^{i\theta_{1}}-1)m}{|e^{i\theta_{1}}-1|^{3}}\sum\limits_{{\atop{{1\leq k^{\prime}\leq 2}}}}e^{i\theta_{k^{\prime}}} = 0 = \frac{e^{i\theta}(m_{4}-m_{3})}{4}, \end{eqnarray*}

    i.e., m_{3} = m_{4} , and this contradicts with the assumption that m_{3}\neq m_{4} . Hence, for the spatial twisted central configuration with N = 2 , we deduce that m_{3} = m_{4} .

    (ii) N = 3 :

    By (3.10),

    \begin{eqnarray} \left( \begin{array}{c} b_{1}-b_{2}\rho_{2} \\ b_{1}-b_{2}\rho_{1} \\ b_{1}-b_{2}\rho_{3} \end{array} \right) = \left( \begin{array}{ccc} 0 & \frac{1-\rho_{-1}}{|1-\rho_{-1}|^{3}} & \frac{1-\rho_{-2}}{|1-\rho_{-2}|^{3}} \\ \frac{1-\rho_{1}}{|1-\rho_{1}|^{3}}& 0 & \frac{1-\rho_{2}}{|1-\rho_{2}|^{3}} \\ \frac{1-\rho_{2}}{|1-\rho_{2}|^{3}} & \frac{1-\rho_{1}}{|1-\rho_{1}|^{3}} & 0 \end{array} \right) \left( \begin{array}{c} m_{4} \\ m_{5} \\ m_{6} \end{array} \right). \end{eqnarray} (3.15)

    From N = 3 , we have \rho_{-1} = \rho_{2} and \rho_{-2} = \rho_{1} ; thus, \rho_{1}+\rho_{2}+\rho_{3} = 0 . Together with (3.15) and

    \begin{eqnarray*} \left\{ \begin{array}{ll} Re(\frac{1-\rho_{1}}{|1-\rho_{1}|^{3}}) = Re(\frac{1-\rho_{2}}{|1-\rho_{2}|^{3}}), \\ Im(\frac{1-\rho_{1}}{|1-\rho_{1}|^{3}}) = -Im(\frac{1-\rho_{2}}{|1-\rho_{2}|^{3}}), \end{array} \right. \end{eqnarray*}

    there is

    \begin{eqnarray*} 3b_{1} = 3b_{1}-b_{2}(\rho_{1}+\rho_{2}+\rho_{3})& = &\frac{1-\rho_{-1}}{|1-\rho_{-1}|^{3}}m_{5}+\frac{1-\rho_{-2}}{|1-\rho_{-2}|^{3}}m_{6} +\frac{1-\rho_{1}}{|1-\rho_{1}|^{3}}m_{4}+\frac{1-\rho_{2}}{|1-\rho_{2}|^{3}}m_{6}\nonumber\\ &+& \frac{1-\rho_{2}}{|1-\rho_{2}|^{3}}m_{4}+\frac{1-\rho_{1}}{|1-\rho_{1}|^{3}}m_{5}\nonumber\\ & = &(\frac{1-\rho_{1}}{|1-\rho_{1}|^{3}}+\frac{1-\rho_{2}}{|1-\rho_{2}|^{3}})m_{4} +(\frac{1-\rho_{1}}{|1-\rho_{1}|^{3}}+\frac{1-\rho_{2}}{|1-\rho_{2}|^{3}})m_{5}\nonumber\\ &+& (\frac{1-\rho_{1}}{|1-\rho_{1}|^{3}}+\frac{1-\rho_{2}}{|1-\rho_{2}|^{3}})m_{6}\in\mathbb{R}, \end{eqnarray*}

    which implies that b_{1}\in\mathbb{R} .

    On the other hand, for N = 3 , Lemma 2.9 gives us information that there exist constants c_{1} , c_{2} , and c_{3} such that M = c_{1}\xi_{1}+c_{2}\xi_{2}+c_{3}\xi_{3} where M = (m_{4}, m_{5}, m_{6})^{T} . Thus, combining (3.10), we obtain

    \begin{eqnarray} c_{1}\lambda_{1}(C)\xi_{1}+c_{2}\lambda_{2}(C)\xi_{2}+c_{3}\lambda_{3}(C)\xi_{3} = b_{1}\xi_{1}-b_{2}\xi_{3}. \end{eqnarray} (3.16)

    Then, it follows from (3.16) and Lemma 2.9 that c_{1}\lambda_{1}(C)\xi_{1} = b_{1}\xi_{1} and c_{3}\lambda_{3}(C)\xi_{3} = -b_{2}\xi_{3} .

    Employing Lemma 2.5, Lemma 2.7, \rho_{3} = 1 , \rho_{4} = \rho_{1} , \rho_{1}+\rho_{2} = -1 , and |1-\rho_{1}| = |1-\rho_{2}| , we have

    \begin{eqnarray} \left\{ \begin{array}{ll} \lambda_{1}(C) = \frac{1-\rho_{1}}{|1-\rho_{1}|^{3}}+\frac{1-\rho_{2}}{|1-\rho_{2}|^{3}} = \sum\limits_{{\atop{{1\leq j\leq 2}}}}\frac{1-e^{i\theta_{j}}}{|1-e^{i\theta_{j}}|^{3}}\in\mathbb{R}, \\ \lambda_{3}(C) = \frac{(1-\rho_{1})\rho_{2}}{|1-\rho_{1}|^{3}}+\frac{(1-\rho_{2})\rho_{1}}{|1-\rho_{2}|^{3}} = \frac{\rho_{2}-\rho_{3}+\rho_{1}-\rho_{3}}{|1-\rho_{1}|^{3}} = \frac{-3}{|1-\rho_{1}|^{3}}\in\mathbb{R}. \end{array} \right. \end{eqnarray} (3.17)

    Then, thanks to b_{1}\in\mathbb{R} , \xi_{1} = (1, 1, \ldots, 1)^{T} , and c_{1}\lambda_{1}(C)\xi_{1} = b_{1}\xi_{1} , one computes that c_{1}\in\mathbb{R} . In what follows, we will prove that c_{2}\in\mathbb{R} and c_{3}\in\mathbb{R} .

    By \xi_{1} = (\rho_{0}, \rho_{0}, \rho_{0}) , \xi_{2} = (\rho_{1}, \rho_{2}, \rho_{3}) , \xi_{3} = (\rho_{2}, \rho_{1}, \rho_{3}) , and M = c_{1}\xi_{1}+c_{2}\xi_{2}+c_{3}\xi_{3} with N = 3 , we have

    \begin{eqnarray} \left\{ \begin{array}{ll} Im(c_{1}\rho_{0}+c_{2}\rho_{1}+c_{3}\rho_{2}) = 0, \\ Im(c_{1}\rho_{0}+c_{2}\rho_{2}+c_{3}\rho_{1}) = 0, \\ Im(c_{1}\rho_{0}+c_{2}\rho_{3}+c_{3}\rho_{3}) = 0. \end{array} \right. \end{eqnarray} (3.18)

    Based upon \rho_{0} = \rho_{3} = 1 , c_{1}\in\mathbb{R} , and the third equation of (3.18), we have c_{2}+c_{3}\in\mathbb{R} .

    Employing \rho_{0} = 1 , c_{1}\in\mathbb{R} , and the first equation of (3.18), we see that c_{2}\rho_{1}+c_{3}\rho_{2}\in\mathbb{R} . Note that

    \begin{eqnarray*} c_{2}\rho_{1}+c_{3}\rho_{2}& = &(c_{2}\cos\frac{2\pi}{3}+ic_{2}\sin\frac{2\pi}{3})+(c_{3}\cos\frac{4\pi}{3}+ic_{3}\sin\frac{4\pi}{3})\nonumber\\ & = &(c_{2}+c_{3})\cos\frac{2\pi}{3}+(c_{2}-c_{3})i\sin\frac{2\pi}{3}, \end{eqnarray*}

    and then c_{2} = c_{3} . Therefore, with the help of c_{2}+c_{3}\in\mathbb{R} , we have c_{3}\in\mathbb{R} .

    In virtue of (3.17), \lambda_{3}(C)\in\mathbb{R} . Moreover, combining c_{3}\in\mathbb{R} and c_{3}\lambda_{3}(C)\xi_{3} = -b_{2}\xi_{3} where \xi_{3} = (\rho_{2}, \rho_{4}, \rho_{6})^{T} = (\rho_{2}, \rho_{1}, \rho_{3})^{T} , one computes that b_{2}\in\mathbb{R} .

    By now, for (3.15), by the accumulated facts b_{1}\in\mathbb{R} , b_{2}\in\mathbb{R} , |1-\rho_{1}| = |1-\rho_{2}| , \rho_{-1} = \rho_{2} , \rho_{-2} = \rho_{1} , and Im(\rho_{1}) = -Im(\rho_{2}) , we have m_{4} = m_{5} = m_{6} .

    (iii) N\geq4 :

    Lemma 2.9 gives us information that there exist constants \tilde{c}_{1}, \tilde{c}_{2}, \ldots, \tilde{c}_{N} such that M = \tilde{c}_{1}\xi_{1}+\tilde{c}_{2}\xi_{2}+\ldots+\tilde{c}_{N}\xi_{N} where M = (m_{N+1}, m_{N+2}, \ldots, m_{2N})^{T} . We can regard (3.10) as (3.11) of [26]; moreover, we regard C , b_{1} , and b_{2} of this paper as A_{\alpha} , \sum_{k = 1}^{N}m_{k} , and \sum_{k = 1}^{N}m_{k}q_{k} of [26], respectively. Then, combining N\geq4 and Lemmas 2.8–2.10, similar to the procedure of Case 2.1 on pages 6–7 of [26], we obtain m_{N+1} = m_{N+2} = \ldots = m_{2N} .

    Step 2.2. Based on Step 1 and Step 2.1, we prove that \theta = s\pi/N with s\in\{0, 1, \ldots, 2N-1\} .

    Inserting m_{1} = m_{2} = \ldots = m_{N} , a_{1} = 0 , and m_{N+1} = m_{N+2} = \ldots = m_{2N} into the second equality of (1.3), we have c_{0} = 0 . Then, with the help of the first equation of (3.2), for any k^{\prime}\in\{1, 2, \ldots, N\} , we obtain

    \begin{eqnarray} \frac{-m_{2N+1}}{[1+h^{2}_{2N+1}]^{\frac{3}{2}}} +\sum\limits_{{\atop{{N+1\leq l\leq 2N}}}}\frac{(ae^{i(\theta_{l-k^{\prime}}+\theta)}-1)m_{l}}{[|ae^{i(\theta_{l-k^{\prime}}+\theta)} -1|^{2}+h^{2}]^{\frac{3}{2}}} +\sum\limits_{{\atop{{1\leq k\neq k^{\prime}\leq N}}}}\frac{(e^{i\theta_{k-k^{\prime}}}-1)m_{k}}{|e^{i\theta_{k-k^{\prime}}}-1|^{3}} = -\lambda\in\mathbb{R}. \end{eqnarray} (3.19)

    For any k^{\prime}\in\{1, 2, \ldots, N\} , it follows from Remark 2.2 that the mapping

    \begin{eqnarray*} \{1, 2, \ldots, N\}\backslash \{k^{\prime}\}\stackrel{\sigma_{2}}{\longrightarrow}\Big\{\frac{2\pi}{N}, \frac{4\pi}{N}, \ldots, \frac{2(N-1)\pi}{N}\Big\}, \end{eqnarray*}

    where

    \begin{eqnarray*} \sigma_{2}(k) = \Big[(k-k^{\prime})({\rm mod} \, N)\Big]\frac{2\pi}{N}, \quad\ \forall\, k\in\{1, 2, \ldots, N\}\backslash \{k^{\prime}\}, \end{eqnarray*}

    is a bijection. Thus, by the procedure of obtaining (2.6), and \theta_{d} = 2\pi d/N with d\in \mathbb{Z} , we have

    \begin{eqnarray} \left\{ \begin{array}{ll} \sum\limits_{{k\neq k^{\prime}\atop{{1\leq k\leq N}}}} \frac{\sin\theta_{k-k^{\prime}}}{|2-2\cos\theta_{k-k^{\prime}}|^{3}} = \sum\limits_{{\atop{{1\leq j\leq N-1}}}} \frac{\sin\theta_{j}}{|2-2\cos\theta_{j}|^{3}} = 0, \ \forall \, k^{\prime}\in\{1, 2, \ldots, N\}, \\ \sum\limits_{{k\neq k^{\prime}\atop{{1\leq k\leq N}}}} \frac{\cos\theta_{k-k^{\prime}}-1}{|2-2\cos\theta_{k-k^{\prime}}|^{3}} = \sum\limits_{{\atop{{1\leq j\leq N-1}}}} \frac{\cos\theta_{j}-1}{|2-2\cos\theta_{j}|^{3}}, \ \forall \, k^{\prime}\in\{1, 2, \ldots, N\}, \\ \sum\limits_{{k\neq k^{\prime}\atop{{1\leq k\leq N}}}} \frac{1}{|2-2\cos\theta_{k-k^{\prime}}|^{3}} = \sum\limits_{{\atop{{1\leq j\leq N-1}}}} \frac{1}{|2-2\cos\theta_{j}|^{3}}, \ \forall \, k^{\prime}\in\{1, 2, \ldots, N\}, \end{array} \right. \end{eqnarray} (3.20)

    and then

    \begin{eqnarray} \sum\limits_{{\atop{{1\leq k\neq k^{\prime}\leq N}}}}\frac{e^{i\theta_{k-k^{\prime}}}-1}{|e^{i\theta_{k-k^{\prime}}}-1|^{3}}\in\mathbb{R}. \end{eqnarray} (3.21)

    Combining (3.19) with (3.21), we have

    \begin{eqnarray} Im(\sum\limits_{{\atop{{N+1\leq l\leq 2N}}}}\frac{ae^{i(\theta_{l-k^{\prime}}+\theta)}-1}{[|ae^{i(\theta_{l-k^{\prime}}+\theta)} -1|^{2}+h^{2}]^{\frac{3}{2}}}) = 0, \ \ {\rm where } \ \ h > 0 \ \ {\rm and } \ \ k^{\prime}\in\{1, 2, \ldots, N\}. \end{eqnarray} (3.22)

    For any l\in\{N+1, N+2, \ldots, 2N\} , in (2.5), if we let \tilde{s} = 0 , then the mapping

    \begin{eqnarray*} \left\{ \begin{array}{ll} \{1, 2, \ldots, N\}\stackrel{\sigma_{1}}{\longrightarrow}\{\theta, \frac{2\pi}{N}+\theta, \ldots, \frac{2(N-1)\pi}{N}+\theta\}, \\ \sigma_{1}(k^{\prime}) = \Big[(l-k^{\prime})({\rm mod} \, N)\Big]\frac{2\pi}{N}+\theta, \quad\ \forall\, k^{\prime}\in\{1, 2, \ldots, N\} \end{array} \right. \end{eqnarray*}

    is a bijection, too. Hence, we have

    \begin{eqnarray} \left\{ \begin{array}{ll} \sum\limits_{{\atop{{1\leq k^{\prime}\leq N}}}} \frac{a\cos(\theta_{l-k^{\prime}}+\theta)-1}{[1+a^{2}-2a\cos\theta_{(l-k^{\prime}}+\frac{\pi}{N})+h^{2}]^{\frac{3}{2}}} = \sum\limits_{{\atop{{1\leq j\leq N}}}} \frac{a\cos(\theta_{j}+\theta)-1}{[1+a^{2}-2a\cos(\theta_{j}+\theta)+h^{2}]^{\frac{3}{2}}}, \\ \sum\limits_{{\atop{{1\leq k^{\prime}\leq N}}}} \frac{a\sin(\theta_{l-k^{\prime}}+\theta)}{[1+a^{2}-2a\cos(\theta_{l-k^{\prime}}+\theta)+h^{2}]^{\frac{3}{2}}} = \sum\limits_{{\atop{{1\leq j\leq N}}}} \frac{a\sin(\theta_{j}+\theta)}{[1+a^{2}-2a\cos(\theta_{j}+\theta)+h^{2}]^{\frac{3}{2}}}. \end{array} \right. \end{eqnarray} (3.23)

    Using the definition of f(\theta) in (2.1), (3.22), and the second equation of (3.23), we can see that

    \begin{eqnarray} f(\theta) = \sum\limits_{{\atop{{1\leq j\leq N}}}} \frac{a\sin(\theta_{j}+\theta)}{[|1+a^{2}-2a\cos(\theta_{j}+\theta)|^{2}+h^{2}]^{\frac{3}{2}}} = 0. \end{eqnarray} (3.24)

    On the one hand, if \theta\in(2\tilde{s}\pi/N, \, 2\tilde{s}\pi/N+\pi/N) where \tilde{s}\in\{0, 1, \ldots, N-1\} , then by Lemmas 2.1-2.2, there is f(\theta) > 0 , which contradicts (3.24).

    On the other hand, if \theta\in(2\tilde{s}\pi/N+\pi/N, \, 2\tilde{s}\pi/N+2\pi/N) where \tilde{s}\in\{0, 1, \ldots, N-1\} , then by Lemma 2.1, we have f(\theta) = -f(-\theta) = -f(-\theta+2\pi/N) and -\theta+2\pi/N\in(-2\tilde{s}\pi/N, \, -2\tilde{s}\pi/N+\pi/N) . Therefore, it follows from Lemma 2.2 that f(\theta) < 0 , which also contradicts (3.24).

    Thus, combining \theta\in[0, \, 2\pi) , we conclude that the twist angle must be \theta = 2\tilde{s}\pi/N or \theta = 2\tilde{s}\pi/N+\pi/N with \tilde{s}\in\{0, 1, \ldots, N-1\} , and then \theta = s\pi/N with s\in\{0, 1, \ldots, 2N-1\} .

    Step 3. We show that m_{1} = m_{2} = \ldots = m_{N} = m_{N+1} = m_{N+2} = \ldots = m_{2N} .

    Based on the first part of Step 2, we can assume that m_{N+1} = m_{N+2} = \ldots = m_{2N}: = bm where constant b > 0 . By the assumption that m_{1} = m_{2} = \ldots = m_{N}: = m , it suffices to show that the value of b can only take b = 1 , and we prove it by contradiction. We assume that b\neq1 .

    Thanks to a = 1 , m_{1} = m_{2} = \ldots = m_{N}: = m , a_{1} = 0 , and m_{N+1} = m_{N+2} = \ldots = m_{2N}: = bm , for (3.2) we have

    \begin{eqnarray} \left\{ \begin{array}{ll} \frac{Nm_{2N+1}h_{2N+1}}{[1 +h^{2}_{2N+1}]^{\frac{3}{2}}} +\sum\limits_{{\atop{{N+1\leq l\leq 2N}}}}\frac{bmh}{[|e^{i(\theta_{l-k^{\prime}}+\theta)} -1|^{2}+h^{2}]^{\frac{3}{2}}} = \lambda h_0, \\ \frac{Nm_{2N+1}(h_{2N+1}-h)} {[1 +(h_{2N+1}-h)^{2}]^{\frac{3}{2}}} -\sum\limits_{{\atop{{1\leq k\leq N}}}}\frac{mh} {[|e^{i(\theta_{k-l^{\prime}}-\theta)}-1|^{2}+h^{2}]^{\frac{3}{2}}} = \lambda (h_0-h), \\ \frac{Nmh_{2N+1}}{[1 +h^{2}_{2N+1}]^{\frac{3}{2}}}+\frac{Nbm(h_{2N+1}-h)}{[1 +(h-h_{2N+1})^{2}]^{\frac{3}{2}}} = \lambda (h_{2N+1}-h_{0}), \end{array} \right. \end{eqnarray} (3.25)

    where k^{\prime}\in\{1, 2, \ldots, N\} and l^{\prime}\in\{N+1, N+2, \ldots, 2N\} . Combining the first and second equations of (3.25) with (2.7),

    \begin{eqnarray} \left\{ \begin{array}{ll} \frac{Nm_{2N+1}h_{2N+1}}{[1 +h^{2}_{2N+1}]^{\frac{3}{2}}} +\sum\limits_{{\atop{{1\leq j\leq N}}}}\frac{bmh}{[|e^{i(\theta_{j}+\theta)} -1|^{2}+h^{2}]^{\frac{3}{2}}} = \lambda h_0, \\ \frac{Nm_{2N+1}(h_{2N+1}-h)} {[1 +(h_{2N+1}-h)^{2}]^{\frac{3}{2}}} -\sum\limits_{{\atop{{1\leq j\leq N}}}}\frac{mh}{[|e^{i(\theta_{j}+\theta)} -1|^{2}+h^{2}]^{\frac{3}{2}}} = \lambda (h_0-h), \\ \frac{Nmh_{2N+1}}{[1 +h^{2}_{2N+1}]^{\frac{3}{2}}}+\frac{Nbm(h_{2N+1}-h)}{[1 +(h_{2N+1}-h)^{2}]^{\frac{3}{2}}} = \lambda (h_{2N+1}-h_{0}). \end{array} \right. \end{eqnarray} (3.26)

    Let

    \begin{eqnarray} \left\{ \begin{array}{ll} \hat{x} = \frac{Nh_{2N+1}}{[1 +h^{2}_{2N+1}]^{\frac{3}{2}}}, \\ y = \frac{N(h_{2N+1}-h)} {[1 +(h_{2N+1}-h)^{2}]^{\frac{3}{2}}}, \\ z = \sum\limits_{{\atop{{1\leq j\leq N}}}}\frac{mh}{[|e^{i(\theta_{j}+\theta)} -1|^{2}+h^{2}]^{\frac{3}{2}}}. \end{array} \right. \end{eqnarray} (3.27)

    Thus, (3.26) can be simplified into

    \begin{eqnarray} \left\{ \begin{array}{ll} m_{2N+1}\hat{x} +bz = \lambda h_0, \\ m_{2N+1}y-z = \lambda (h_0-h), \\ m\hat{x}+bmy = \lambda (h_{2N+1}-h_{0}). \end{array} \right. \end{eqnarray} (3.28)

    On the one hand, by (3.28), we see that

    \begin{eqnarray} \left\{ \begin{array}{ll} m_{2N+1}\hat{x}-m_{2N+1}y+(b+1)z = \lambda h, \\ m\hat{x}+bmy = \lambda (h_{2N+1}-h_{0}), \end{array} \right. \end{eqnarray} (3.29)

    and

    \begin{eqnarray} \left\{ \begin{array}{ll} m_{2N+1}\hat{x}+m_{2N+1}y+(b-1)z = 2\lambda h_{0}-\lambda h, \\ m\hat{x}+bmy = \lambda (h_{2N+1}-h_{0}). \end{array} \right. \end{eqnarray} (3.30)

    Then, it follows from (3.29), (3.30), and b\neq1 that

    \begin{eqnarray*} &&\frac{-\lambda h_{0}m_{2N+1}+\lambda m_{2N+1}h_{2N+1}-\lambda mh+m(b+1)z}{mm_{2N+1}(b+1)} = y\nonumber\\ & = &\frac{-\lambda h_{0}m_{2N+1}-2\lambda mh_{0}+\lambda m_{2N+1}h_{2N+1}+\lambda mh+m(b-1)z}{mm_{2N+1}(b-1)}. \end{eqnarray*}

    Thus,

    \begin{eqnarray*} h_{0} = \frac{bmh+m_{2N+1}h_{2N+1}}{m_{2N+1}+m+bm}. \end{eqnarray*}

    Combining with

    \begin{eqnarray} h_0 = \frac{ \sum\limits_{N+1\leq l\leq 2N}m_{l}h+m_{2N+1}h_{2N+1}}{m_{2N+1}+ \sum\limits_{1\leq k\leq N}m_{k} + \sum\limits_{N+1\leq l\leq 2N}m_{l}} = \frac{bNmh+m_{2N+1}h_{2N+1}}{m_{2N+1}+Nm+bNm}, \end{eqnarray} (3.31)

    we have

    \begin{eqnarray*} \frac{bmh+m_{2N+1}h_{2N+1}}{m_{2N+1}+m+bm} = \frac{bNmh+m_{2N+1}h_{2N+1}}{m_{2N+1}+Nm+bNm}, \end{eqnarray*}

    which implies that (1+b)h_{2N+1} = bh . Moreover, with the help of (3.31), one computes that h_{0} = h_{2N+1} . Then, it follows from the second equation of (3.29) that x = -by . Hence, with the aid of (3.27) and (1+b)h_{2N+1} = bh , we have

    \begin{eqnarray*} \frac{\frac{bh}{1+b}}{[1 +\frac{b^{2}h^{2}}{(1+b)^{2}}]^{\frac{3}{2}}} = \frac{\frac{bh}{1+b}}{[1 +\frac{h^{2}}{(1+b)^{2}}]^{\frac{3}{2}}}, \end{eqnarray*}

    that is, b = \pm1 , which contradicts b > 0 and the assumption b\neq1 . So, b = 1 , and we arrive at the conclusion that m_{1} = m_{2} = \ldots = m_{N} = m_{N+1} = m_{N+2} = \ldots = m_{2N} .

    Step 4. We prove that h_{2N+1} = h/2 .

    In virtue of (3.30), we have

    \begin{eqnarray*} m(2\lambda h_{0}-\lambda h) = m_{2N+1}\lambda (h_{2N+1}-h_{0}). \end{eqnarray*}

    Note that lines 1–8 of page 109 of [7] show us that in Definition 1.1, \lambda must be a positive number. Then, combining the last equality of (1.3) and m_{1} = m_{2} = \ldots = m_{N} = m_{N+1} = m_{N+2} = \ldots = m_{2N} = m ,

    \begin{eqnarray*} m(\frac{2Nmh+2h_{2N+1}m_{2N+1}}{2Nm+m_{2N+1}}-h) = m_{2N+1}(-\frac{Nmh+h_{2N+1}m_{2N+1}}{2Nm+m_{2N+1}}+h_{2N+1}), \end{eqnarray*}

    which implies that N = 1 or h = 2h_{2N+1} . Combining with N\geq2 , for the spatial twisted central configuration, we have h_{2N+1} = h/2 .

    Remark 3.1. The proof of Step 1 is independent of the condition that a = 1 . That is, for the twisted central configuration of the ( 2N +1)-body problem with the assumption that m_{1} = m_{2} = \ldots = m_{N} , and without the assumption that a = 1 , we have a_{1} = 0 . That is, the ( 2N +1)-th mass must be in the vertical line of the two paralleled planes containing the two regular N -polygons, respectively, and the vertical line segment passes through the geometric centers of the two regular N -polygons.

    We divide the proof into two steps.

    Step 1. Based on the assumptions that \theta = s\pi/N with s\in\{0, 1, \ldots, 2N-1\} , a = 1 , h_{2N+1} = h/2 , a_{1} = 0 , and m_{1} = m_{2} = \ldots = m_{N} = m_{N+1} = m_{N+2} = \ldots = m_{2N} = m , we show that if there exists a constant \lambda\in\mathbb{R} such that

    \begin{eqnarray} \left\{ \begin{array}{ll} \frac{m_{2N+1}}{[1 +\frac{h^{2}}{4}]^{\frac{3}{2}}} +\sum\limits_{{\atop{{1\leq j\leq N}}}}\frac{(1-e^{i(\theta_{j}+\theta)})m}{[|e^{i(\theta_{j}+\theta)} -1|^{2}+h^{2}]^{\frac{3}{2}}} +\sum\limits_{{\atop{{1\leq j\leq N}}}}\frac{(1-e^{i\theta_{j}})m}{|e^{i\theta_{j}}-1|^{3}} = \lambda , \\ \frac{m_{2N+1}}{[1 +\frac{h^{2}}{4}]^{\frac{3}{2}}} +\sum\limits_{{\atop{{1\leq j\leq N}}}}\frac{2m}{[|e^{i(\theta_{j}+\theta)} -1|^{2}+h^{2}]^{\frac{3}{2}}} = \lambda , \end{array} \right. \end{eqnarray} (3.32)

    then the 2N +1 masses can form a central configuration.

    In fact, by (1.3), in this situation we get

    \begin{eqnarray} \left\{ \begin{array}{ll} c_{0} = \frac{ \sum\limits_{1\leq k\leq N}m\rho_{k} +m e^{i\theta} \sum\limits_{N+1\leq l\leq 2N}\rho_{l}}{2Nm+m_{2N+1}} = 0, \\ h_0 = \frac{ \sum\limits_{N+1\leq l\leq 2N}mh+m_{2N+1}h_{2N+1}}{2Nm+m_{2N+1}} = \frac{Nmh+m_{2N+1}\frac{h}{2}}{2Nm+m_{2N+1}} = \frac{h}{2}. \end{array} \right. \end{eqnarray} (3.33)

    Employing a = 1 , h_{2N+1} = h/2 , a_{1} = 0 , m_{1} = m_{2} = \ldots = m_{N} = m_{N+1} = m_{N+2} = \ldots = m_{2N} = m , (3.33) and

    \begin{eqnarray*} \sum\limits_{{\atop{{1\leq k\leq N}}}}e^{i\theta_{k}} = \sum\limits_{{\atop{{N+1\leq l\leq 2N}}}}e^{i(\theta_{l}+\theta)} = 0, \end{eqnarray*}

    we see that (3.2) holds if and only if

    \begin{eqnarray} \left\{ \begin{array}{ll} \frac{(-e^{i\theta_{k^{\prime}}}, \, \frac{h}{2})mm_{2N+1}}{[1 +\frac{h^{2}}{4}]^{\frac{3}{2}}} +\sum\limits_{{\atop{{N+1\leq l\leq 2N}}}}\frac{(e^{i(\theta_{l}+\theta)}-e^{i\theta_{k^{\prime}}}, \, h)m^{2}}{[|e^{i(\theta_{l}+\theta)} -e^{i\theta_{k^{\prime}}}|^{2}+h^{2}]^{\frac{3}{2}}} +\sum\limits_{{\atop{{1\leq k\neq k^{\prime}\leq N}}}}\frac{(e^{i\theta_{k}}-e^{i\theta_{k^{\prime}}}, \, 0)m^{2}}{|e^{i\theta_{k}}-e^{i\theta_{k^{\prime}}}|^{3}} = -\lambda m (e^{i\theta_{k^{\prime}}}, \, -\frac{h}{2}), \\ \frac{(-e^{i(\theta_{l^{\prime}}+\theta)}, \, -\frac{h}{2})mm_{2N+1}} {[1 +\frac{h^{2}}{4}]^{\frac{3}{2}}} +\sum\limits_{{\atop{{1\leq k\leq N}}}}\frac{(e^{i\theta_{k}}-e^{i(\theta_{l^{\prime}}+\theta)}, \, -h)m^{2}} {[|e^{i\theta_{k}}-e^{i(\theta_{l^{\prime}}+\theta)}|^{2}+h^{2}]^{\frac{3}{2}}} +\sum\limits_{{\atop{{N+1\leq l\neq l^{\prime}\leq 2N}}}}\frac{(e^{i(\theta_{l}+\theta)}-e^{i(\theta_{l^{\prime}}+\theta)}, \, 0)m^{2}}{|e^{i(\theta_{l}+\theta)} -e^{i(\theta_{l^{\prime}}+\theta)}|^{3}} = -\lambda m (e^{i(\theta_{l^{\prime}}+\theta)}, \, \frac{h}{2}). \end{array} \right. \end{eqnarray} (3.34)

    Therefore, it suffices to verify (3.34) holds. Clearly, (3.34) is equivalent to

    \begin{eqnarray} \left\{ \begin{array}{ll} \frac{(-1, \, \frac{h}{2})m_{2N+1}}{[1 +\frac{h^{2}}{4}]^{\frac{3}{2}}} +\sum\limits_{{\atop{{N+1\leq l\leq 2N}}}}\frac{(e^{i(\theta_{l-k^{\prime}}+\theta)}-1, \, h)m}{[|e^{i(\theta_{l-k^{\prime}}+\theta)} -1|^{2}+h^{2}]^{\frac{3}{2}}} +\sum\limits_{{\atop{{1\leq k\neq k^{\prime}\leq N}}}}\frac{(e^{i\theta_{k-k^{\prime}}}-1, \, 0)m}{|e^{i\theta_{k-k^{\prime}}}-1|^{3}} = -\lambda (1, \, -\frac{h}{2}), \\ \frac{(-1, \, -\frac{h}{2})m_{2N+1}} {[1 +\frac{h^{2}}{4}]^{\frac{3}{2}}} +\sum\limits_{{\atop{{1\leq k\leq N}}}}\frac{(e^{i(\theta_{k-l^{\prime}}-\theta)}-1, \, -h)m} {[|e^{i(\theta_{k-l^{\prime}}-\theta)}-1|^{2}+h^{2}]^{\frac{3}{2}}}+\sum\limits_{{\atop{{N+1\leq l\neq l^{\prime}\leq 2N}}}}\frac{(e^{i\theta_{l-l^{\prime}}}-1, \, 0)m}{|e^{i\theta_{l-l^{\prime}}} -1|^{3}} = -\lambda (1, \, \frac{h}{2}). \end{array} \right. \end{eqnarray} (3.35)

    On the other hand, for any l^{\prime}\in\{N+1, N+2, \ldots, 2N\} , it follows from Remark 2.2 that the mapping

    \begin{eqnarray*} \{N+1, N+2, \ldots, 2N\}\stackrel{\sigma_{3}}{\longrightarrow}\Big\{\frac{2\pi}{N}, \frac{4\pi}{N}, \ldots, \frac{2(N-1)\pi}{N}\Big\}, \end{eqnarray*}

    where

    \begin{eqnarray*} \sigma_{3}(l) = \Big[(l-l^{\prime})({\rm mod} \, N)\Big]\frac{2\pi}{N}, \quad\ \forall\, l\in\{N+1, N+2, \ldots, 2N\}\backslash\{l^{\prime}\}, \end{eqnarray*}

    is a bijection. Thus, by \theta_{d} = 2\pi d/N with d\in \mathbb{Z} , we have

    \begin{eqnarray*} \left\{ \begin{array}{ll} \sum\limits_{{l\neq l^{\prime}\atop{{N+1\leq l\leq 2N}}}} \frac{\sin\theta_{l-l^{\prime}}}{|2-2\cos\theta_{l-l^{\prime}}|^{3}} = \sum\limits_{{\atop{{1\leq j\leq N-1}}}} \frac{\sin\theta_{j}}{|2-2\cos\theta_{j}|^{3}}, \ \forall \, l^{\prime}\in\{N+1, N+2, \ldots, 2N\}, \\ \sum\limits_{{l\neq l^{\prime}\atop{{N+1\leq l\leq 2N}}}} \frac{\cos\theta_{l-l^{\prime}}-1}{[|2-2\cos\theta_{l-l^{\prime}}|^{3}} = \sum\limits_{{\atop{{1\leq j\leq N-1}}}} \frac{\cos\theta_{j}-1}{|2-2\cos\theta_{j}|^{3}}, \ \forall \, l^{\prime}\in\{N+1, N+2, \ldots, 2N\}, \\ \sum\limits_{{l\neq l^{\prime}\atop{{N+1\leq l\leq 2N}}}} \frac{1}{|2-2\cos\theta_{l-l^{\prime}}|^{3}} = \sum\limits_{{\atop{{1\leq j\leq N-1}}}} \frac{1}{|2-2\cos\theta_{j}|^{3}}, \ \forall \, l^{\prime}\in\{N+1, N+2, \ldots, 2N\}. \end{array} \right. \end{eqnarray*}

    Together with (3.20), for any k^{\prime}\in\{1, 2, \ldots, N\} and any l^{\prime}\in\{N+1, N+2, \ldots, 2N\} , it follows that

    \begin{eqnarray} \sum\limits_{{k\neq k^{\prime}\atop{{1\leq k\leq N}}}}\frac{(e^{i\theta_{k-k^{\prime}}}-1)m}{|e^{i\theta_{k-k^{\prime}}}-1|^{3}} = -\sum\limits_{{\atop{{1\leq j\leq N-1}}}}\frac{(1-e^{i\theta_{j}})m}{|e^{i\theta_{j}} -1|^{3}} = \sum\limits_{{l\neq l^{\prime}\atop{{N+1\leq l\leq 2N}}}}\frac{(e^{i\theta_{l-l^{\prime}}}-1)m}{|e^{i\theta_{l-l^{\prime}}} -1|^{3}}. \end{eqnarray} (3.36)

    Employing Lemma 2.3, (3.35), and (3.36), we conclude that if there exists a constant \lambda\in\mathbb{R} such that (3.32) holds, then by Definition 1.1, the 2N +1 masses form a central configuration.

    Step 2. We prove the existence of the spatial twisted central configuration, i.e., we prove the existence of \lambda of Step 1.

    Define the function g as follows:

    \begin{eqnarray} g(h) = -\frac{1}{2}\sum\limits_{{\atop{{1\leq j\leq N}}}}\frac{(1+e^{i(\theta_{j}+\theta)})m}{[|e^{i(\theta_{j}+\theta)} -1|^{2}+h^{2}]^{\frac{3}{2}}} +\frac{1}{2}\sum\limits_{{\atop{{1\leq j\leq N-1}}}}\frac{(1-e^{i\theta_{j}})m}{|e^{i\theta_{j}}-1|^{3}}, \end{eqnarray} (3.37)

    where h > 0 and \theta = s\pi/N with s\in\{0, 1, \ldots, 2N-1\} . Thanks to Lemmas 2.3, 2.5, and (3.37), we see that g(h)\in\mathbb{R} , which implies that

    \begin{eqnarray} g(h) = -\frac{1}{2}\sum\limits_{{\atop{{1\leq j\leq N}}}}\frac{(1+\cos(\theta_{j}+\theta))m}{[2+h^{2}-2\cos(\theta_{j}+\theta)]^{\frac{3}{2}}} +\frac{1}{2}\sum\limits_{{\atop{{1\leq j\leq N-1}}}}\frac{(1-\cos\theta_{j})m}{|2-2\cos\theta_{j}|^{\frac{3}{2}}}. \end{eqnarray} (3.38)

    In what follows, we prove that there exists h = \bar{h}(N) such that g(\bar{h}(N)) = 0 . Note that \theta = s\pi/N with s\in\{0, 1, \ldots, 2N-1\} is equivalent to \theta = 2\tilde{s}\pi/N or \theta = 2\tilde{s}\pi/N+\pi/N with \tilde{s}\in\{0, 1, \ldots, N-1\} . We divide the following proof into two cases.

    Case 1. \theta = 2\tilde{s}\pi/N with \tilde{s}\in\{0, 1, \ldots, N-1\} .

    On the one hand, since m > 0 , \theta = 2\tilde{s}\pi/N , and 1+\cos\theta_{j}\geq0 with j\in\mathbb{Z} , we have

    \begin{eqnarray} &&-\frac{1}{2}\sum\limits_{{\atop{{1\leq j\leq N}}}}\frac{(1+\cos(\theta_{j}+\theta))m}{[2+h^{2}-2\cos(\theta_{j}+\theta)]^{\frac{3}{2}}} = -\frac{1}{2}\sum\limits_{{\atop{{1+\tilde{s}\leq j+\tilde{s}\leq N+s}}}}\frac{(1+\cos\theta_{j+\tilde{s}})m}{[2+h^{2}-2\cos\theta_{j+\tilde{s}}]^{\frac{3}{2}}}\cr & = &-\frac{1}{2}\sum\limits_{{\atop{{1\leq j\leq N}}}}\frac{(1+\cos\theta_{j})m}{[2+h^{2}-2\cos\theta_{j}]^{\frac{3}{2}}} < 0. \end{eqnarray} (3.39)

    Moreover, if h\rightarrow0^{+} , then

    \begin{eqnarray*} -\frac{1}{2}\sum\limits_{{\atop{{1\leq j\leq N}}}}\frac{(1+\cos\theta_{j})m}{[2+h^{2}-2\cos\theta_{j}]^{\frac{3}{2}}}\rightarrow -\infty, \end{eqnarray*}

    which implies that when the twist angle is \theta = 2\tilde{s}\pi/N with \tilde{s}\in\{0, 1, \ldots, N-1\} , there exists h = h_{1}(N) such that g(h_{1}(N)) < 0 .

    On the other hand, notice that if h\rightarrow +\infty , then

    \begin{eqnarray*} -\frac{1}{2}\sum\limits_{{\atop{{1\leq j\leq N}}}}\frac{(1+\cos\theta_{j})m}{[2+h^{2}-2\cos\theta_{j}]^{\frac{3}{2}}}\rightarrow0. \end{eqnarray*}

    Then, by (3.38)–(3.39), we see that when the twist angle is \theta = 2\tilde{s}\pi/N with \tilde{s}\in\{0, 1, \ldots, N-1\} , there exists h = h_{2}(N) such that g(h_{2}(N)) > 0 .

    Hence for the case of \theta = 2\tilde{s}\pi/N with \tilde{s}\in\{0, 1, \ldots, N-1\} , employing the fact that g is a continuous function, there exists h = \bar{h}(N) such that g(\bar{h}(N)) = 0 .

    Case 2. \theta = 2\tilde{s}\pi/N+\pi/N with \tilde{s}\in\{0, 1, \ldots, N-1\} .

    In this case, by (3.38), \tilde{s}\in\{0, 1, \ldots, N-1\} , and \theta_{d} = 2\pi d/N with d\in \mathbb{Z} , we have

    \begin{eqnarray} g(h)& = &\frac{m}{2}\bigg[-\sum\limits_{{\atop{{1\leq j+\tilde{s}\leq N+\tilde{s}}}}}\frac{1+\cos(\theta_{j+\tilde{s}}+\frac{\pi}{N})}{[2+h^{2}-2\cos(\theta_{j+\tilde{s}}+\frac{\pi}{N})]^{\frac{3}{2}}} +\sum\limits_{{\atop{{1\leq j\leq N-1}}}}\frac{1-\cos\theta_{j}}{|2-2\cos\theta_{j}|^{\frac{3}{2}}}\bigg]\\ & = &\frac{m}{2}\bigg[-\sum\limits_{{\atop{{1\leq j\leq N}}}}\frac{1+\cos(\theta_{j}+\frac{\pi}{N})}{[2+h^{2}-2\cos(\theta_{j}+\frac{\pi}{N})]^{\frac{3}{2}}} +\sum\limits_{{\atop{{1\leq j\leq N-1}}}}\frac{1-\cos\theta_{j}}{|2-2\cos\theta_{j}|^{\frac{3}{2}}}\bigg]. \end{eqnarray} (3.40)

    Then, it follows from (3.40) and Lemma 2.5 that

    \begin{eqnarray} g(h)& = &\frac{m}{2}\bigg[-\sum\limits_{{\atop{{1\leq j\leq N}}}}\frac{1+\cos(\theta_{j}+\frac{\pi}{N})}{[2+h^{2}-2\cos(\theta_{j}+\frac{\pi}{N})]^{\frac{3}{2}}} +\sum\limits_{{\atop{{1\leq j\leq N-1}}}}\frac{1-e^{i\theta_{j}}}{|1-e^{i\theta_{j}}|^{\frac{3}{2}}}\bigg]. \end{eqnarray} (3.41)

    If h\rightarrow0 , then with the help of (3.41) and Lemma 2.6, \lim_{h\rightarrow0}g(h) < 0 , which implies that when the twist angle is \theta = 2\tilde{s}\pi/N+\pi/N with \tilde{s}\in\{0, 1, \ldots, N-1\} , there exists h = h_{3}(N) such that g(h_{3}(N)) < 0 .

    On the other hand, if h\rightarrow +\infty , then

    \begin{eqnarray*} -\sum\limits_{{\atop{{1\leq j\leq N}}}}\frac{1+\cos(\theta_{j}+\frac{\pi}{N})}{[2+h^{2}-2\cos(\theta_{j}+\frac{\pi}{N})]^{\frac{3}{2}}}\rightarrow0, \end{eqnarray*}

    which implies that when the twist angle is \theta = 2\tilde{s}\pi/N+\pi/N with \tilde{s}\in\{0, 1, \ldots, N-1\} , there exists h = h_{4}(N) such that g(h_{4}(N)) > 0 .

    Therefore, for the case of \theta = 2\tilde{s}\pi/N+\pi/N with \tilde{s}\in\{0, 1, \ldots, N-1\} , combining with the continuity of function g , there exists h = \bar{h}(N) such that g(\bar{h}(N)) = 0 .

    By now, Cases 1–2 show us that when \theta = s\pi/N with s\in\{0, 1, \ldots, 2N-1\} , there exists h = \bar{h}(N) such that g(\bar{h}(N)) = 0 , which implies that

    \begin{eqnarray*} \frac{1}{2}\sum\limits_{{\atop{{1\leq j\leq N}}}}\frac{(1-e^{i(\theta_{j}+\theta)})m}{[|e^{i(\theta_{j}+\theta)} -1|^{2}+(\bar{h}(N))^{2}]^{\frac{3}{2}}} +\frac{1}{2}\sum\limits_{{\atop{{1\leq j\leq N-1}}}}\frac{(1-e^{i\theta_{j}})m}{|e^{i\theta_{j}}-1|^{3}} = \sum\limits_{{\atop{{1\leq j\leq N}}}}\frac{m}{[|e^{i(\theta_{j}+\theta)} -1|^{2}+(\bar{h}(N))^{2}]^{\frac{3}{2}}}. \end{eqnarray*}

    Moreover, note that

    \begin{eqnarray*} \sum\limits_{{\atop{{1\leq j\leq N}}}}\frac{m}{[|e^{i(\theta_{j}+\theta)} -1|^{2}+(\bar{h}(N))^{2}]^{\frac{3}{2}}}\in\mathbb{R}. \end{eqnarray*}

    Then, there is a constant \lambda\in\mathbb{R} such that

    \begin{eqnarray*} &&\frac{1}{2}\sum\limits_{{\atop{{1\leq j\leq N}}}}\frac{(1-e^{i(\theta_{j}+\theta)})m}{[|e^{i(\theta_{j}+\theta)} -1|^{2}+(\bar{h}(N))^{2}]^{\frac{3}{2}}} +\frac{1}{2}\sum\limits_{{\atop{{1\leq j\leq N}}}}\frac{(1-e^{i\theta_{j}})m}{|e^{i\theta_{j}}-1|^{3}} = \frac{1}{2}\lambda-\frac{1}{2}\frac{m_{2N+1}}{[1 +\frac{(\bar{h}(N))^{2}}{4}]^{\frac{3}{2}}}\nonumber\\& = &\sum\limits_{{\atop{{1\leq j\leq N}}}}\frac{m}{[|e^{i(\theta_{j}+\theta)} -1|^{2}+(\bar{h}(N))^{2}]^{\frac{3}{2}}} > 0, \end{eqnarray*}

    i.e.,

    \begin{eqnarray*} \left\{ \begin{array}{ll} \frac{1}{2}\frac{m_{2N+1}}{[1 +\frac{(\bar{h}(N))^{2}}{4}]^{\frac{3}{2}}} +\frac{1}{2}\sum\limits_{{\atop{{1\leq j\leq N}}}}\frac{(1-e^{i(\theta_{j}+\theta)})m}{[|e^{i(\theta_{j}+\theta)} -1|^{2}+(\bar{h}(N))^{2}]^{\frac{3}{2}}} +\frac{1}{2}\sum\limits_{{\atop{{1\leq j\leq N}}}}\frac{(1-e^{i\theta_{j}})m}{|e^{i\theta_{j}}-1|^{3}} = \frac{1}{2}\lambda , \\ \frac{1}{2}\frac{m_{2N+1}}{[1 +\frac{(\bar{h}(N))^{2}}{4}]^{\frac{3}{2}}} +\sum\limits_{{\atop{{1\leq j\leq N}}}}\frac{m}{[|e^{i(\theta_{j}+\theta)} -1|^{2}+(\bar{h}(N))^{2}]^{\frac{3}{2}}} = \frac{1}{2}\lambda, \end{array} \right. \end{eqnarray*}

    which implies that there exists a constant \lambda\in\mathbb{R} such that (3.32) holds. Then, by Step 1, the 2N +1 masses form a central configuration.

    For the spatial twisted central configuration, (3.2) holds. Moreover, note that m_{1} = m_{2} = \ldots = m_{N} = m and a = 1 . Then, all the assumptions of Theorem 1.1 are satisfied, so we have a_{1} = 0 , h_{2N+1} = h/2 , and m_{1} = m_{2} = \ldots = m_{N} = m_{N+1} = \ldots = m_{2N} = \, m . Thus, c_{0} = 0 , h_{0} = h/2 , and q_{2N+1} = (0+0i, h/2) . Thus, in the following, it suffices to prove the uniqueness of h .

    In fact, by (3.36) and the first equation of (3.2), for any k^{\prime}\in\{1, 2, \ldots, N\} and any l^{\prime}\in\{N+1, N+2, \ldots, 2N\} , one computes that

    \begin{eqnarray*} \left\{ \begin{array}{ll} \frac{m_{2N+1}}{[1 +\frac{h^{2}}{4}]^{\frac{3}{2}}}\frac{h}{2} +\sum\limits_{{\atop{{N+1\leq l\leq 2N}}}}\frac{[(1-e^{i(\theta_{l-k^{\prime}}+\theta)})m]}{[|1-e^{i(\theta_{l-k^{\prime}}+\theta)}|^{2}+h^{2}]^{\frac{3}{2}}}\frac{h}{2} +\sum\limits_{{\atop{{1\leq j\leq N-1}}}}\frac{[(1-e^{i\theta_{j}})m]}{|1-e^{i\theta_{j}}|^{3}}\frac{h}{2} = \lambda \frac{h}{2}, \\ \frac{\frac{h}{2}m_{2N+1}}{[1 +\frac{h^{2}}{4}]^{\frac{3}{2}}} +\sum\limits_{{\atop{{1\leq j\leq N}}}}\frac{mh}{[|1-e^{i(\theta_{j}+\theta)}|^{2}+h^{2}]^{\frac{3}{2}}} = \lambda h_{0} = \lambda \frac{h}{2}, \end{array} \right. \end{eqnarray*}

    where h > 0 and \theta\in[0, 2\pi) . Hence, it follows from Lemma 2.3 that

    \begin{eqnarray} \left\{ \begin{array}{ll} \frac{m_{2N+1}\frac{h}{2}}{[1 +\frac{h^{2}}{4}]^{\frac{3}{2}}} +\sum\limits_{{\atop{{1\leq j\leq N}}}}\frac{(1-e^{i(\theta_{j}+\theta)})m\frac{h}{2}}{[|1-e^{i(\theta_{j}+\theta)}|^{2}+h^{2}]^{\frac{3}{2}}} +\sum\limits_{{\atop{{1\leq j\leq N-1}}}}\frac{(1-e^{i\theta_{j}})m\frac{h}{2}}{|1-e^{i\theta_{j}}|^{3}} = \lambda \frac{h}{2}, \\ \frac{\frac{h}{2}m_{2N+1}}{[1 +\frac{h^{2}}{4}]^{\frac{3}{2}}} +\sum\limits_{{\atop{{1\leq j\leq N}}}}\frac{mh}{[|1-e^{i(\theta_{j}+\theta)}|^{2}+h^{2}]^{\frac{3}{2}}} = \lambda \frac{h}{2}. \end{array} \right. \end{eqnarray} (4.1)

    Let

    \begin{eqnarray} \left\{ \begin{array}{ll} \bar{x} = \sum\limits_{1\leq j\leq N-1}\frac{1-e^{i\theta_{j}}}{|1-e^{i\theta_{j}}|^{3}}, \\ \bar{y}(h) = \sum\limits_{1\leq j\leq N}\frac{\cos(\theta_{j}+\theta)}{[2-2\cos(\theta_{j}+ \theta)+h^{2}]^{\frac{3}{2}}}, \\ \bar{z}(h) = \sum\limits_{1\leq j\leq N}\frac{1}{[2-2\cos(\theta_{j}+\theta)+h^{2}]^{\frac{3}{2}}}. \end{array} \right. \end{eqnarray} (4.2)

    Combining \lambda\in\mathbb{R} , h\in\mathbb{R} , (4.1), and (4.2), we have

    \begin{eqnarray*} \left\{ \begin{array}{ll} \frac{\frac{h}{2}m_{2N+1}}{[1 +\frac{h^{2}}{4}]^{\frac{3}{2}}} +m\frac{h}{2}[\bar{z}(h)-\bar{y}(h)] +m\frac{h}{2}\bar{x} = \lambda \frac{h}{2}, \\ \frac{\frac{h}{2}m_{2N+1}}{[1 +\frac{h^{2}}{4}]^{\frac{3}{2}}} +mh\bar{z}(h) = \lambda \frac{h}{2}, \end{array} \right. \end{eqnarray*}

    which implies that

    \begin{eqnarray*} m\frac{h}{2}[\bar{z}(h)-\bar{y}(h)]-mh\bar{z}(h) +m\frac{h}{2}\bar{x} = -\lambda \frac{h}{2}, \end{eqnarray*}

    and then we obtain \bar{x} = \bar{y}(h)+\bar{z}(h) . Hence, if the 2N +1 masses form a central configuration, then the distance h must satisfy that \bar{x} = \bar{y}(h)+\bar{z}(h) . Next, we prove the uniqueness of the distance h .

    We take G(h) = \bar{y}(h)+\bar{z}(h)-\bar{x} for h > 0 , and by (4.2), it is easy to verify that G^{\prime}(h) < 0 . Moreover, note that m_{1} = m_{2} = \ldots = m_{N} = m and a = 1 . Then, employing Theorem 1.1, we obtain that the existence of the central configuration implies that \theta = s\pi/N with s\in\{0, 1, \ldots, 2N-1\} holds. Then, due to the rotational symmetry of the central configuration, in order to prove Theorem 1.2, it suffices to consider the following two cases: \theta = 0 and \theta = \pi/N .

    Case 1. \theta = 0 .

    Lemma 2.5 shows that

    \begin{eqnarray*} \bar{x} = \sum\limits_{1\leq j\leq N-1}\frac{1-e^{i\theta_{j}}}{|1-e^{i\theta_{j}}|^{3}}\in\mathbb{R}, \end{eqnarray*}

    and then by (4.2),

    \begin{eqnarray} G(h)& = &\bar{y}(h)+\bar{z}(h)-\bar{x} = \sum\limits_{1\leq j\leq N}\frac{1+\cos\theta_{j}}{[2-2\cos\theta_{j}+h^{2}]^{\frac{3}{2}}} - \sum\limits_{1\leq j\leq N-1}\frac{1-\cos\theta_{j}}{[2-2\cos\theta_{j}]^{\frac{3}{2}}}\cr & = & \sum\limits_{1\leq j\leq N-1}\frac{1+\cos\theta_{j}}{[2-2\cos\theta_{j}+h^{2}]^{\frac{3}{2}}}+\frac{2}{h^{3}} - \sum\limits_{1\leq j\leq N-1}\frac{1-\cos\theta_{j}}{[2-2\cos\theta_{j}]^{\frac{3}{2}}}. \end{eqnarray} (4.3)

    Employing (4.3), one verifies that there exist a small enough constant h = \bar{h} > 0 and a big enough constant h = \tilde{h} > 0 such that G(\bar{h}) > 0 and G(\tilde{h}) < 0 . Then, combining the continuity and monotonicity of function G , for the case of \theta = 0 , there is a unique h = \hat{h} > 0 , such that G(\hat{h}) = 0 , i.e., \bar{x} = \bar{y}(\hat{h})+\bar{z}(\hat{h}) .

    Case 2. \theta = \pi/N .

    Employing (4.2), we have

    \begin{eqnarray*} \bar{y}(h)+\bar{z}(h)& = & \sum\limits_{1\leq j\leq N}\frac{1+\cos(\theta_{j}+\theta)}{[2-2\cos(\theta_{j}+ \theta)+h^{2}]^{\frac{3}{2}}} = \sum\limits_{1\leq j\leq N}\frac{1+\cos(\theta_{j}+\frac{\pi}{N})}{[2-2\cos(\theta_{j}+\frac{\pi}{N})+h^{2}]^{\frac{3}{2}}}\cr & = & \sum\limits_{1\leq j\leq N}\frac{1+\cos(\theta_{j}+\frac{\pi}{N})}{[2-2\cos(\theta_{j}+\frac{\pi}{N})+h^{2}]^{\frac{3}{2}}}. \end{eqnarray*}

    By Lemma 2.6, \lim_{h\rightarrow0}G(h) > 0 . Furthermore, by Lemma 2.5, we see that \lim_{h\rightarrow +\infty}G(h) < 0 . Thus, for the case of \theta = \pi/N , due to the continuity and monotonicity of function G , there is a unique h = \breve{h} > 0 , such that G(\breve{h}) = 0 , i.e., \bar{x} = \bar{y}(\breve{h})+\bar{z}(\breve{h}) .

    Based upon Cases 1–2, there exists only one h > 0 such that \bar{x} = \bar{y}(h)+\bar{z}(h) , i.e., there is only one h > 0 such that the 2N +1 masses form a central configuration. Moreover, combining the other two conclusions that a_{1} = 0 and h_{2N+1} = h/2 , we obtain that q_{2N+1} = (a_{1}e^{i\alpha}, h_{2N+1}) is unique, i.e., there are only one positive distance h between the two paralleled regular N -polygons and only one position q_{2N+1} of the ( 2N +1)-th mass such that the 2N +1 masses form a central configuration.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    The authors sincerely thank the referees and the editors for their valuable comments and suggestions, and the authors also express their sincere gratitude to professor Shiqing Zhang for his helpful discussions and suggestions. This work was supported by the National Natural Science Foundation of China (Grant Nos. 12361022 and 12371163), the China Postdoctoral Science Foundation (Grant No. 2021M700968), the Guizhou Provincial Basic Research Program (Natural Science, Grant Nos. ZK[2021]003 and ZK[2023]138), and the Natural Science Research Project of the Department of Education of Guizhou Province (Grant No. QJJ2022047).

    The authors declare there is no conflict of interest.

    [1] Oberdorster G, Oberdorster E, Oberdorster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113: 823-839. doi: 10.1289/ehp.7339
    [2] Kessler R (2011) Engineered nanoparticles in consumer products: understanding a new ingredient. Environ Health Perspect 119: 120-125. doi: 10.1289/ehp.119-a120
    [3] Vance ME, Kuiken T, Vejerano EP, et al. (2015) Nanotechnology in the real world: redeveloping the nanomaterial consumer products inventory. Beilstein J Nanotechnol 6: 1769-1780. doi: 10.3762/bjnano.6.181
    [4] Comfort KK, Maurer EI, Braydich-Stolle LK, et al. (2011) Interference of silver, gold, and iron oxide nanoparticles on epidermal growth factor signal transduction in epithelial cells. ACS Nano 5: 10000-10008. doi: 10.1021/nn203785a
    [5] Dowding JM, Das S, Kumar A, et al. (2013) Cellular interaction and toxicity depend on physicochemical properties and surface modification of redox-active nanomaterials. ACS Nano 7: 4855-4868. doi: 10.1021/nn305872d
    [6] Hussain SM, Warheit DB, Ng SP, et al. (2015) At the crossroads of nanotoxicology in vitro: past achievements and current challenges. Toxicol Sci 147: 5-16.
    [7] Brunelli A, Pojana G, Callegaro S, et al. (2013) Agglomeration and sedimentation of titanium dioxide nanoparticles (n-TiO2) in synthetic and real waters. J Nanopart Res 15: 1684. doi: 10.1007/s11051-013-1684-4
    [8] Cho EC, Zhang Q, Xia G (2011) The effect of sedimentation and diffusion on cellular uptake of gold nanoparticles. Nat Nanotechnol 6: 385-391. doi: 10.1038/nnano.2011.58
    [9] Braydich-Stolle LK, Breitner EK, Comfort KK, et al. (2014) Dynamic characteristics of silver nanoparticles in physiological fluids: toxicological implications. Langmuir 30: 15309-15316. doi: 10.1021/la5036079
    [10] Hinderliter PM, Minard KR, Orr G, et al. (2010) ISDD: a computational model of particle sedimentation, diffusion and target cell dosimetry for in vitro toxicity studies. Part Fibre Toxicol 7: 36. doi: 10.1186/1743-8977-7-36
    [11] Maurer-Jones MA, Mousavi MPS, Chen LD, et al. (2013) Characterization of silver ion dissolution from silver nanoparticles using fluorous-phase ion-selective electrodes and assessment of resultant toxicity to Shewanella oneidensis. Chem Sci 4: 2564-2572. doi: 10.1039/c3sc50320h
    [12] Bian SW, Mudunkotuwa IA, Rupasinghe T, et al. (2011) Aggregation and dissolution of 4 nm ZnO nanoparticles in aqueous environments: influence of pH, ionic strength, size, and adsorption of humic acid. Langmuir 27: 6059-6068. doi: 10.1021/la200570n
    [13] Braun NJ, DeBrosse MC, Hussain SM, et al. (2016) Modification of the protein corona-nanoparticle complex by physiological factors. Mat Sci Eng C 64: 34-42. doi: 10.1016/j.msec.2016.03.059
    [14] Ong KJ, MacCormack TJ, Clark RJ, et al. (2014) Widespread nanoparticle-assay interference: implications for nanotoxicity testing. PLoS One 9: e90650. doi: 10.1371/journal.pone.0090650
    [15] Worle-Knirsch JM, Pulskamp K, Krug HF (2012) Oops they did it again! Carbon nanotubes hoax scientists in viability assays. Nano Lett 6: 1261-1268.
    [16] Liang L, Cui M, Zhang M, et al. (2015) Nanoparticles’ interference in the evaluation of in vitro toxicity of silver nanoparticles. RSC Adv 5: 67327-67334. doi: 10.1039/C5RA05863E
    [17] Gatoo MA, Naseem S, Arfat MY, et al. (2014) Physiochemical properties of nanomaterials: implication in associated toxic manifestations. Biomed Res Int 2014: 498420.
    [18] Griffitt RJ, Luo J, Gao J, et al. (2008) Effects of particle composition and species on toxicity of metallic nanomaterials in aquatic organisms. Environ Toxicol Chem 27: 1972-1978. doi: 10.1897/08-002.1
    [19] Shang L, Nienhaus K, Nienhaus GU (2014) Engineered nanoparticles interacting with cells: size matters. J Nanobiotechnol 12: 5. doi: 10.1186/1477-3155-12-5
    [20] Hauck TS, Ghazani AA, Chan WCW (2008) Assessing the effect of surface chemistry on gold nanorod uptake, toxicity, and gene expression in mammalian cells. Small 4: 153-159. doi: 10.1002/smll.200700217
    [21] Yu T, Greish K, McGill LD, et al. (2012) Influence of geometry, porosity, and surface characteristics of silica nanoparticles on acute toxicity: their vasculature effect and tolerance threshold. ACS Nano 6: 2289-2301. doi: 10.1021/nn2043803
    [22] Zhu ZJ, Wang H, Yan B, et al. (2012) Effect of surface charge on uptake and distribution of gold nanoparticles in four plant species. Environ Sci Technol 46: 12391-12398. doi: 10.1021/es301977w
    [23] Misra SK, Nuseibeh S, Dybowska A, et al. (2014) Comparative study using spheres, rods and spindle-shaped nanoplatelets on dispersion stability, dissolution, and toxicity of CuO nanomaterials. Nanotoxicology 8: 422-432. doi: 10.3109/17435390.2013.796017
    [24] Jana NR, Gearheart LA, Obare SO, et al. (2002) Liquid crystalline assemblies of ordered gold nanorods. J Mat Chem 12: 2909-2912. doi: 10.1039/b205225c
    [25] Gil PR, Oberdorster G, Elder A, et al. (2010) Correlating physico-chemical and toxicological properties of nanoparticles: the present and the future. ACS Nano 5: 5527-5531.
    [26] Bouwmeester H, Lynch I, Marvin HJ, et al. (2011) Minimal analytical characterization of engineered nanomaterials needed for hazard assessment in biological matrices. Nanotoxicology 5: 1-11. doi: 10.3109/17435391003775266
    [27] Baer D, Gaspar DJ, Nachimuthu P et al. (2010) Application of surface chemistry analysis tools for characterization of nanoparticles. Anal Bioanal Chem 396: 983-1002. doi: 10.1007/s00216-009-3360-1
    [28] Lin PC, Lin S, Sridhar R (2013) Techniques for physicochemical characterization of nanomaterials. Biotechnol Adv 32: 711-726.
    [29] Braun NJ, Comfort KK, Schlager JJ, et al. (2013) Partial recovery of silver nanoparticle-induced neural cytotoxicity through the application of a static magnetic field. Bionanoscience 3: 367-377. doi: 10.1007/s12668-013-0109-2
    [30] Baalousha M, Ju-Nam Y, Cole PA, et al. (2012) Characterization of cerium oxide nanoparticles-part 1: size measurements. Environ Toxicol Chem 31: 983-993. doi: 10.1002/etc.1785
    [31] Joshi M, Bhattacharyya A, Ali SW (2008) Characterization techniques for nanotechnology applications in textiles. Ind J Fibre Text Res 33: 304-317.
    [32] Pachauri T, Singla V, Satsangi A, et al. (2013) SEM-EDX characterization of individual coarse particles in Agra, India. Aerosol Air Qual Res 13: 523-536.
    [33] Murdock RC, Braydich-Stolle L, Schrand AM, et al. (2008) Characterization of nanomaterial dispersion in solution prior to in vitro exposure using dynamic light scattering technique. Toxicol Sci 10: 239-253.
    [34] Breitner EK, Hussain SM, Comfort KK (2015) The role of biological fluid and dynamic flow in the behavior and cellular interactions of gold nanoparticles. J Nanobiotechnol 13:56. doi: 10.1186/s12951-015-0117-1
    [35] Untener EA, Comfort KK, Maurer EI, et al. (2013) Tannic acid coated gold nanorods demonstrate a distinctive form of endosomal uptake and unique distribution within cells. ACS Appl Mat Interfaces 5: 8366-8373. doi: 10.1021/am402848q
    [36] Sethi M, Joung G, Knecht MR (2009) Stability and electrostatic assembly of Au nanorods for use in biological assays. Langmuir 25: 317-325. doi: 10.1021/la802096v
    [37] Dablemont C, Lang P, Mangeney C, et al. (2008) FTIR and XPS study of Pt nanoparticle functionalization and interaction with alumina. Langmuir 24: 5832-5841. doi: 10.1021/la7028643
    [38] Klapetek P, Valtr M, Necas D, et al. (2010) Atomic force microscopy analysis of nanoparticles in non-ideal conditions. Nanoscale Res Lett 6: 514.
    [39] Elzey S, Grassian VH. (2010) Agglomeration, isolation and dissolution of commercially manufactured silver nanoparticles in aqueous environments. J Nanopart Res 12: 1945-1958. doi: 10.1007/s11051-009-9783-y
    [40] Woehl TJ, Park C, Evans JE, et al. (2014) Direct observation of aggregative nanoparticle growth: kinetic modeling of the size distribution and growth rate. Nano Lett 14: 373-378. doi: 10.1021/nl4043328
    [41] Comfort KK, Maurer EI, Hussain SM (2014) Slow release of ions from internalized silver nanoparticles modifies the epidermal growth factor signaling response. Coll Surf B Biointerface 123: 136-142. doi: 10.1016/j.colsurfb.2014.09.008
    [42] Comfort KK, Braydich-Stolle LK, Maurer EI, et al. (2014) Less is more: in vitro chronic, low-level nanomaterial exposure provides a more meaningful toxicity assessment. ACS Nano 8: 3260-3271. doi: 10.1021/nn5009116
    [43] Gardner JW (2002) Death by water intoxication. Mil Med 167.5: 432-434.
    [44] DeBrosse MC, Comfort KK, Untener EA, et al. (2013) High aspect ratio gold nanorods displayed augmented cellular internalization and surface mediated cytotoxicity. Mat Sci Eng C 33: 4094-4100. doi: 10.1016/j.msec.2013.05.056
    [45] Luby AO, Breitner EK, Comfort KK (2015) Preliminary protein corona formation stabilizes gold nanoparticles and improves deposition efficiency. Appl Nanosci doi: 10.1007/s13204-015-0501-z.
    [46] Fabricius AL, Duester L, Meermann et al. (2014) ICP-MS based characterization of inorganic nanoparticles-sample preparation and off-line fractionation strategies. Anal Bioanal Chem 406: 467-479. doi: 10.1007/s00216-013-7480-2
    [47] Xiao Y, Vijver MG, Chen G, et al. (2015) Toxicity and accumulation of Cu and ZnO nanoparticles in Daphnia magna. Environ Sci Technol 49: 4657-4664. doi: 10.1021/acs.est.5b00538
    [48] Sabella S, Carney RP, Brunetti V, et al. (2014) A general mechanism for intracellular toxicity of metal-containing nanoparticles. Nanoscale 6: 7052-7061. doi: 10.1039/c4nr01234h
    [49] Comfort KK, Maurer EI, Hussain SM (2013) The biological impact of concurrent exposure to metallic nanoparticles and a static magnetic field. Bioelectromagnetics 24: 500-511.
    [50] Maurer EI, Comfort KK, Hussain SM, et al. (2012) Novel platform development using an assembly of carbon nanotube, nanogold and immobilized RNA capture element towards rapid, selective sensing of bacteria. Sensors 12: 8135-8144. doi: 10.3390/s120608135
    [51] Kempen PJ, Hitzman C, Sasportas LS, et al. (2013) Advanced characterization techniques for nanoparticles for cancer research: applications of SEM and NanoSIMS for locating Au nanoparticles in cells. Mater Res Soc Symp Proc 1569: 157-163.
    [52] DeVolder MF, Tawfick SH, Baughman RH, et al. (2013) Carbon nanotubes: present and future commercial applications. Science 339: 535-539. doi: 10.1126/science.1222453
    [53] Marangon I, Boggetto N, Menard-Moyon C, et al. (2013) Localization and relative quantification of carbon nanotubes in cells with multispectral imaging flow cytometry. J Vis Exp 82: e50566.
    [54] Chilek JL, Wang R, Draper RK, et al. (2014) Use of gel electrophoresis and Raman spectroscopy to characterize the effect of the electronic structure of single-wall carbon nanotubes on cellular uptake. Anal Chem 86: 2882-2887. doi: 10.1021/ac403827m
    [55] DeLoid G, Cohen JM, Dark R, et al. (2014) Estimating the effective density of engineered nanomaterials for in vitro dosimetry. Nat Commun 5: 3514.
    [56] Teeguarden JG, Hinderliter PM, Orr G, et al. (2007) Particokinetics in vitro: dosimetry considerations for in vitro nanoparticle toxicity assessments. Toxicol Sci 95: 300-312.
    [57] Comfort KK, Speltz J, Stacy BM, et al. (2013) Physiological fluid specific agglomeration patterns diminish gold nanorod photothermal characteristics. Adv Nanopart 2: 336-343. doi: 10.4236/anp.2013.24046
    [58] Son J, Vavra J, Forbes VE (2015) Effects of water quality parameters on agglomeration and dissolution of copper oxide nanoparticles (CuO-NPs) using a central composite circumscribed design. Sci Total Environ 521: 183-190.
    [59] Stacy BM, Comfort KK, Comfort DA, et al. (2013) In vitro identification of gold nanorods through hyperspectral imaging. Plasmonics 8: 1235-1240. doi: 10.1007/s11468-013-9538-6
    [60] Khanbeig A, Kuman A, Sadouki F et al. (2012) The delivered dose: applying particokinetics to in vitro investigations of nanoparticle internalization by macrophages. J Control Release 162: 259-266. doi: 10.1016/j.jconrel.2012.07.019
    [61] Cohen J, DeLoid G, Pyrgiotakis G, et al. (2013) Interactions of engineered nanomaterials in physiological media and implications for in vitro dosimetry. Nanotoxicology 7: 417-431. doi: 10.3109/17435390.2012.666576
    [62] Cohen JM, Teeguarde JG, Demokritou P (2014) An integrated approach for the in vitro dosimetry of engineered nanomaterials. Part Fibre Toxicol 11:20. doi: 10.1186/1743-8977-11-20
    [63] Summers MRB, Brown MR, Hondow N, et al. (2015) Statistical prediction of nanoparticle delivery: from cell culture media to cell. Nanotechnology 26: 155101.
    [64] Liu R, Liu HH, Ji Z, et al. (2015) Evaluation of toxicity ranking for metal oxide nanoparticles via an in vitro dosimetry model. ACS Nano 9: 9303-9313. doi: 10.1021/acsnano.5b04420
    [65] Richarz AN, Madden JC, Robinson RLM, et al. (2015) Development of computational models for the prediction of the toxicity of nanomaterials. Perspect Sci 3: 27-29. doi: 10.1016/j.pisc.2014.11.015
    [66] Burello E, Worth AP (2011) QSAR modeling of nanomaterials. Wiley Interdiscip Rev Nanomed Nanobiotechnol 3: 298-306. doi: 10.1002/wnan.137
    [67] Puzyn T, Rasulev B, Gajewicz A, et al. (2011) Using nano-QSAR to predict the cytotoxicity of metal oxide nanoparticles. Nat Nanotechnol 6: 175-178. doi: 10.1038/nnano.2011.10
    [68] Desai T, Keblinski P, Kumar SK (2005) Molecular dynamics simulations of polymer transport in nanocomposites. J Chem Phys 122: 134910. doi: 10.1063/1.1874852
    [69] Song Z, Wang Y, Xu Z (2015) Mechanical responses of the bio-nano interface: a molecular dynamics study of graphene-coated lipid membrane. Theor Appl Mech Lett 5: 231-235. doi: 10.1016/j.taml.2015.11.003
    [70] Arora S, Rajwade JM, Paknikar KM (2012) Nanotoxicology and in vitro studies: the need of the hour. Toxicol Appl Pharmacol 258: 151-165. doi: 10.1016/j.taap.2011.11.010
    [71] Demokritou P, Gass S, Pyrgiotakis G, et al. (2013) An in vivo and in vitro toxicological characterization of realistic nanoscale CeO2 inhalation exposures. Nanotoxicology 7: 1338-1350. doi: 10.3109/17435390.2012.739665
    [72] Frohlich E, Salar-Behzadi S (2014) Toxicological assessment of inhaled nanoparticles: role of in vivo, ex vivo, and in silico studies. Int J Mol Sci 15: 4795-4822. doi: 10.3390/ijms15034795
    [73] Voight N, Henrich-Noach P, Kockentiedt S, et al. (2014) Toxicity of polymeric nanoparticles in vivo and in vitro. J Nanopart Res 6: 1-13.
    [74] Cho WS, Duffin R, Howie SEM, et al. (2011) Progressive severe lung injury by zinc oxide nanoparticles; the role of Zn2+ dissolution inside lysosomes. Part Fibre Toxicol 8: 27. doi: 10.1186/1743-8977-8-27
    [75] Shacter E, Weitzman SA (2002) Chronic inflammation and cancer. Oncology 16: 230-232.
    [76] Kusek ME, Pazos MA, Pirazi W, et al. (2014) In vitro coculture to assess pathogen induced neutrophil trans-epithelial migration. J Vis Exp 6: e50823
    [77] Walczak AP, Kramer E, Hendriksen PJ, et al. (2015) In vitro gastrointestinal digestion increases the translocation of polystyrene nanoparticles in an in vitro intestinal co-culture model. Nanotoxicology 9:886-894. doi: 10.3109/17435390.2014.988664
    [78] Fede C, Fortunati I, Weber V, et al. (2015) Evaluation of gold nanoparticles toxicity toward human endothelial cells under static and flow conditions. Microvas Res 97:147-155. doi: 10.1016/j.mvr.2014.10.010
    [79] Ucciferri N, Collnot EM, Gaiser BK, et al. (2014) In vitro toxicology screening of nanoparticles on primary human endothelial cells and the role of flow in modulating cell response. Nanotoxicology 8: 697-708. doi: 10.3109/17435390.2013.831500
    [80] Jeannnet N, Fierz M, Klaberer M, et al. (2015) Nano aerosol chamber for in vitro toxicity (NACIVT) studies. Nanotoxicology 9: 34-42. doi: 10.3109/17435390.2014.886739
    [81] Xie Y, Williams NG, Tolic A, et al. (2012) Aerosolized ZnO nanoparticles induce toxicity in alveolar type II epithelial cells at the air-liquid interface. Toxicol Sci 125: 450-461.
    [82] Macarron R, Banks MN, Bojanic D, et al. (2011) Impact of high-throughput screening in biomedical research. Nat Rev Drug Discov 10: 188-195. doi: 10.1038/nrd3368
    [83] Mahto SK, Charwat V, Rothen-Rutishauser B, et al. (2015) Microfluidic platforms for advanced risk assessments of nanomaterials. Nanotoxicology 9: 381-395. doi: 10.3109/17435390.2014.940402
    [84] Oberdӧrster G, Maynard A, Donaldson K, et al. (2005) Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Part Fibre Toxicol 2: 8. doi: 10.1186/1743-8977-2-8
    [85] Esch E, Bahinksi A, Huh D (2014) Organs-on-chip at the frontiers of drug discovery. Nat Rev Drug Discov 14: 248-260. doi: 10.1038/nrc3690
  • This article has been cited by:

    1. Giovanna Gonzales-Calienes, Ben Yu, Farid Bensebaa, Development of a Reverse Logistics Modeling for End-of-Life Lithium-Ion Batteries and Its Impact on Recycling Viability—A Case Study to Support End-of-Life Electric Vehicle Battery Strategy in Canada, 2022, 14, 2071-1050, 15321, 10.3390/su142215321
    2. Majid Alipanah, David Reed, Vicki Thompson, Yoshiko Fujita, Hongyue Jin, Sustainable bioleaching of lithium-ion batteries for critical materials recovery, 2023, 382, 09596526, 135274, 10.1016/j.jclepro.2022.135274
    3. Apurba Kumar Saha, Nighat Afroz Chowdhury, Qian Zhang, Denis Prodius, Priyesh Wagh, Hongyue Jin, Critical materials for low carbon society, 2022, 2, 2770-4580, 279, 10.3934/ctr.2022014
    4. Sonja Rosenberg, Simon Glöser-Chahoud, Sandra Huster, Frank Schultmann, A dynamic network design model with capacity expansions for EoL traction battery recycling – A case study of an OEM in Germany, 2023, 160, 0956053X, 12, 10.1016/j.wasman.2023.01.029
    5. Weronika Urbańska, Magdalena Osial, Sławomir Wilczewski, 2022, Application of the Chemical Leaching Method for the Recovery of Li and Co Contained in Spent Li-Ion Batteries, 12, 10.3390/environsciproc2022018012
    6. Shaobo Guo, Guwang Liu, Xiaoqian Guo, Yue Wang, Game evolution and simulation analysis of power battery recycling in China under conflicting supply and demand of critical metals, 2022, 10, 2296-598X, 10.3389/fenrg.2022.984437
    7. Md Sohel Mollah, Behzad Behdani, 2024, Chapter 21, 978-3-031-49950-0, 301, 10.1007/978-3-031-49951-7_21
    8. Arindam Mukhopadhyay, Majid Alipanah, Luis A. Diaz, Hongyue Jin, Caitlin Barboza, Catherine House, Yoshiko Fujita, Vicki S. Thompson, David W. Reed, Electrochemically Assisted (Bio)leaching of End-of-Life Lithium-Ion Batteries for Critical Metals Recovery, 2024, 12, 2168-0485, 14119, 10.1021/acssuschemeng.4c06090
    9. Majid Alipanah, Hongyue Jin, Qiang Zhou, Caitlin Barboza, David Gazzo, Vicki Thompson, Yoshiko Fujita, Jiangping Liu, Andre Anderko, David Reed, Sustainable bioleaching of lithium-ion batteries for critical metal recovery: Process optimization through design of experiments and thermodynamic modeling, 2023, 199, 09213449, 107293, 10.1016/j.resconrec.2023.107293
    10. P. M. Tembo, C. Dyer, V. Subramanian, Lithium-ion battery recycling—a review of the material supply and policy infrastructure, 2024, 16, 1884-4057, 10.1038/s41427-024-00562-8
    11. Majid Alipanah, Sunday Oluwadamilola Usman, Apurba Kumar Saha, Hongyue Jin, Designing profitable supply chains for lithium-ion battery recycling in the United States, 2024, 4, 2770-4580, 22, 10.3934/ctr.2024002
    12. Thanapon Chandakhiaw, Neung Teaumroong, Pongdet Piromyou, Pongpan Songwattana, Waraporn Tanthanuch, Somchai Tancharakorn, Sakhob Khumkoa, Efficiency of Penicillium sp. and Aspergillus sp. for bioleaching lithium cobalt oxide from battery wastes in potato dextrose broth and sucrose medium, 2024, 24, 25901230, 103170, 10.1016/j.rineng.2024.103170
    13. Basanta Kumar Biswal, Rajasekhar Balasubramanian, Recovery of valuable metals from spent lithium-ion batteries using microbial agents for bioleaching: a review, 2023, 14, 1664-302X, 10.3389/fmicb.2023.1197081
    14. Markus Meissner, Juliane Hafermann, Ubong Silas, Rhodri Saunders, Evaluating the Environmental Impact of Single-Use and Multi-Use Surgical Staplers with Staple Line Buttressing in Laparoscopic Bariatric Surgery, 2023, Volume 16, 1179-1594, 1423, 10.2147/RMHP.S415989
    15. Gillvest Mathew, Wen Hui Teoh, Wan Muhammad Ammar Wan Abdul Rahman, Nurhidayah Abdullah, Survey on actions and willingness towards the disposal, collection, and recycling of spent lithium-ion batteries in Malaysia, 2023, 421, 09596526, 138394, 10.1016/j.jclepro.2023.138394
    16. Alessandro Neri, Maria Angela Butturi, Rita Gamberini, Sustainable management of electric vehicle battery remanufacturing: A systematic literature review and future directions, 2024, 77, 02786125, 859, 10.1016/j.jmsy.2024.10.006
    17. Francis Hanna, Luyao Yuan, Calvin Somers, Annick Anctil, 2024, 9781394214266, 297, 10.1002/9781394214297.ch23
    18. Yan Feng, Peng Wang, Wen Li, Qian Zhang, Wei-Qiang Chen, Danyi Feng, Environmental impacts of lithium supply chains from Australia to China, 2024, 19, 1748-9326, 094035, 10.1088/1748-9326/ad69ac
    19. Tapan Kumar Sankar, Pratima Meshram, Environmental Impact Assessment in the Entire Life Cycle of Lithium-Ion Batteries, 2024, 262, 0179-5953, 10.1007/s44169-023-00054-w
    20. Bianca Ifeoma Chigbu, Ikechukwu Umejesi, Unlocking Economic and Environmental Gains Through Lithium-Ion Battery Recycling for Electric Vehicles, 2024, 13, 2079-9276, 163, 10.3390/resources13120163
    21. Francisco de Borja Ojembarrena, Eric van Hullebusch, Rémi Marsac, Noemi Merayo, Angeles Blanco, Carlos Negro, Selective recovery of Co(II), Mn(II), Cu(II), and Ni(II) by multiple step batch treatments with nanocellulose products, 2024, 1614-7499, 10.1007/s11356-024-35699-0
    22. Geani Teodor Man, Andreea Maria Iordache, Ramona Zgavarogea, Constantin Nechita, Recycling Lithium-Ion Batteries—Technologies, Environmental, Human Health, and Economic Issues—Mini-Systematic Literature Review, 2024, 14, 2077-0375, 277, 10.3390/membranes14120277
    23. Mina Rezaei, Atiyeh Nekahi, Anil Kumar M R, Ameer Nizami, Xia Li, Sixu Deng, Jagjit Nanda, Karim Zaghib, A review of lithium-ion battery recycling for enabling a circular economy, 2025, 630, 03787753, 236157, 10.1016/j.jpowsour.2024.236157
    24. Mina Rezaei, Atiyeh Nekahi, Ebrahim Feyzi, Anil Kumar M R, Jagjit Nanda, Karim Zaghib, Advancing the circular economy by driving sustainable urban mining of end-of-life batteries and technological advancements, 2025, 75, 24058297, 104035, 10.1016/j.ensm.2025.104035
    25. Moheb Mottaghi, Saeed Mansour, A multi-objective robust optimization model to sustainable closed-loop lithium-ion battery supply chain network design under uncertainties, 2025, 00981354, 109008, 10.1016/j.compchemeng.2025.109008
    26. Jinhua Liu, Zhe Wang, Zhenxiang Zhang, Yongfeng Qi, Zhancheng Guo, Sulfidation reduction roasting-slag smelting process for lithium recovery and high nickel matte production from spent NMC lithium batteries, 2025, 509, 13858947, 161493, 10.1016/j.cej.2025.161493
  • Reader Comments
  • © 2016 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(5177) PDF downloads(1085) Cited by(2)

Figures and Tables

Figures(2)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog