Review Special Issues

Lignin biodegradation and industrial implications

  • Received: 28 October 2014 Accepted: 04 December 2014 Published: 11 December 2014
  • Lignocellulose, which comprises the cell walls of plants, is the Earth’s most abundant renewable source of convertible biomass. However, in order to access the fermentable sugars of the cellulose and hemicellulose fraction, the extremely recalcitrant lignin heteropolymer must be hydrolyzed and removed—usually by harsh, costly thermochemical pretreatments. Biological processes for depolymerizing and metabolizing lignin present an opportunity to improve the overall economics of the lignocellulosic biorefinery by facilitating pretreatment, improving downstream cellulosic fermentations or even producing a valuable effluent stream of aromatic compounds for creating value-added products. In the following review we discuss background on lignin, the enzymology of lignin degradation, and characterized catabolic pathways for metabolizing the by-products of lignin degradation. To conclude we survey advances in approaches to identify novel lignin degrading phenotypes and applications of these phenotypes in the lignocellulosic bioprocess.

    Citation: Adam B Fisher, Stephen S Fong. Lignin biodegradation and industrial implications[J]. AIMS Bioengineering, 2014, 1(2): 92-112. doi: 10.3934/bioeng.2014.2.92

    Related Papers:

  • Lignocellulose, which comprises the cell walls of plants, is the Earth’s most abundant renewable source of convertible biomass. However, in order to access the fermentable sugars of the cellulose and hemicellulose fraction, the extremely recalcitrant lignin heteropolymer must be hydrolyzed and removed—usually by harsh, costly thermochemical pretreatments. Biological processes for depolymerizing and metabolizing lignin present an opportunity to improve the overall economics of the lignocellulosic biorefinery by facilitating pretreatment, improving downstream cellulosic fermentations or even producing a valuable effluent stream of aromatic compounds for creating value-added products. In the following review we discuss background on lignin, the enzymology of lignin degradation, and characterized catabolic pathways for metabolizing the by-products of lignin degradation. To conclude we survey advances in approaches to identify novel lignin degrading phenotypes and applications of these phenotypes in the lignocellulosic bioprocess.

    [1] U.S. Department of Energy (2011) U.S. Billion-Ton Update: Biomass Supply for a Bioenergy and Bioproducts Industry. R.D. Perlack and B.J. Stokes (Leads), ORNL/TM-2011/224. Oak Ridge National Laboratory, Oak Ridge, TN. 227p.
    [2] Nonhebel S (2005) Renewable energy and food supply: Will there be enough land? Renew Sust Energ Rev 9: 191-201. doi: 10.1016/j.rser.2004.02.003
    [3] Faaij APC (2006) Bio-energy in europe: Changing technology choices. Energ Policy 34: 322-342. doi: 10.1016/j.enpol.2004.03.026
    [4] Lane J (2014) Beta renewables: Biofuels digest's 2014 5-minute guide. Available from: ute-guide/.
    [5] Himmel ME, Ding S, Johnson DK, et al. (2007) Biomass recalcitrance: Engineering plants and enzymes for biofuels production. Science 315: 804-807. doi: 10.1126/science.1137016
    [6] Ragauskas AJ, Beckham GT, Biddy MJ, et al. (2014) Lignin valorization: Improving lignin processing in the biorefinery. Science 344: 1246843-1246843. doi: 10.1126/science.1246843
    [7] Foyle T, Jennings L, Mulcahy P (2007) Compositional analysis of lignocellulosic materials: Evaluation of methods used for sugar analysis of waste paper and straw. Bioresour Technol 98:3026-3036. doi: 10.1016/j.biortech.2006.10.013
    [8] Ruiz-Dueñas FJ, Martínez ÁT (2009) Microbial degradation of lignin: How a bulky recalcitrant polymer is efficiently recycled in nature and how we can take advantage of this. Microbial Biotechnology 2: 164-177. doi: 10.1111/j.1751-7915.2008.00078.x
    [9] Faix O (1991) Classification of lignins from different botanical origins by FT-IR spectroscopy. Holzforschung 45: 21-28. doi: 10.1515/hfsg.1991.45.s1.21
    [10] Wong DW (2009) Structure and action mechanism of ligninolytic enzymes. Appl Biochem Biotechnol 157: 174-209. doi: 10.1007/s12010-008-8279-z
    [11] Parthasarathi R, Romero RA, Redondo A, et al. (2011) Theoretical study of the remarkably diverse linkages in lignin. J Phys Chem Lett 2: 2660-2666. doi: 10.1021/jz201201q
    [12] Ralph J, Lundquist K, Brunow G, et al. (2004) Lignins: Natural polymers from oxidative coupling of 4-hydroxyphenyl- propanoids. Phytochemistry Rev 3: 29-60. doi: 10.1023/B:PHYT.0000047809.65444.a4
    [13] Ralph J, Akiyama T, Kim H, et al. (2006) Effects of coumarate 3-hydroxylase down-regulation on lignin structure. J Biol Chem 281: 8843-8853. doi: 10.1074/jbc.M511598200
    [14] Zeng Y, Himmel ME, Ding SY (2012) Coherent raman microscopy analysis of plant cell walls. Methods Mol Biol 908: 49-60.
    [15] Tetard L, Passian A, Jung S, et al. (2012) Development of new methods in scanning probe microscopy for lignocellulosic biomass characterization. Ind Biotechnology 8: 245-249. doi: 10.1089/ind.2012.0017
    [16] Du X, Gellerstedt G, Li J (2013) Universal fractionation of lignin-carbohydrate complexes (LCCs) from lignocellulosic biomass: An example using spruce wood. Plant J 74: 328-338. doi: 10.1111/tpj.12124
    [17] Chylla RA, Van Acker R, Kim H, et al. (2013) Plant cell wall profiling by fast maximum likelihood reconstruction (FMLR) and region-of-interest (ROI) segmentation of solution-state 2D 1H-13C NMR spectra. Biotechnol Biofuels 6: 45. doi: 10.1186/1754-6834-6-45
    [18] Holtman KM, Chang H, Jameel H, et al. (2003) Elucidation of lignin structure through degradative methods: Comparison of modified DFRC and thioacidolysis. J Agric Food Chem 51:3535-3540. doi: 10.1021/jf0340411
    [19] Sykes R, Yung M, Novaes E, et al. (2009) High-throughput screening of plant cell-wall composition using pyrolysis molecular beam mass spectroscopy. Methods Mol Biol 581:169-183. doi: 10.1007/978-1-60761-214-8_12
    [20] Pingali SV, Urban VS, Heller WT, et al. (2010) Breakdown of cell wall nanostructure in dilute acid pretreated biomass. Biomacromolecules 11: 2329-2335. doi: 10.1021/bm100455h
    [21] Morreel K, Dima O, Kim H, et al. (2010) Mass spectrometry-based sequencing of lignin oligomers. Plant Physiol 153: 1464-1478. doi: 10.1104/pp.110.156489
    [22] Balakshin M, Capanema E, Gracz H, et al. (2011) Quantification of lignin-carbohydrate linkages with high-resolution NMR spectroscopy. Planta 233: 1097-1110. doi: 10.1007/s00425-011-1359-2
    [23] Chen F, Dixon RA (2007) Lignin modification improves fermentable sugar yields for biofuel production. Nat Biotechnol 25: 759-761. doi: 10.1038/nbt1316
    [24] Liu CJ, Cai Y, Zhang X, et al. (2014) Tailoring lignin biosynthesis for efficient and sustainable biofuel production. Plant Biotechnol J 12(9):1154-1162.
    [25] Franke R, Hemm MR, Denault JW, et al. (2002) Changes in secondary metabolism and deposition of an unusual lignin in the ref8 mutant of Arabidopsis. Plant J 30: 47-59. doi: 10.1046/j.1365-313X.2002.01267.x
    [26] Ziebell A, Gracom K, Katahira R, et al. (2010) Increase in 4-coumaryl alcohol units during lignification in alfalfa (Medicago sativa) alters the extractability and molecular weight of lignin. J Biol Chem 285: 38961-38968. doi: 10.1074/jbc.M110.137315
    [27] Reddy MSS, Chen F, Shadle G, et al. (2005) Targeted down-regulation of cytochrome P450 enzymes for forage quality improvement in alfalfa (Medicago sativa L.). P Natl Acad Sci 102:16573-16578. doi: 10.1073/pnas.0505749102
    [28] Vanholme R, Storme V, Vanholme B, et al. (2012) A systems biology view of responses to lignin biosynthesis perturbations in Arabidopsis. Plant Cell 24: 3506-3529. doi: 10.1105/tpc.112.102574
    [29] Van Acker R, Vanholme R, Storme V, et al. (2013) Lignin biosynthesis perturbations affect secondary cell wall composition and saccharification yield in Arabidopsis thaliana. Biotechnology Biofuels 6: 46. doi: 10.1186/1754-6834-6-46
    [30] Li L, Zhou Y, Cheng X, et al. (2003) Combinatorial modification of multiple lignin traits in trees through multigene cotransformation. P Natl Acad Sci 100: 4939-4944. doi: 10.1073/pnas.0831166100
    [31] Shen H, He X, Poovaiah CR, et al. (2012) Functional characterization of the switchgrass (Panicum virgatum) R2R3-MYB transcription factor PvMYB4 for improvement of lignocellulosic feedstocks. New Phytol 193: 121-136. doi: 10.1111/j.1469-8137.2011.03922.x
    [32] Shen B, Li C, Tarczynski MC (2002) High free-methionine and decreased lignin content result from a mutation in the Arabidopsis S-adenosyl-L-methionine synthetase 3 gene. Plant J 29:371-380. doi: 10.1046/j.1365-313X.2002.01221.x
    [33] Zhang K, Bhuiya MW, Pazo JR, et al. (2012) An engineered monolignol 4-O-methyltransferase depresses lignin biosynthesis and confers novel metabolic capability in Arabidopsis. Plant Cell24: 3135-3152. doi: 10.1105/tpc.112.101287
    [34] Bonawitz ND, Chapple C (2013) Can genetic engineering of lignin deposition be accomplished without an unacceptable yield penalty? Curr Opin Biotechnol 24: 336-343. doi: 10.1016/j.copbio.2012.11.004
    [35] Chapple C, Ladisch M, Meilan R (2007) Loosening lignin's grip on biofuel production. Nat Biotechnol 25: 746-748. doi: 10.1038/nbt0707-746
    [36] Porth I, Klapste J, Skyba O, et al. (2013) Populus trichocarpa cell wall chemistry and ultrastructure trait variation, genetic control and genetic correlations. New Phytol 197: 777-790. doi: 10.1111/nph.12014
    [37] Wang H, Avci U, Nakashima J, et al. (2010) Mutation of WRKY transcription factors initiates pith secondary wall formation and increases stem biomass in dicotyledonous plants. Proc Natl Acad Sci USA 107: 22338-22343. doi: 10.1073/pnas.1016436107
    [38] Marriott PE, Sibout R, Lapierre C, et al. (2014) Range of cell-wall alterations enhance saccharification in Brachypodium distachyon mutants. Proc Natl Acad Sci 111: 14601-14606. doi: 10.1073/pnas.1414020111
    [39] Abdel-Hamid AM, Solbiati JO, Cann IK (2013) Insights into lignin degradation and its potential industrial applications. Adv Appl Microbiol 82: 1-28. doi: 10.1016/B978-0-12-407679-2.00001-6
    [40] Brown ME, Chang MC (2014) Exploring bacterial lignin degradation. Curr Opin Chem Biol 19:1-7.
    [41] Bugg TD, Ahmad M, Hardiman EM, et al. (2011) The emerging role for bacteria in lignin degradation and bio-product formation. Curr Opin Biotechnol 22: 394-400. doi: 10.1016/j.copbio.2010.10.009
    [42] Boyle CD, Kropp BR, Reid ID (1992) Solubilization and mineralization of lignin by white rot fungi. Appl Environ Microbiol 58: 3217-3224.
    [43] Leonowicz A, Matuszewska A, Luterek J, et al. (1999) Biodegradation of lignin by white rot fungi. Fungal Genet Biol 27: 175-185. doi: 10.1006/fgbi.1999.1150
    [44] Gilbertson RL (1980) Wood-rotting fungi of north america. Mycologia 72: 1-49. doi: 10.2307/3759417
    [45] Martinez D, Larrondo LF, Putnam N, et al. (2004) Genome sequence of the lignocellulose degrading fungus Phanerochaete chrysosporium strain RP78. Nat Biotechnol 22: 695-700. doi: 10.1038/nbt967
    [46] Tien M, Kirk TK (1984) Lignin-degrading enzyme from Phanerochaete chrysosporium: Purification, characterization, and catalytic properties of a unique H2O2-requiring oxygenase. Proc Natl Acad Sci 81: 2280-2284. doi: 10.1073/pnas.81.8.2280
    [47] Miki K, Renganathan V, Gold MH (1986) Mechanism of ß-aryl ether dimeric lignin model compound oxidation by lignin peroxidase by Phanerochaete chrysosporium. Biochemistry (N Y) 25: 4790-4796. doi: 10.1021/bi00365a011
    [48] Gold MH, Kuwahara M, Chiu AA, et al. (1984) Purification and characterization of an extracellular H2O2-requiring diarylpropane oxygenase from the white rot basidiomycete, Phanerochaete chrysosporium. Arch Biochem Biophys 234: 353-362. doi: 10.1016/0003-9861(84)90280-7
    [49] Martinez MJ, Böckle B, Camarero S, et al. (1996) MnP isoenzymes produced by two Pleurotus species in liquid culture and during wheat-straw solid-state fermentation. Am Chem Soc 655:183-196.
    [50] Paszczyński A, Huynh V, Crawford R (1985) Enzymatic activities of an extracellular, manganese-dependent peroxidase from Phanerochaete chrysosporium. FEMS Microbiol Lett 29:37-41. doi: 10.1111/j.1574-6968.1985.tb00831.x
    [51] Kuan IC, Johnson KA, Tien M (1993) Kinetic analysis of manganese peroxidase. the reaction with manganese complexes. J Biol Chem 268: 20064-20070.
    [52] Wariishi H, Valli K, Gold MH (1991) In vitro depolymerization of lignin by manganese peroxidase of Phanerochaete chrysosporium. Biochem Biophys Res Commun 176: 269-275. doi: 10.1016/0006-291X(91)90919-X
    [53] Pérez-Boadaa M, Ruiz-Dueñasa FJ, Pogni R, et al. (2005) Versatile peroxidase oxidation of high redox potential aromatic compounds: Site-directed mutagenesis, spectroscopic and crystallographic investigation of three long-range electron transfer pathways. J Mol Biol 354:385-402. doi: 10.1016/j.jmb.2005.09.047
    [54] Martinez AT, Speranza M, Ruiz-Duenas FJ, et al. (2005) Biodegradation of lignocellulosics: Microbial, chemical, and enzymatic aspects of the fungal attack of lignin. Int Microbiol 8:195-204.
    [55] Kishi K, Wariishi H, Marquez L, et al. (1994) Mechanism of manganese peroxidase compound II reduction. effect of organic acid chelators and pH. Biochemistry (N Y) 33: 8694-8701.
    [56] Bugg TDH, Ahmad M, Hardiman EM, et al. (2011) Pathways for degradation of lignin in bacteria and fungi. Nat Prod Rep 28: 1883-1896. doi: 10.1039/c1np00042j
    [57] Khindaria A, Yamazaki I, Aust SD (1995) Veratryl alcohol oxidation by lignin peroxidase. Biochemistry (N Y) 34: 16860-16869. doi: 10.1021/bi00051a037
    [58] Khindaria A, Yamazaki I, Aust SD (1996) Stabilization of the veratryl alcohol cation radical by lignin peroxidase. Biochemistry (N Y) 35: 6418-6424. doi: 10.1021/bi9601666
    [59] Candeias LP, Harvey PJ (1995) Lifetime and reactivity of the veratryl alcohol radical cation. implications for lignin peroxidase catalysis. J Biol Chem 270: 16745-16748.
    [60] Sugano Y, Muramatsu R, Ichiyanagi A, et al. (2007) DyP, a unique dye-decolorizing peroxidase, represents a novel heme peroxidase family. J Biol Chem 282: 36652-36658. doi: 10.1074/jbc.M706996200
    [61] Sugano Y (2009) DyP-type peroxidases comprise a novel heme peroxidase family. Cell Mol Life Sci 66: 1387-1403. doi: 10.1007/s00018-008-8651-8
    [62] Liers C, Bobeth C, Pecyna M, et al. (2009) DyP-like peroxidases of the jelly fungus Auricularia auricula-judae oxidize nonphenolic lignin model compounds and high-redox potential dyes. Appl Microbiol Biotechnol 85: 1869-1879.
    [63] Guillén F, Martínez AT, Martínez MJ (1992) Substrate specificity and properties of the aryl-alcohol oxidase from the ligninolytic fungus Pleurotus eryngii. Eur J Biochem 209:603-611. doi: 10.1111/j.1432-1033.1992.tb17326.x
    [64] Kersten PJ, Kirk TK (1987) Involvement of a new enzyme, glyoxal oxidase, in extracellular H2O2 production by Phanerochaete chrysosporium. J Bacteriol 169: 2195-2201.
    [65] Guillén F, Martí nez MJ, Muñoz C, et al. (1997) Quinone redox cycling in the ligninolytic fungus Pleurotus eryngii leading to extracellular production of superoxide anion radical. Arch Biochem Biophys 339: 190-199. doi: 10.1006/abbi.1996.9834
    [66] Thurston CF (1994) The structure and function of fungal laccases. Microbiology 140: 19-26. doi: 10.1099/13500872-140-1-19
    [67] Dwivedi UN, Singh P, Pandey VP, et al. (2011) Structure-function relationship among bacterial, fungal and plant laccases. J Molec Catal B 68: 117-128. doi: 10.1016/j.molcatb.2010.11.002
    [68] Claus H (2004) Laccases: Structure, reactions, distribution. Micron 35: 93-96. doi: 10.1016/j.micron.2003.10.029
    [69] Shleev S, Persson P, Shumakovich G, et al. (2006) Interaction of fungal laccases and laccase-mediator systems with lignin. Enzyme Microb Technol 39: 841-847. doi: 10.1016/j.enzmictec.2006.01.010
    [70] Barreca AM, Fabbrini M, Galli C, et al. (2003) Laccase/mediated oxidation of a lignin model for improved delignification procedures. J Molec Catal B 26: 105-110. doi: 10.1016/j.molcatb.2003.08.001
    [71] Li K, Xu F, Eriksson KE (1999) Comparison of fungal laccases and redox mediators in oxidation of a nonphenolic lignin model compound. Appl Environ Microbiol 65: 2654-2660.
    [72] Bourbonnais R, Paice MG (1990) Oxidation of non-phenolic substrates: An expanded role for laccase in lignin biodegradation. FEBS Lett 267: 99-102. doi: 10.1016/0014-5793(90)80298-W
    [73] Bourbonnais R, Paice M (1992) Demethylation and delignification of kraft pulp by Trametes versicolor laccase in the presence of 2,2´-azinobis-(3-ethylbenzthiazoline-6-sulphonate). Appl Microbiol Biotechnol 36: 823-827.
    [74] Kawai S, Umezawa T, Higuchi T (1988) Degradation mechanisms of phenolic ß-1 lignin substructure model compounds by laccase of Coriolus versicolor. Arch Biochem Biophys 262:99-110. doi: 10.1016/0003-9861(88)90172-5
    [75] Kawai S, Nakagawa M, Ohashi H (2002) Degradation mechanisms of a nonphenolic ß-O-4 lignin model dimer by Trametes versicolor laccase in the presence of 1-hydroxybenzotriazole. Enzyme Microb Technol 30: 482-489. doi: 10.1016/S0141-0229(01)00523-3
    [76] Camarero S, García O, Vidal T, et al. (2004) Efficient bleaching of non-wood high-quality paper pulp using laccase-mediator system. Enzyme Microb Technol 35: 113-120. doi: 10.1016/j.enzmictec.2003.10.019
    [77] Eggert C, Temp U, Eriksson KL (1997) Laccase is essential for lignin degradation by the white-rot fungus Pycnoporus cinnabarinus. FEBS Lett 407: 89-92. doi: 10.1016/S0014-5793(97)00301-3
    [78] Zimmermann W (1990) Degradation of lignin by bacteria. J Biotechnol 13: 119-130. doi: 10.1016/0168-1656(90)90098-V
    [79] Ahmad M, Taylor CR, Pink D, et al. (2010) Development of novel assays for lignin degradation: Comparative analysis of bacterial and fungal lignin degraders. Mol Bio Sys 6: 815-821.
    [80] Crawford DL (1978) Lignocellulose decomposition by selected Streptomyces strains. Appl Environ Microbiol 35: 1041-1045.
    [81] Crawford DL, Pometto AL, Crawford RL (1983) Lignin degradation by Streptomyces viridosporus: Isolation and characterization of a new polymeric lignin degradation intermediate. Appl Environ Microbiol 45: 898-904.
    [82] Spiker J, Crawford D, Thiel E (1992) Oxidation of phenolic and non-phenolic substrates by the lignin peroxidase of Streptomyces viridosporus T7A. Appl Microbiol Biotechnol 37: 518-523.
    [83] Kirby R (2006) Actinomycetes and lignin degradation. Adv Appl Microbiol 58: 125-168.
    [84] Adav SS, Ng CS, Arulmani M, et al. (2010) Quantitative iTRAQ secretome analysis of cellulolytic Thermobifida fusca. J Proteome Res 9: 3016-3024. doi: 10.1021/pr901174z
    [85] Trigo C, Ball AS (1994) Production of extracellular enzymes during the solubilisation of straw by Thermomonospora fusca BD25. Appl Microbiol Biotechnol 41: 366-372. doi: 10.1007/BF00221233
    [86] Ahmad M, Roberts JN, Hardiman EM, et al. (2011) Identification of DypB from Rhodococcus jostii RHA1 as a lignin peroxidase. Biochemistry (N Y) 50: 5096-5107. doi: 10.1021/bi101892z
    [87] Chen C, Chang H, Kirk TK (1982) Aromatic acids produced during degradation of lignin in spruce wood by Phanerochaete chrysosporium. Holzforschung 36: 3-9. doi: 10.1515/hfsg.1982.36.1.3
    [88] Chen C, Chang H, Kirk TK (1983) Carboxylic acids produced through oxidative cleavage of aromatic rings during degradation of lignin in spruce wood by Phanerochaete chrysosporium. J Wood Chem Technol 3: 35-57. doi: 10.1080/02773818308085150
    [89] Masai E, Katayama Y, Fukuda M (2007) Genetic and biochemical investigations on bacterial catabolic pathways for lignin-derived aromatic compounds. Biosci Biotech Bioch 71: 1-15. doi: 10.1271/bbb.60437
    [90] Masai E, Ichimura A, Sato Y, et al. (2003) Roles of the enantioselective glutathione S-transferases in cleavage of ß-aryl ether. J Bacteriol 185: 1768-1775. doi: 10.1128/JB.185.6.1768-1775.2003
    [91] Pieper DH (2004) Aerobic degradation of polychlorinated biphenyls. Appl Microbiol Biotechnol67: 170-191.
    [92] Kishi K, Habu N, Samejima M, et al. (1991) Purification and some properties of the enzyme catalyzing the Cγ-elimination of a diarylpropane-type lignin model from Pseudomonas paucimobilis TMY1009. Agric Biol Chem 55: 1319-1323. doi: 10.1271/bbb1961.55.1319
    [93] Nakatsubo F, Kirk TK, Shimada M, et al. (1981) Metabolism of a phenylcoumaran substructure lignin model compound in ligninolytic cultures of Phanerochaete chrysosporium. Arch Microbiol 128: 416-420. doi: 10.1007/BF00405924
    [94] Williamson G, Kroon P, Faulds C (1998) Hairy plant polysaccharides: A close shave with microbial esterases. Microbiology 144: 2011-2023. doi: 10.1099/00221287-144-8-2011
    [95] Bugg TDH (2003) Dioxygenase enzymes: Catalytic mechanisms and chemical models. Tetrahedron 59: 7075-7101. doi: 10.1016/S0040-4020(03)00944-X
    [96] Masai E, Shinohara S, Hara H, et al. (1999) Genetic and biochemical characterization of a 2-pyrone-4,6-dicarboxylic acid hydrolase involved in the protocatechuate 4,5-cleavage pathway of Sphingomonas paucimobilis SYK-6. J Bacteriol 181: 55-62.
    [97] Harwood CS, Parales RE (1996) The ß-ketoadipate pathway and the biology of self-identity. Annu Rev Microbiol 50: 553-590. doi: 10.1146/annurev.micro.50.1.553
    [98] Singh R, Grigg JC, Qin W, et al. (2013) Improved manganese-oxidizing activity of DypB, a peroxidase from a lignolytic bacterium. ACS Chemical Biology 8: 700-706. doi: 10.1021/cb300608x
    [99] Taylor CR, Hardiman EM, Ahmad M, et al. (2012) Isolation of bacterial strains able to metabolize lignin from screening of environmental samples. J Appl Microbiol 113: 521-530. doi: 10.1111/j.1365-2672.2012.05352.x
    [100] Warnecke F, Luginbühl P, Ivanova N, et al. (2007) Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite. Nature 450: 560-565. doi: 10.1038/nature06269
    [101] Shi W, Syrenne R, Sun J, et al. (2010) Molecular approaches to study the insect gut symbiotic microbiota at the "omics" age. Insect Science 17: 199-219. doi: 10.1111/j.1744-7917.2010.01340.x
    [102] Boucias DG, Cai Y, Sun Y, et al. (2013) The hindgut lumen prokaryotic microbiota of the termite Reticulitermes flavipes and its responses to dietary lignocellulose composition. Mol Ecol 22: 1836-1853. doi: 10.1111/mec.12230
    [103] Hess M, Sczyrba A, Egan R, et al. (2011) Metagenomic discovery of biomass-degrading genes and genomes from cow rumen. Science 331: 463-467. doi: 10.1126/science.1200387
    [104] Daniel R (2005) The metagenomics of soil. Nat Rev Microbiol 3: 470-478. doi: 10.1038/nrmicro1160
    [105] Strachan CR, Singh R, VanInsberghe D, et al. (2014) Metagenomic scaffolds enable combinatorial lignin transformation. P Natl Acad Sci 111: 10143-10148. doi: 10.1073/pnas.1401631111
    [106] Floudas D, Binder M, Riley R, et al. (2012) The paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes. Science 336: 1715-1719. doi: 10.1126/science.1221748
    [107] Bianchetti CM, Harmann CH, Takasuka TE, et al. (2013) Fusion of dioxygenase and lignin-binding domains in a novel secreted enzyme from cellulolytic Streptomyces sp. SirexAA-E. J Biol Chem 288: 18574-18587. doi: 10.1074/jbc.M113.475848
    [108] Majumdar S, Lukk T, Solbiati JO, et al. (2014) Roles of small laccases from Streptomyces in lignin degradation. Biochemistry (N Y) 53: 4047-4058. doi: 10.1021/bi500285t
    [109] Parton W, Silver WL, Burke IC, et al. (2007) Global-scale similarities in nitrogen release patterns during long-term decomposition. Science 315: 361-364. doi: 10.1126/science.1134853
    [110] Silver WL, Lugo AE, Keller M (1999) Soil oxygen availability and biogeochemistry along rainfall and topographic gradients in upland wet tropical forest soils. Biogeochemistry 44:301-328.
    [111] de Boer W, Folman LB, Summerbell RC, et al. (2005) Living in a fungal world: Impact of fungi on soil bacterial niche development. FEMS Microbiol Rev 29: 795-811. doi: 10.1016/j.femsre.2004.11.005
    [112] DeAngelis KM, Fortney JL, Borglin S, et al. (2012) Anaerobic decomposition of switchgrass by tropical soil-derived feedstock-adapted consortia. MBio 3: e00249-11.
    [113] DeAngelis KM, D'Haeseleer P, Chivian D, et al. (2011) Complete genome sequence of Enterobacter lignolyticus SCF1. Standards Genomic Sci 5: 69-85. doi: 10.4056/sigs.2104875
    [114] DeAngelis KM, Sharma D, Varney R, et al. (2013) Evidence supporting dissimilatory and assimilatory lignin degradation in Enterobacter lignolyticus SCF1. Front Microbiol 4: 280.
    [115] Hu F, Ragauskas A (2012) Pretreatment and lignocellulosic chemistry. BioEnergy Res 5:1043-1066. doi: 10.1007/s12155-012-9208-0
    [116] Trajano HL, Engle NL, Foston M, et al. (2013) The fate of lignin during hydrothermal pretreatment. Biotechnology Biofuels 6: 110. doi: 10.1186/1754-6834-6-110
    [117] Zhao X, Cheng K, Liu D (2009) Organosolv pretreatment of lignocellulosic biomass for enzymatic hydrolysis. Appl Microbiol Biotechnol 82: 815-827. doi: 10.1007/s00253-009-1883-1
    [118] Kim J, Shin E, Eom I, et al. (2011) Structural features of lignin macromolecules extracted with ionic liquid from poplar wood. Bioresour Technol 102: 9020-9025. doi: 10.1016/j.biortech.2011.07.081
    [119] Berlin A, Balakshin M, Gilkes N, et al. (2006) Inhibition of cellulase, xylanase and ß-glucosidase activities by softwood lignin preparations. J Biotechnol 125: 198-209. doi: 10.1016/j.jbiotec.2006.02.021
    [120] Jönsson LJ, Alriksson B, Nilvebrant N (2013) Bioconversion of lignocellulose: Inhibitors and detoxification. Biotechnology Biofuels 6: 16. doi: 10.1186/1754-6834-6-16
    [121] Rumbold K, van Buijsen HJ, Overkamp KM, et al. (2009) Microbial production host selection for converting second-generation feedstocks into bioproducts. Microbial Cell Factories 8: 64. doi: 10.1186/1475-2859-8-64
    [122] Quijano G, Couvert A, Amrane A (2010) Ionic liquids: Applications and future trends in bioreactor technology. Bioresour Technol 101: 8923-8930. doi: 10.1016/j.biortech.2010.06.161
    [123] Khudyakov JI, D'haeseleer P, Borglin SE, et al. (2012) Global transcriptome response to ionic liquid by a tropical rain forest soil bacterium, Enterobacter lignolyticus. P Natl Acad Sci 109: E2173-E2182. doi: 10.1073/pnas.1112750109
    [124] Frederix M, Hütter K, Leu J, et al. (2014) Development of a native Escherichia coli induction system for ionic liquid tolerance. PLoS One 9: e101115. doi: 10.1371/journal.pone.0101115
    [125] Ruegg TL, Kim E, Simmons BA, et al. (2014) An auto-inducible mechanism for ionic liquid resistance in microbial biofuel production. Nat Commun 5: 1-7
    [126] Singer SW, Reddy AP, Gladden JM, et al. (2011) Enrichment, isolation and characterization of fungi tolerant to 1-ethyl-3-methylimidazolium acetate. J Appl Microbiol 110: 1023-1031. doi: 10.1111/j.1365-2672.2011.04959.x
    [127] Reddy AP, Simmons CW, Claypool J, et al. (2012) Thermophilic enrichment of microbial communities in the presence of the ionic liquid 1-ethyl-3-methylimidazolium acetate. J Appl Microbiol 113: 1362-1370. doi: 10.1111/jam.12002
    [128] Gladden JM, Allgaier M, Miller CS, et al. (2011) Glycoside hydrolase activities of thermophilic bacterial consortia adapted to switchgrass. Appl Environ Microbiol 77: 5804-5812. doi: 10.1128/AEM.00032-11
    [129] Chandel AK, Gonçalves BC, Strap JL, et al. (2013) Biodelignification of lignocellulose substrates: An intrinsic and sustainable pretreatment strategy for clean energy production. Crit Rev Biotechnol 1-13.
    [130] Wan C, Li Y (2012) Fungal pretreatment of lignocellulosic biomass. Biotechnol Adv 30:1447-1457. doi: 10.1016/j.biotechadv.2012.03.003
    [131] Salvachúa D, Prieto A, López-Abelairas M, et al. (2011) Fungal pretreatment: An alternative in second-generation ethanol from wheat straw. Bioresour Technol 102: 7500-7506. doi: 10.1016/j.biortech.2011.05.027
    [132] Yang SJ, Kataeva I, Hamilton-Brehm SD, et al. (2009) Efficient degradation of lignocellulosic plant biomass, without pretreatment, by the thermophilic anaerobe Anaerocellum thermophilum DSM 6725. Appl Environ Microbiol 75: 4762-4769. doi: 10.1128/AEM.00236-09
    [133] Basen M, Rhaesa AM, Kataeva I, et al. (2014) Degradation of high loads of crystalline cellulose and of unpretreated plant biomass by the thermophilic bacterium Caldicellulosiruptor bescii. Bioresour Technol 152: 384-392. doi: 10.1016/j.biortech.2013.11.024
    [134] Talluri S, Raj SM, Christopher LP (2013) Consolidated bioprocessing of untreated switchgrass to hydrogen by the extreme thermophile Caldicellulosiruptor saccharolyticus DSM 8903. Bioresour Technol 139: 272-279. doi: 10.1016/j.biortech.2013.04.005
    [135] Cao G, Zhao L, Wang A, et al. (2014) Single-step bioconversion of lignocellulose to hydrogen using novel moderately thermophilic bacteria. Biotechnology Biofuels 7: 82. doi: 10.1186/1754-6834-7-82
    [136] Chung D, Cha M, Guss AM, et al. (2014) Direct conversion of plant biomass to ethanol by engineered Caldicellulosiruptor bescii. P Natl Acad Sci 111: 8931-8936. doi: 10.1073/pnas.1402210111
    [137] Deng Y, Fong SS (2011) Metabolic engineering of Thermobifida fusca for direct aerobic bioconversion of untreated lignocellulosic biomass to 1-propanol. Metab Eng 13: 570-577. doi: 10.1016/j.ymben.2011.06.007
    [138] Coconi-Linares N, Magaña-Ortíz D, Guzmán-Ortiz DA, et al. (2014) High-yield production of manganese peroxidase, lignin peroxidase, and versatile peroxidase in Phanerochaete chrysosporium. Appl Microbiol Biotechnol 98: 9283-9284. doi: 10.1007/s00253-014-6105-9
    [139] Zakzeski J, Bruijnincx PCA, Jongerius AL, et al. (2010) The catalytic valorization of lignin for the production of renewable chemicals. Chem Rev 110: 3552-3599. doi: 10.1021/cr900354u
  • Reader Comments
  • © 2014 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (
通讯作者: 陈斌,
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索


Article views(12087) PDF downloads(2282) Cited by(54)

Article outline

Figures and Tables


Other Articles By Authors


DownLoad:  Full-Size Img  PowerPoint