Mini review

An overview of pathway prediction tools for synthetic design of microbial chemical factories

  • The increasing need for the bio-based industrial production of compounds via microbial cell factories leads to a demand for computational pathway prediction tools. A variety of algorithms have been developed that can be used to identify possible metabolic pathways and their corresponding enzymatic parts. These prediction tools play a central role in metabolic pathway design and microbial chassis selection for industrial chemical production. Here, we briefly discuss how the development of some key computational tools, which are currently available for pathway construction, could facilitate the synthetic redesign of microbial chassis. Special emphasis is given to the characteristics and drawback(s) of some of the computational tools used in pathway prediction, and a generalized workflow for the design of microbial chemical factories is provided. Perspectives, challenges and future trends are briefly highlighted.

    Citation: Bashir Sajo Mienda, Mohd Shahir Shamsir. An overview of pathway prediction tools for synthetic design of microbial chemical factories[J]. AIMS Bioengineering, 2015, 2(1): 1-14. doi: 10.3934/bioeng.2015.1.1

    Related Papers:

    [1] Lingxiao Lu, Jianrong Wu . Hyers-Ulam-Rassias stability of cubic functional equations in fuzzy normed spaces. AIMS Mathematics, 2022, 7(5): 8574-8587. doi: 10.3934/math.2022478
    [2] Sizhao Li, Xinyu Han, Dapeng Lang, Songsong Dai . On the stability of two functional equations for $ (S, N) $-implications. AIMS Mathematics, 2021, 6(2): 1822-1832. doi: 10.3934/math.2021110
    [3] Kandhasamy Tamilvanan, Jung Rye Lee, Choonkil Park . Ulam stability of a functional equation deriving from quadratic and additive mappings in random normed spaces. AIMS Mathematics, 2021, 6(1): 908-924. doi: 10.3934/math.2021054
    [4] J. Vanterler da C. Sousa, E. Capelas de Oliveira, F. G. Rodrigues . Ulam-Hyers stabilities of fractional functional differential equations. AIMS Mathematics, 2020, 5(2): 1346-1358. doi: 10.3934/math.2020092
    [5] Nazek Alessa, K. Tamilvanan, G. Balasubramanian, K. Loganathan . Stability results of the functional equation deriving from quadratic function in random normed spaces. AIMS Mathematics, 2021, 6(3): 2385-2397. doi: 10.3934/math.2021145
    [6] Ehsan Movahednia, Young Cho, Choonkil Park, Siriluk Paokanta . On approximate solution of lattice functional equations in Banach f-algebras. AIMS Mathematics, 2020, 5(6): 5458-5469. doi: 10.3934/math.2020350
    [7] Zhihua Wang . Approximate mixed type quadratic-cubic functional equation. AIMS Mathematics, 2021, 6(4): 3546-3561. doi: 10.3934/math.2021211
    [8] Zhihua Wang, Choonkil Park, Dong Yun Shin . Additive $ \rho $-functional inequalities in non-Archimedean 2-normed spaces. AIMS Mathematics, 2021, 6(2): 1905-1919. doi: 10.3934/math.2021116
    [9] Supriya Kumar Paul, Lakshmi Narayan Mishra . Stability analysis through the Bielecki metric to nonlinear fractional integral equations of $ n $-product operators. AIMS Mathematics, 2024, 9(4): 7770-7790. doi: 10.3934/math.2024377
    [10] Murugesan Manigandan, R. Meganathan, R. Sathiya Shanthi, Mohamed Rhaima . Existence and analysis of Hilfer-Hadamard fractional differential equations in RLC circuit models. AIMS Mathematics, 2024, 9(10): 28741-28764. doi: 10.3934/math.20241394
  • The increasing need for the bio-based industrial production of compounds via microbial cell factories leads to a demand for computational pathway prediction tools. A variety of algorithms have been developed that can be used to identify possible metabolic pathways and their corresponding enzymatic parts. These prediction tools play a central role in metabolic pathway design and microbial chassis selection for industrial chemical production. Here, we briefly discuss how the development of some key computational tools, which are currently available for pathway construction, could facilitate the synthetic redesign of microbial chassis. Special emphasis is given to the characteristics and drawback(s) of some of the computational tools used in pathway prediction, and a generalized workflow for the design of microbial chemical factories is provided. Perspectives, challenges and future trends are briefly highlighted.


    Stability problem of a functional equation was first posed in [31] which was answered in [7] and then generalized in [1,28] for additive mappings and linear mappings respectively. Since then several stability problems for various functional equations have been investigated in [9,10,12,23]. Fuzzy version was discussed in [13,14]. Recently, the stability problem for Jensen functional equation and cubic functional equation were considered in [15,20] respectively in intuitionistic fuzzy normed spaces; while the idea of intuitionistic fuzzy normed space was introduced in [30] and further studied in [16,17,18,19,21,22,24,25,26,27,29] to deal with some summability problems. Several results for the Hyers-Ulam stability of many functional equations have been proved by several researchers [4,5,6,8,11,23]

    In modeling applied problems only partial information may be known (or) there may be a degree of uncertainty in the parameters used in the model or some measurments may be imprecise. Due to such features, many authors have considered the study of functional equations in the fuzzy setting. Jun et al. introduced the following functional equations

    $ f(2x+y)+f(2xy)=2f(x+y)+2f(xy)+12f(x)
    $
    (1.1)

    and

    $ f(3x+y)+f(3xy)=3f(x+y)+3f(xy)+48f(x)
    $
    (1.2)

    and investigated its general solution and the Hyers-Ulam stability respectively. The functional equations (1.1) and (1.2) are called cubic functional equations because the function $ f(x) = cx^{3} $ is a solution of the above functional equations (1.1) and (1.2).

    Rassias introduced the following new cubic equation $ f : X\rightarrow Y $ satisfying the cubic functional equation

    $ f(x+2y)+3f(x)=3f(x+y)+f(xy)+6f(y)
    $
    (1.3)

    for all $ x, y \in X $, with $ X $ a linear space, $ Y $ a real complete linear space, and then solved the Hyers-Ulam stability problem for the above functional equation.

    In this paper, we define and find the general solution of the 3-D cubic functional equation

    $ f(2x1+x2+x3)=3f(x1+x2+x3)+f(x1+x2+x3)+2f(x1+x2)+2f(x1+x3)6f(x1x2)6f(x1x3)3f(x2+x3)+2f(2x1x2)+2f(2x1x3)18f(x1)6f(x2)6f(x3).
    $
    (1.4)

    We also prove the Hyers-Ulam stability of this functional equation in fuzzy normed spaces by using the direct method and the fixed point method.

    Definition 2.1. Let X be a real linear space. A function $ N: X\times \mathbb{R} \rightarrow $ $ [0, 1] $ is said to be a fuzzy norm on $ X $ if for all $ x, y\in X $ and $ a, b\in \mathbb{R} $,

    $ (N_1)\quad N(x, c) = 0 $ for$ c\leq 0 $;

    $ (N_2)\quad x = 0 $ if and only if $ N(x, c) = 1 $ for all $ c > 0 $;

    $ (N_3)\quad N(cx, b) = N\left(x, \frac{b}{|c|}\right) \quad if \quad c\neq 0 $;

    $ (N_4)\quad N(x+y, a+b)\geq \min\{N(x, a), N(y, b)\} $;

    $ (N_5)\quad N(x, \cdot) $ is a non-decreasing function on $ \mathbb{R} $ and $ \lim_{b\rightarrow \infty} N(x, b) = 1; $

    $ (N_6)\quad $for $ x\neq0, N(x, \cdot) $ is (upper semi) continuous on $ \mathbb{R} $.

    The pair $ (X, N) $ is called a fuzzy normed linear space. One may regard $ N(x, b) $ as the truth value of the statement the norm of $ x $ is less than or equal to the real number $ b $.

    Definition 2.2. Let $ \left(X, N\right) $ be a fuzzy normed linear space. Let $ \{x_{n}\} $ be a sequence in $ X $. Then $ x_{n} $ is said to be convergent if there exists $ x\in X $ such that $ \lim_{n \rightarrow \infty} N\left(x_{n}-x, b\right) = 1 $ for all $ b > 0 $. In that case, $ x $ is called the limit of the sequence $ \{x_{n}\} $ and we denote it by $ N-\lim_{n \rightarrow \infty}x_{n} = x $.

    Definition 2.3. A sequence $ \{x_{n}\} $ in $ X $ is called Cauchy if for each $ \epsilon > 0 $ and each $ b > 0 $ there exists $ n_{0} $ such that for all $ n \geq n_{0} $ and all $ p > 0 $, we have $ N\left(x_{n+p}-x_{n}, b\right) > 1-\epsilon $.

    Every convergent sequence in a fuzzy normed space is Cauchy.

    Definition 2.4. If each Cauchy sequence is convergent, then the fuzzy norm is said to be complete and the fuzzy normed space is called a fuzzy Banach space.

    Definition 2.5. A mapping $ f: X \rightarrow Y $ between fuzzy normed spaces X and Y is continuous at a point $ x_{0} $ if for each sequence $ \{ x_{n}\} $ converging to $ x_{0} $ in X, the sequence $ \{f(x_{n})\} $ converges to $ f(x_{0}) $. If $ f $ is continuous at each point of $ x_{0} \in X $, then $ f $ is said to be continuous on $ X $.

    We bring the following theorems which some results in fixed point theory. These results play a fundamental role to arrive our purpose of this paper.

    Theorem 2.6. (Banach Contraction Principle) Let $ \left(X, d\right) $ be a complete metric space and consider a mapping $ T:X\to X $ which is strictly contractive mapping, that is,

    (A1) if $ d\left(T_{x}, T_{y} \right)\le Ld\left(x, y\right) $ for some (Lipschitz constant) $ L < 1 $, then

    1) the mapping T has one and only fixed point $ x^{*} = T\left(x^{*} \right); $

    2) the fixed point for each given element $ x^{*} $ is globally attractive, that is,

    (A2) $ {\mathop{\lim }\limits_{n\to \infty }} T^{n} x = x^{*} $ for any starting point $ x\in X $;

    1) One has the following estimation inequalities:

    (A3) $ d\left(T^{n} x, x^{*} \right)\le \frac{1}{1-L} d\left(T^{n} x, T^{n+1} x\right) $ for all $ n\ge 0, \, \, \, x\in X, $

    (A4) $ d\left(x, x^{*} \right)\le \frac{1}{1-L} d\left(x, x^{*} \right), \, \, \, \, \, \forall \, \, x\in X $.

    Theorem 2.7. (The Alternative of fixed point) For a complete generalized metric space $ (X, d) $ and a strictly contractive mapping $ T:X\rightarrow X $ with Lipschitz constant $ L $, and for each given element $ x\in X $, either

    (B1) $ d(T^n x, T^{n+1} x) = +\infty, $ for all $ n\geq 0 $, or

    (B2) There exists a natural number $ n_0 $ such that

    i) $ d(T^n x, T^{n+1} x) < \infty $ for all $ n\geq n_0 $;

    ii) the sequence $ (T^n x) $ is convergent to a fixed point $ y^* $ of T;

    iii) $ y^* $ is the unique fixed point of T in the set $ Y = \left\{y\in X; d(T^{n_{0}} x, y) < \infty \right\} $;

    iv) $ d(y^*, y)\leq \frac{1}{1-L}d(y, Ty) $ for all $ y\in Y $.

    In this section, we discuss the general solution of the functional equation (1.4).

    Theorem 3.1. If an odd mapping $ f:X \rightarrow Y $ satisfies the functional equation

    $ f(2x+y)+f(2xy)=2f(x+y)+2f(xy)+12f(x)
    $
    (3.1)

    for all $ x, y \in X $ if and only if $ f:X \rightarrow Y $ satisfies the functional equation

    $ f(2x1+x2+x3)=3f(x1+x2+x3)+f(x1+x2+x3)+2f(x1+x2)+2f(x1+x3)6f(x1x2)6f(x1x3)3f(x2+x3)+2f(2x1x2)+2f(2x1x3)18f(x1)6f(x2)6f(x3)
    $
    (3.2)

    for all $ x_{1}, x_{2}, x_{3} \in X $.

    Proof. Let $ f:X \rightarrow Y $ satisfy the functional equation (3.1). Setting $ (x, y) = (0, 0) $ in (3.1), we get $ f(0) = 0 $. Replacing $ (x, y) $ by $ (x, 0) $, $ (x, x) $ and $ (x, 2x) $ respectively in (3.1), we obtain

    $ f(2x)=23f(x),  f(3x)=33f(x)  and  f(4x)=43f(x)
    $
    (3.3)

    for all $ x \in X $. In general for any positive integer $ a $, we have

    $ f(ax)=a3f(x)
    $
    (3.4)

    for all $ x \in X $. It follows from (3.4) that

    $ f(a2x)=a6f(x)  and  f(a3x)=a9f(x)
    $
    (3.5)

    for all $ x \in X $. Replacing $ (x, y) $ by $ (x_{1}, x_{2}+x_{3}) $ in (3.1), we get

    $ f(2x1+x2+x3)2f(x1+x2+x3)=f(2x1+x2+x3)+2f(x1x2x3)+12f(x1)
    $
    (3.6)

    for all $ x_{1}, x_{2}, x_{3} \in X $. Again replacing $ (x, y) $ by $ (x_{2}+x_{3}, -2x_{1}) $ in (3.1), we get

    $ 4f(x1+x2+x3)+4f(x1+x2+x3)f(2x1+x2+x3)6f(x2+x3)=f(2x1+x2+x3)
    $
    (3.7)

    for all $ x_{1}, x_{2}, x_{3} \in X $. Substituting (3.7) in (3.6), we get

    $ f(2x1+x2+x3)3f(x1+x2+x3)=f(x1+x2+x3)3f(x2+x3)+6f(x1)
    $
    (3.8)

    for all $ x_{1}, x_{2}, x_{3} \in X $. Setting $ (x, y) $ by $ (x_{2}, 2x_{1}) $ in (3.1). we obtain

    $ 4f(x1+x2)4f(x1x2)6f(x2)=f(2x1+x2)f(2x1x2)
    $
    (3.9)

    for all $ x_{1}, x_{2} \in X $. Switching $ (x, y) $ by $ (x_{3}, 2x_{1}) $ in (3.1), we obtain

    $ 4f(x1+x3)4f(x1x3)6f(x3)=f(2x1+x3)f(2x1x3)
    $
    (3.10)

    for all $ x_{1}, x_{3} \in X $. Adding (3.9) and (3.10), we get

    $ 4f(x1+x2)4f(x1x2)+4f(x1+x3)4f(x1x3)6f(x2)6f(x3)f(2x1+x2)+f(2x1x2)f(2x1+x3)+f(2x1x3)=0
    $
    (3.11)

    for all $ x_{1}, x_{2}, x_{3} \in X $. Adding (3.8) and (3.11), we get

    $ f(2x1+x2+x3)=3f(x1+x2+x3)+f(x1+x2+x3)3f(x2+x3)+6f(x1)+4f(x1+x2)4f(x1x2)+4f(x1+x3)4f(x1x3)
    $
    (3.12)
    $ 6f(x2)6f(x2)f(2x1+x2)+f(2x1x2)f(2x1+x3)+f(2x1x3)
    $
    (3.13)

    for all $ x_{1}, x_{2}, x_{3} \in X $. Replacing $ (x, y) $ by $ (-x_{1}, x_{2}) $ in (3.1), we obtain

    $ f(2x1+x2)=f(2x1x2)2f(x1x2)2f(x1+x2)12f(x1)
    $
    (3.14)

    for all $ x_{1}, x_{2} \in X $. Switching $ (x, y) $ by $ (-x_{1}, x_{3}) $ in (3.1), we have

    $ f(2x1+x3)=f(2x1x3)2f(x1x3)2f(x1+x3)12f(x1)
    $
    (3.15)

    for all $ x_{1}, x_{3} \in X $. Adding (3.14) and (3.15), we obtain

    $ f(2x1+x2)f(2x1+x3)=f(2x1x2)2f(x1x2)2f(x1+x2)+f(2x1x3)2f(x1x3)2f(x1+x3)24f(x1)
    $
    (3.16)

    for all $ x_{1}, x_{2}, x_{3} \in X $. Substituting (3.16) in (3.12), we have

    $ f(2x1+x2+x3)=3f(x1+x2+x3)+f(x1+x2+x3)+2f(x1+x2)+2f(x1+x3)6f(x1x2)6f(x1x3)3f(x2+x3)+2f(2x1x2)+2f(2x1x3)18f(x1)6f(x2)6f(x3)
    $
    (3.17)

    for all $ x_{1}, x_{2}, x_{3} \in X $.

    Conversely, let $ f:X \rightarrow Y $ satisfy the functional equation (3.2). Replacing $ (x_{1}, x_{2}, x_{3}) $ by $ (x, 0, 0) $, $ (0, x, 0) $ and $ (0, 0, x) $ respectively in (3.17), we get

    $ f(2x)=23f(x),  f(x)=13f(x)  and  f(x)=13f(x).
    $
    (3.18)

    One can easy to verify from (3.18) that, replacing $ (x_{1}, x_{2}, x_{3}) $ by $ (x, y, 0) $ in (3.2), we have

    $ f(2x+y)2f(2xy)=5f(x+y)7f(xy)6f(x)9f(y)
    $
    (3.19)

    for all $ x, y \in X $. Again replacing $ (x_{1}, x_{2}, x_{3}) $ by $ (x, 0, -y) $ in (3.2), we obtain

    $ f(2xy)2f(2x+y)=7f(x+y)+5f(xy)6f(x)+9f(y)
    $
    (3.20)

    for all $ x, y \in X $. Adding the equations (3.19) and (3.20), we get our result.

    Throughout the upcoming sections, assume that $ X $, $ (Z, N^{'}) $ and $ (Y, N) $ are linear space, fuzzy normed space and fuzzy Banach space, respectively. Let us denote

    $ Df(x1,x2,x3)=f(2x1+x2+x3)=3f(x1+x2+x3)+f(x1+x2+x3)+2f(x1+x2)+2f(x1+x3)6f(x1x2)6f(x1x3)3f(x2+x3)+2f(2x1x2)+2f(2x1x3)18f(x1)6f(x2)6f(x3)
    $

    In this section, we investigate the Hyers-Ulam stability of the functional equation (1.4) in fuzzy normed space via direct method.

    Theorem 4.1. Let $ \omega \in \{-1, 1\} $ be fixed and $ \Gamma:X^{3} \rightarrow Z $ be a mapping such that for some $ \rho > 0 $ with $ \left(\frac{\rho}{2^{3}}\right)^{\omega} < 1 $

    $ N(Γ(2ωx,0,0),ε)N(ρωΓ(x,0,0),ε)
    $
    (4.1)

    for all $ x \in X $ and all $ \varepsilon > 0 $ and

    $ limnN(Γ(2ωnx1,2ωnx2,2ωnx3),23ωnε)=1
    $

    for all $ x_{1}, x_{2}, x_{3} \in X $ and all $ \varepsilon > 0 $. Suppose an odd mapping $ f:X \rightarrow Y $ satisfies the inequality

    $ N(Df(x1,x2,x3),ε)N(Γ(x1,x2,x3),ε)
    $
    (4.2)

    for all $ \varepsilon > 0 $ and all $ x_{1}, x_{2}, x_{3} \in X $. Then the limit

    $ C(x)=Nlimnf(2ωnx)23ωn
    $

    exists for all $ x \in X $ and the mapping $ C:X \rightarrow Y $ is a unique cubic mapping such that

    $ N(f(x)C(x),ε)N(Γ(x,0,0),3ε23ρ)
    $
    (4.3)

    for all $ x \in X $ and all $ \varepsilon > 0 $.

    Proof. First assume $ \omega = 1 $. Replacing $ (x_{1}, x_{2}, x_{3}) $ by $ (x, 0, 0) $ in (4.2), we get

    $ N(3f(2x)24f(x),ε)N(Γ(x,0,0),ε)
    $
    (4.4)

    for all $ x \in X $ and all $ \varepsilon > 0 $. From (4.4), we have

    $ N(f(2x)8f(x),ε3)N(Γ(x,0,0),ε)
    $
    (4.5)

    for all $ x \in X $ and all $ \varepsilon > 0 $. Replacing $ x $ by $ 2^{n}x $ in (4.5), we obtain

    $ N(f(2n+1x)23f(2nx),ε3(23))N(Γ(2nx,0,0),ε)
    $
    (4.6)

    for all $ x \in X $ and $ \varepsilon > 0 $. Using (4.1), $ (N_{3}) $ in (4.6) we get

    $ N(f(2n+1x)23f(2nx),ε3(23))N(Γ(x,0,0),ερn)
    $
    (4.7)

    for all $ x \in X $ and all $ \varepsilon > 0 $. It is easy to verify from (4.7), that

    $ N(f(2n+1x)23(n+1)f(2nx)23n,ε3(23)(23n))N(Γ(x,0,0),ερn)
    $
    (4.8)

    holds for all $ x \in X $ and all $ \varepsilon > 0 $. Replacing $ \varepsilon $ by $ \rho^{n} \varepsilon $ in (4.8), we get

    $ N(f(2n+1x)23(n+1)f(2nx)23n,ρnε23(n+1)3)N(Γ(x,0,0),ε)
    $
    (4.9)

    for all $ x \in X $ and all $ \varepsilon > 0 $. It is easy to see that

    $ f(2nx)23nf(x)=n1i=0f(2i+1x)23(i+1)f(2ix)23i
    $
    (4.10)

    for all $ x \in X $. From (4.9) and (4.10), we have

    $ N(f(2nx)23nf(x),n1i=0ερi3(23(i+1)))min{N(f(2i+1x)23(i+1)f(2ix)23i,ερi3(23(i+1))) :i=0,1,,n1}N(Γ(x,0,0),ε)
    $
    (4.11)

    for all $ x \in X $ and all $ \varepsilon > 0 $. Replacing $ x $ by $ 2^{m}x $ in (4.11) and using (4.1), $ (N_{3}) $, we get

    $ N(f(2n+mx)23(n+m)f(2mx)23m,n1i=0ερi3(23(i+1)))N(Γ(2mx,0,0),ε)N(Γ(x,0,0),ερm)
    $

    and so

    $ N(f(2n+mx)23(n+m)f(2mx)23m,n+m1i=mερi3(23(i+1)))N(Γ(x,0,0),ε)
    $
    (4.12)

    for all $ x \in X $, $ \varepsilon > 0 $ and all $ m, n \geq 0 $. Replacing $ \varepsilon $ by $ \frac{\varepsilon}{\sum_{i = m}^{n+m-1}\frac{\rho^{i}}{3(2^{3(i+1)})}} $ in (4.12), we get

    $ N(f(2n+mx)23(n+m)f(2mx)23m,ε)N(Γ(x,0,0),εn+m1i=mρi3(23(i+1)))
    $
    (4.13)

    for all $ x \in X $, $ \varepsilon > 0 $ and all $ m, n \geq 0 $. Since $ 0 < \rho < 2^{3} $ and $ \sum_{i = 0}^{n}\left(\frac{\rho}{2^{3}}\right)^{i} < \infty $, the Cauchy criterion for convergence and $ (N_{5}) $ imply that $ \{\frac{f(2^{n}x)}{2^{3n}}\} $ is a Cauchy sequence in $ (Y, N) $. Since $ (Y, N) $ is complete, this sequence converges to some point $ C(x) \in Y $. So one can define the mapping $ C:X \rightarrow Y $ by

    $ C(x):=Nlimnf(2nx)23n
    $

    for all $ x \in X $. Since $ f $ is odd, $ C $ is odd. Letting $ m = 0 $ in (4.13), we obtain

    $ N(f(2nx)23nf(x),ε)N(Γ(x,0,0),εn1i=0ρi3(23(i+1)))
    $
    (4.14)

    for all $ x \in X $ and all $ \varepsilon > 0 $. Taking the limit as $ n \rightarrow \infty $ in (4.14) and using $ (N_{6}) $, we get

    $ N(f(x)C(x),ε)N(Γ(x,0,0),3ε(23ρ))
    $

    for all $ x \in X $ and all $ \varepsilon > 0 $. Now we claim that $ C $ is cubic. Replacing $ (x_{1}, x_{2}, x_{3}) $ by $ (2^{n}x_{1}, 2^{n}x_{2}, 2^{n}x_{3}) $ in (4.2) respectively, we have

    $ N(123nDf(2nx1,2nx2,2nx3),ε)N(Γ(2nx1,2nx2,2nx3),23nε)
    $

    for all $ x \in X $ and all $ \varepsilon > 0 $. Since

    $ \lim\limits_{n \rightarrow \infty}N^{'}\left(\Gamma (2^{n}x_{1},2^{n}x_{2},2^{n}x_{3}),2^{3n}\varepsilon \right) = 1, $

    $ A $ satisfies the functional equation (1.4). Hence $ C:X \rightarrow Y $ is cubic. To prove the uniqueness of $ C $, let $ D:X \rightarrow Y $ be another cubic mapping satisfying (4.3). Fix $ x \in X $. Clearly, $ C(2^{n}x) = 2^{3n}C(x) $ and $ D(2^{n}x) = 2^{3n}D(x) $ for all $ x \in X $ and all $ n \in \mathbb{N} $. It follows from (4.3) that

    $ N(C(x)D(x),ε)=N(C(2nx)23nD(2nx)23n,ε)                           min{N(C(2nx)23nf(2nx)23n,ε2),N(f(2nx)23nD(2nx)23n,ε2)}                          N  (Γ(2nx,0,0),3(2n)ε(23ρ)2)                         N  (Γ(x,0,0),3(2n)ε(23ρ)2ρn)
    $

    for all $ x \in X $ and all $ \varepsilon > 0 $. Since $ \lim_{n \rightarrow \infty}\frac{3(2^{n})\varepsilon (2^{3}-\rho)}{2\rho^{n}} = \infty $, we have

    $ \lim\limits_{n \rightarrow \infty}N^{'}\left(\Gamma (x,0,0), \frac{3(2^{n})\varepsilon (2^{3}-\rho)}{2\rho^{n}}\right) = 1. $

    Thus $ N(C(x)-D(x), \varepsilon) = 1 $ for all $ x \in X $ and all $ \varepsilon > 0 $, and so $ C(x) = D(x) $.

    For $ \omega = -1 $, we can prove the result by a similar method. This completes the proof of the theorem.

    The following corollary is an immediate consequence of Theorem 4.1, concerning the stability for the functional equation (1.4).

    Corollary 4.2. Suppose that the mapping $ f:X\rightarrow Y $ satisfies the inequality

    $ N(Df(x1,x2,x3),ε){N(θ,ε)N(θ3i=1||xi||s,ε)N(θ(3i=1||xi||3s+Π3i=1||xi||s),ε)
    $

    for all $ x_1, x_2, x_3\in X $ and all $ \varepsilon > 0, $ where $ \theta, $ s are constants with $ \theta > 0 $. Then there exists a unique cubic mapping $ C:X\rightarrow Y $ such that

    $ N(f(x)C(x),ε){N(θ,21ε)N(θ||x||s,3232sε);s3N(θ||x||3s,3232nsε);s3n
    $

    for all $ x \in X $ and all $ r > 0 $.

    In this section, we establish the Hyers-Ulam stability of the functional equation (1.4) in fuzzy normed space via fixed point method.

    To prove the stability result, we define the following: $ \eta_i $ is a constant such that

    $ ηi={2ifi=012ifi=1
    $

    and $ \Omega $ is the set such that $ \Omega = \left\{t: X\rightarrow Y, t(0) = 0\right\}. $

    Theorem 5.1. Let $ f:X\rightarrow Y $ be a mapping for which there exists a mapping $ \Gamma:X^{3}\rightarrow Z $ with condition

    $ limkN(Γ(ηkix1,ηkix2,ηkix3),η3kiε)=1
    $
    (5.1)

    for all $ x_1, x_2, x_3\in X $ and all $ \varepsilon > 0 $ and satisfying the inequality

    $ N(Df(x1,x2,x3),ε)N(Γ(x1,x2,x3),ε)
    $
    (5.2)

    for all $ x_{1}, x_{2}, x_{3}\in X $ and $ \varepsilon > 0. $ If there exists $ L = L[i] $ such that the function $ x\rightarrow \beta(x) = \frac{1}{3} \Gamma \left(\frac{x}{2}, 0, 0\right) $ has the property

    $ N(L1η3iβ(ηix),ε)=N(β(x),ε)
    $
    (5.3)

    for all $ x\in X $ and $ \varepsilon > 0, $ then there exists a unique cubic function $ C:X\rightarrow Y $ satisfying the functional equation (1.4) and

    $ N(f(x)-C(x),\varepsilon)\geq N'\left(\frac{L^{1-i}}{1-L}\beta (x),\varepsilon\right) $

    for all $ x\in X $ and $ \varepsilon > 0. $

    Proof. Set

    $ Γ(x1,x2,x3)={θθ(3i=1||xi||s)θ(3i=1||xi||s+3i=1||xi||ns)
    $

    for all $ x_1, x_2, x_3\in X $. Then

    $ N(Γ(ηkix1,ηkix2,ηkix3),η3kiε)={N(θ,η3kiε)N(θ3i=1||xi||s,η(3s)kiε)N(θ(3i=1||xi||ns+Π3i=1||xi||s),η(3ns)kiε)
    $
    $ ={1ask,1ask,1ask.
    $

    Thus (5.1) holds. But we have

    $ \beta(x) = \frac{1}{3}\Gamma\left(\frac{x}{2},0,0\right) $

    has the property

    $ N'\left(L\frac{1}{\eta_{i}^{3}}\beta (\eta_i x),\varepsilon\right)\geq N'(\beta (x),\varepsilon) $

    for all $ x\in X $ and $ \varepsilon > 0 $. Hence

    $ N'(\beta (x),\varepsilon) = N'\left(\Gamma \left(\frac{x}{2},0,0\right),3\varepsilon\right) = {N(θ,3ε)N(θ||x2||s,3ε)N(θ||x2||ns,3ε).
    $

    Thus

    $ N(1η3iβ(ηix),ε)={N(θη3i,3ε)N(θη3i(22s)||ηix||s,3ε)N(θη3i(22ns)||ηix||ns,3ε)={N(η3iβ(x),ε)N(ηs3iβ(x),ε)N(ηns3iβ(x),ε).
    $

    Now we can decide the Lipschitz constant $ 0 < L < 1 $ by $ \eta_i $, given in the previous statement of Theorem 5.1. So we divide into the following 6 cases for the conditions of $ \eta_{i} $ as follows:

    Case (ⅰ): $ L = 2^{-3} \quad for \quad s = 0 \quad if \quad i = 0 $:

    $ N(f(x)-C(x), \varepsilon)\geq N'\left(\frac{L^{1-i}}{1-L}\beta(x), \varepsilon\right)\geq N'\left(\frac{\theta(2^{-3})}{1-2^{-3}}, 3 \varepsilon\right)\geq N'\left(\theta, 21 \varepsilon\right) $.

    Case (ⅱ): $ L = 2^{3} \quad for \quad s = 0 \quad if \quad i = 1 $:

    $ N(f(x)-C(x), \varepsilon)\geq N'\left(\frac{L^{1-i}}{1-L}\beta(x), \varepsilon\right)\geq N'\left(\frac{ \theta}{1-2}, 3 \varepsilon\right)\geq N'\left(\theta, -21\varepsilon\right) $.

    Case (ⅲ): $ L = 2^{s-3} \quad for \quad s < 3 \quad if \quad i = 0 $:

    $ N(f(x)C(x),ε)N(L1i1Lβ(x),ε)N(2s312s3θ||x||s2s,3ε)N(θ||x||s,3ε(232s)).
    $

    Case (ⅳ): $ L = 2^{3-s} \quad for \quad s > 3 \quad if \quad i = 1 $:

    $ N(f(x)C(x),ε)N(L1i1Lβ(x),ε)N(1123sθ||x||s2s,3ε)N(θ||x||s,3ε(2s23)).
    $

    Case (ⅴ): $ L = 2^{ns-3} \quad for \quad s < \frac{3}{n} \quad if \quad i = 0 $:

    $ N(f(x)C(x),ε)N(L1i1Lβ(x),ε)N(2ns312ns3θ||x||ns2ns,3ε)N(θ||x||ns,3ε(232ns)).
    $

    Case (ⅵ): $ L = 2^{3-ns} \quad for \quad s < \frac{3}{n} \quad if \quad i = 1 $:

    $ N(f(x)C(x),ε)N(L1i1Lβ(x),ε)N(1123nsθ||x||ns2ns,3ε)N(θ||x||ns,3ε(2ns23)).
    $

    Hence the proof is completed.

    The following corollary is an immediate consequence of Theorem 5.1, concerning the stability of the functional equation (1.4).

    Corollary 5.2. Suppose a function $ f:X\rightarrow Y $ satisfies the inequality

    $ N(Df(x1,x2,x3),ε){N(θ,ε)N(θ3i=1||xi||s,ε)N(θ(3i=1||xi||3s+Π3i=1||xi||s),ε)
    $

    for all $ x_1, x_2, x_3\in X $ and $ \varepsilon > 0, $ where $ \theta, s $ are constants with $ \theta > 0. $ Then there exists a unique cubic mapping $ C:X\rightarrow Y $ such that

    $ N(f(x)C(x),ε){N(θ,21ε)N(θ||x||s,3232sε);s3N(θ||x||3s,3232nsε);s3n
    $

    for all $ x\in X $ and $ \varepsilon > 0. $

    Remark 5.3. To prove the stability of functional equations and functional inequalities, we have two methods: direct method and fixed point method. For the direct method, we use the Hyers-Ulam method, which is a traditional method, and for the fixed point method, we use the Isac-Rassias method, which is a more recent method. The proofs for the stability of functional equations and functional inequalities are similar to the orginal direct method and/or the fixed point method.

    In general, to prove the stability, we divide two cases, for an example, $ p > 3 $ and $ 0 < p < 3 $ in $ \|x\|^p $, appeared in a control function of cubic functional equations. In this paper, we just use one control function to prove the stability of a new 3-D cubic functional equation by using the direct method and by using the fixed point method.

    We have introduced the following 3-D cubic functional equation

    $ f(2x1+x2+x3)=3f(x1+x2+x3)+f(x1+x2+x3)+2f(x1+x2)+2f(x1+x3)6f(x1x2)6f(x1x3)3f(x2+x3)+2f(2x1x2)+2f(2x1x3)18f(x1)6f(x2)6f(x3).
    $

    We have solved the 3-D cubic functional equation and we have proved the Hyers-Ulam stability of the 3-D functional equation in fuzzy normed spaces by using the direct method and the fixed point method.

    C. Park was supported by Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (NRF -2017R1D1A1B04032937).

    The authors declare that they have no competing interests.

    [1] Chou CH, Chang WC, Chiu CM, et al.( 2009) FMM: a web server for metabolic pathway reconstruction and comparative analysis. Nucleic Acids Res 37: W129–34.
    [2] Hatzimanikatis V, Li C, Ionita JA, et al. (2005) Exploring the diversity of complex metabolic networks. Bioinformatics 21: 1603–1609.
    [3] Henry CS, Broadbelt LJ, Hatzimanikatis V (2010) Discovery and analysis of novel metabolic pathways for the biosynthesis of industrial chemicals: 3-hydroxypropanoate. Biotechnol Bioeng 106: 462–473.
    [4] Rodrigo G, Carrera J, Prather KJ, et al. (2008) DESHARKY: Automatic design of metabolic pathways for optimal cell growth. Bioinformatics 24: 2554–2556.
    [5] Carbonell P, Planson AG, Fichera D, et al. (2011) A retrosynthetic biology approach to metabolic pathway design for therapeutic production. BMC Syst Biol 5: 122. doi: 10.1186/1752-0509-5-122
    [6] Carbonell P, Planson AG, Faulon JL (2013) Retrosynthetic design of heterologous pathways, in Methods Mol Biol. Springer Science+Business Media, LLC. 149–173.
    [7] Cho A, Yun H, Park JH, et al. (2010) Prediction of novel synthetic pathways for the production of desired chemicals. BMC Syst Biol 4: 35. doi: 10.1186/1752-0509-4-35
    [8] Chatsurachai S, Furusawa C, Shimizu H (2012) An in silico platform for the design of heterologous pathways in nonnative metabolite production. BMC Bioinformatics 13: 93. doi: 10.1186/1471-2105-13-93
    [9] Kanehisa M, Goto S, Sato Y, et al. (2012) KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res 40: D109–114.
    [10] Medema MH, van Raaphorst R, Takano E, et al. (2012) Computational tools for the synthetic design of biochemical pathways. Nat Rev Microbiol 10: 191–202.
    [11] Khosla C, Keasling JD (2003) Metabolic Engineering for drug discovery and development. Nat Rev Drug Discov 2: 1019–1025.
    [12] Mienda BS, Shamsir MS (2013) Thermotolerant micro-organisms in Consolidated Bioprocessing for ethanol production: A review. Res Biotechnol 4: 1–6.
    [13] Schomburg I, Chang A, Placzek S, et al. (2013) BRENDA in 2013: integrated reactions, kinetic data, enzyme function data, improved disease classification: new options and contents in BRENDA. Nucleic Acids Res 41: D764–772.
    [14] Schellenberger J, Park JO, Conrad TM, et al. (2010) BiGG: a Biochemical Genetic and Genomic knowledgebase of large scale metabolic reconstructions. BMC Bioinformatics 11: 213. doi: 10.1186/1471-2105-11-213
    [15] Le Novere N, Bornstein B, Broicher A, et al. (2006) BioModels Database: a free, centralized database of curated, published, quantitative kinetic models of biochemical and cellular systems. Nucleic Acids Res 34: D689–691.
    [16] Rocha I, Maia P, Evangelista P, et al. (2010) OptFlux: an open-source software platform for in silico metabolic engineering. BMC Syst Biol 4: 45. doi: 10.1186/1752-0509-4-45
    [17] Hoops S, Sahle S, Gauges R, et al. (2006) COPASI--a COmplex PAthway SImulator. Bioinformatics 22: 3067–74.
    [18] Schaber J (2012) Easy parameter identifiability analysis with COPASI. Biosystems 110: 183–5.
    [19] Planson AG, Carbonell P, Paillard E, et al. (2012) Compound toxicity screening and structure-activity relationship modeling in Escherichia coli. Biotechnol Bioeng 109: 846–850.
    [20] Fehér T, Planson AG, Carbonell P, et al. (2014) Validation of RetroPath, a computer-aided design tool for metabolic pathway engineering. Biotechnol J 9: 1446–1457.
    [21] Planson AG, Carbonell P, Grigoras I, et al. (2012) A retrosynthetic biology approach to therapeutics: from conception to delivery. Curr Opin Biotechnol 23: 948–956.
    [22] Fernandez-Castane A, Feher T, Carbonell P, et al. (2014) Computer-aided design for metabolic engineering. J Biotechnol 192: 302–313.
    [23] Atsumi S, Hanai T, Liao JC (2008) Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature 451: 86–89.
    [24] Reed JL, Vo TD, Schilling CH, et al. (2003) An expanded genome-scale model of Escherichia coli K-12 (iJR904 GSM/GPR). Genome Biol 4: R54. doi: 10.1186/gb-2003-4-9-r54
    [25] Shinfuku Y, Sorpitiporn N, Sono M, et al. (2009) Development and experimental verification of a genome-scale metabolic model for Corynebacterium glutamicum. Microb Cell Fact 8: 43. doi: 10.1186/1475-2859-8-43
    [26] Mo ML, Palsson BO, Herrgard MJ (2009) Connecting extracellular metabolomic measurements to intracellular flux states in yeast. BMC Syst Biol 3: 37. doi: 10.1186/1752-0509-3-37
    [27] Becker SA, Feist AM, Mo ML, et al. (2007) Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox. Nat Protoc 2: 727–738.
    [28] Schellenberger J, Que R, Fleming RM, et al. (2011) Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2.0. Nat Protoc 6: 1290–1307.
    [29] Trinh CT, Wlaschin A, Srienc F (2009) Elementary mode analysis: a useful metabolic pathway analysis tool for characterizing cellular metabolism. Appl Microbiol Biotechnol 81: 813–826.
    [30] Pharkya P, Burgard AP, Maranas CD (2004) OptStrain: A computational framework for redesign of microbial production systems. Genome Res 14: 2367–2376.
    [31] Burgard AP, Pharkya P, Maranas CD (2003) Optknock: a bilevel programming framework for identifying gene knockout strategies for microbial strain optimization. Biotechnol Bioeng 84:647–657.
    [32] Mienda BS, Shamsir MS, Shehu I, et al. (2014) In Silico Metabolic Engineering Interventions of Escherichia coli for Enhanced Ethanol Production, Based on Gene Knockout Simulation. IIOAB J 5: 16–23.
    [33] Mienda BS, Shamsir MS (2014) In silico Gene knockout metabolic interventions in Escherichia coli for Enhanced Ethanol production on Glycerol. Res J Pharm Biol Chem Sci 5: 964–974.
    [34] Mienda BS, Shamsir MS, Salleh FM (2014) In silico metabolic engineering prediction of Escherichia coli genome model for production of D-lactic acid from glycerol using the OptFlux software platform. Int J Computational Bioinformatics In Silico Modeling 3: 460–465.
    [35] Dhamankar H, Prather KL (2011) Microbial chemical factories: recent advances in pathway engineering for synthesis of value added chemicals. Curr Opin Struct Biol 21: 488–494.
  • This article has been cited by:

    1. Tae Hun Kim, Ha Nuel Ju, Hong Nyeong Kim, Seong Yoon Jo, Choonkil Park, Bihomomorphisms and biderivations in Lie Banach algebras, 2020, 5, 2473-6988, 2196, 10.3934/math.2020145
    2. Vediyappan Govindan, Inho Hwang, Choonkil Park, Hyers-Ulam stability of an n-variable quartic functional equation, 2021, 6, 2473-6988, 1452, 10.3934/math.2021089
    3. K. Tamilvanan, Jung Rye Lee, Choonkil Park, Hyers-Ulam stability of a finite variable mixed type quadratic-additive functional equation in quasi-Banach spaces, 2020, 5, 2473-6988, 5993, 10.3934/math.2020383
    4. Murali Ramdoss, Divyakumari Pachaiyappan, Choonkil Park, Jung Rye Lee, Stability of a generalized n-variable mixed-type functional equation in fuzzy modular spaces, 2021, 2021, 1029-242X, 10.1186/s13660-021-02594-y
    5. Kandhasamy Tamilvanan, Jung Rye Lee, Choonkil Park, Ulam stability of a functional equation deriving from quadratic and additive mappings in random normed spaces, 2021, 6, 2473-6988, 908, 10.3934/math.2021054
  • Reader Comments
  • © 2015 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(15490) PDF downloads(1325) Cited by(5)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog