This study examines the role of political stability in a firm's financial performance in Bangladesh. By considering 139 listed companies from the Dhaka Stock Exchange over the period of 2011 to 2020, we applied a dynamic generalized method of moments (GMM), dynamic quantile regression and dynamic threshold regression. The empirical evidence of this study shows a significant positive impact of political stability on Bangladeshi firms' financial performances. Using dynamic quantile regression, we found a positive impact of political stability in the firms' upper and lower quantiles. Additionally, we found the threshold effect of political stability on the firms' performance to have a score of 13.680. This study contributes theoretically and empirically by examining the importance of political stability on financial performance. For the investors, policymakers and other stakeholders, this study provides evidence of a threshold of political stability on a firm's financial performance.
Citation: Mohammad Abdullah, Mohammad Ashraful Ferdous Chowdhury, Uttam Karmaker, Md. Habibur Rahman Fuszder, Md. Asif Shahriar. Role of the dynamics of political stability in firm performance: Evidence from Bangladesh[J]. Quantitative Finance and Economics, 2022, 6(4): 518-536. doi: 10.3934/QFE.2022022
[1] | Andrew C. Stolte, Brady R. Cox . Feasibility of in-situ evaluation of soil void ratio in clean sands using high resolution measurements of Vp and Vs from DPCH testing. AIMS Geosciences, 2019, 5(4): 723-749. doi: 10.3934/geosci.2019.4.723 |
[2] | Efthymios Panagiotis, Alena Zhelezova, Irene Rocchi . Analysis of CPTu data from the North Sea region to estimate the frequency of inaccurate pore pressure measurements. AIMS Geosciences, 2025, 11(2): 517-527. doi: 10.3934/geosci.2025021 |
[3] | Kimon Kardakaris, Dimitrios N Konispoliatis, Takvor H Soukissian . Theoretical evaluation of the power efficiency of a moored hybrid floating platform for wind and wave energy production in the Greek seas. AIMS Geosciences, 2023, 9(1): 153-183. doi: 10.3934/geosci.2023009 |
[4] | Øyvind Blaker, Roselyn Carroll, Priscilla Paniagua, Don J. DeGroot, Jean-Sebastien L'Heureux . Halden research site: geotechnical characterization of a post glacial silt. AIMS Geosciences, 2019, 5(2): 184-234. doi: 10.3934/geosci.2019.2.184 |
[5] | Paolo Dell'Aversana . Reservoir prescriptive management combining electric resistivity tomography and machine learning. AIMS Geosciences, 2021, 7(2): 138-161. doi: 10.3934/geosci.2021009 |
[6] | Hang Cen, Hui-yue Wang, Wen Zhou, De-long Huang, Zhong-ling Zong, Sha-sha Yu, Chang-lu Xu, Zi-yuan Huang . Implementation of spatial SV wave oblique incidence and helical pile response under this condition based on Python in finite element analysis. AIMS Geosciences, 2025, 11(1): 254-273. doi: 10.3934/geosci.2025011 |
[7] | Wahidullah Hussainzada, Han Soo Lee . Impact of land surface model schemes in snow-dominated arid and semiarid watersheds using the WRF-hydro modeling systems. AIMS Geosciences, 2024, 10(2): 312-332. doi: 10.3934/geosci.2024018 |
[8] | Anthony I Nzekwu, Richardson M Abraham-A . Reservoir sands characterisation involving capacity prediction in NZ oil and gas field, offshore Niger Delta, Nigeria. AIMS Geosciences, 2022, 8(2): 159-174. doi: 10.3934/geosci.2022010 |
[9] | Boris I. Birger . Internal friction in the Earth' crust and transverse seismic waves. AIMS Geosciences, 2022, 8(1): 84-97. doi: 10.3934/geosci.2022006 |
[10] | Annika Bihs, Mike Long, Steinar Nordal . Geotechnical characterization of Halsen-Stjørdal silt, Norway. AIMS Geosciences, 2020, 6(3): 355-377. doi: 10.3934/geosci.2020020 |
This study examines the role of political stability in a firm's financial performance in Bangladesh. By considering 139 listed companies from the Dhaka Stock Exchange over the period of 2011 to 2020, we applied a dynamic generalized method of moments (GMM), dynamic quantile regression and dynamic threshold regression. The empirical evidence of this study shows a significant positive impact of political stability on Bangladeshi firms' financial performances. Using dynamic quantile regression, we found a positive impact of political stability in the firms' upper and lower quantiles. Additionally, we found the threshold effect of political stability on the firms' performance to have a score of 13.680. This study contributes theoretically and empirically by examining the importance of political stability on financial performance. For the investors, policymakers and other stakeholders, this study provides evidence of a threshold of political stability on a firm's financial performance.
Many researchers present a large number of studies to improve and generalize classical Hermite-Hadamard inequality. This double inequality suggests that the mean value of a continuous convex function g:[a,b]⊆R→R lies between the value of g in the midpoint of the interval [a,b] and the arithmetic mean of the values of g at the endpoints of this interval such that
g(a+b2)≤1b−a∫bag(x)dx≤g(a)+g(b)2. | (1.1) |
In addition, each side of the mentioned inequality characterizes convexity in the sense that a real-valued continuous function g defined on an interval I is convex if its restriction to each compact subinterval [a,b]⊂I hold both inequalities. If g is a concave function, then the inequality is interchanged 1.2 [3,23]. In the literature, Hermite-Hadamard inequality is frequently preferred because of its importance in nonlinear analysis. Recently, Jain et al. [10] established some new inequalities related to Hermite-Hadamard inequality for the functions whose absolute values of second derivatives are log−convex. Mehrez and Agarwal [13] introduced new Hermit-Hadamard type integral inequalities for convex functions. Mo-hammed [16] presented some new Hermite-Hadamard inequalities for MT−convex functions. Besides, some new integral inequalities for the logarithmically p−preinvex functions via generalized beta function were established by Mohammed [17].
Many authors introduced a large number of studies to generalize various integral inequalities. Cerone et al. [4] presented the generalized trapezoid inequality. Ujević [27] derived some new perturbations of the trapezoid inequality. Drogomir et al. [6] improved quasi-trapezoid quadrature formula by using some well-known classical inequalities. Cerone [5] obtained explicit bounds for perturbed trapezoidal rules. Liu and Park [11] suggested some perturbed versions of generalized trapezoid inequality. On the other hand, some integral inequalities for the convex functions have been frequently investigated by many researchers. Sarikaya and Aktan [24] intoduced the generalization of some integral inequalities for convex functions. Tunç and Şanal [26] established some perturbed trapezoid inequalities for twice differentiable convex, s−convex and tgs−convex functions. Ardıc [1] presented some integral inequalities such as Hölder, Hermite-Hadamard and Jensen integral inequality for n times differentiable convex functions.
The studies in recent years have focused on the fractional integral inequalities for convex functions. Agarwal et al. [2] established some fractional integral inequalities via new Pólya-Szegö type integral inequalities. Fernandez and Mohammed [9] used the fractional integrals to obtain the Hermite-Hadamard inequality and related results. Mohammed [15] introduced some new integral inequalities by using the (k,h), (k,s) -Riemann Liouville fractional integrals. The author presented new Hermite-Hadamard's type inequalities for Riemann Liouville fractional integrals of convex function [18]. Besides, Hermite-Hadamard's type inequalities have been obtained via the fractional integrals for different type convex functions [14,15,16,17,18,19,20,21,22,23,24,25,26,27,28].
The main aim of the present study is to obtain some new inequalities related to general perturbed trapezoid inequality. The considered classes of functions consist of the functions whose n th derivatives of absolute values are convex.
Definition 1. [14] A function g:I⊂R→R is said to be convex on I if inequality
g(ta+(1−t)b)≤tg(a)+(1−t)g(b) | (1.2) |
holds for all a,b∈I and t∈[0,1]. We say that g is concave if (−g) is convex. For numerical integration, the trapezoid inequality is introduced as
|∫bag(x)dx−12(b−a)(g(a)+g(b))|≤112M2(b−a)3 | (1.3) |
where g:[a,b]→R is supposed to be twice differentiable on the interval (a,b), with the second derivative bounded on (a,b) by M2=supx∈(a,b)|g′′(x)|<+∞
([5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24]).
Theorem 1. Grüss inequality : Let g and z to be two functions defined and integrable on [a,b]. If k≤g(x)≤l and m≤z(x)≤n is to be ∀x∈[a,b] and for constants k,l,m,n∈R, then
|1b−a∫bag(x)z(x)dx−1b−a∫bag(x)dx1b−a∫baz(x)dx|≤14(l−k)(n−m). | (1.4) |
The above inequality is held where 14 is the best constant [7]. For the perturbed trapezoid inequality, the inequality obtained by the application of the Grüss inequality is given as
|∫bag(x)dx−12(b−a)(g(a)+g(b))+112(b−a)2(g′(b)−g′(a))|≤132(Γ2−γ2)(b−a)3 | (1.5) |
by Dragomir et al. [6] where g is supposed to be twice differentiable on the interval (a,b) with the second derivative bounded on (a,b) by Γ2=supx∈(a,b)g′′(x)<+∞ and γ2=infx∈(a,b)g′′(x)>−∞.
In the light of this information, we establish some inequalities for n th order differentiable convex functions.
Lemma 1. [26] Let g :I⊆R→R be a differentiable mapping on I∘, a,b∈I∘ with a<b. If g′′∈L[a,b], then one obtains
∫bag(x)dx−12(b−a)(g(a)+g(b))+54(b−a)2(g′(b)−g′(a))=(b−a)34∫10(t+1)2[g′′(ta+(1−t)b)+g′′(tb+(1−t)a)]dt. | (1.6) |
Theorem 2. [12] Minkowski Inequality: Let gp, zp and (g+z)p be integrable functions on [a,b]. If p>1, then
[∫ba|g(x)+z(x)|pdx]1p≤[∫ba|g(x)|pdx]1p+[∫ba|z(x)|pdx]1p. | (1.7) |
Similarly, if p>1 and ak, bk>0, then Minkowski sum inequality is expressed as
[n∑k=1|ak+bk|p]1p≤[n∑k=1|ak|p]1p+[n∑k=1|bk|p]1p. | (1.8) |
If the sequences a1, a2, ... and b1, b2, ... are proportional, the inequality is provided. We will use the following notations and conventions throughout this article. Let us consider as I=[0,∞)⊂R=(−∞,+∞) and a,b∈I with 0<a<b and g(n)∈L[a,b] and
A(a,b)=a+b2,G(a,b)=√ab,H(a,b)=2aba+b,L(a,b)=b−alnb−lna,a≠b,Lp(a,b),Lp=Lp(a,b)={a,a=b[bp+1−ap+1(p+1)(b−a)]1p,a≠ba,b≥0 |
are the arithmetic mean, geometric mean, harmonic mean, logarithmic mean, generalized p-logarithmic mean for a,b>0, respectively [8].
In this study, we introduce some results related to the perturbed trapezoid inequality and prove some applications for special means of real numbers.
Lemma 2. Let g:I∘⊆R→R be n times differentiable mapping on I∘, a,b∈I∘ with a<b where n is even number. If g(n)∈L[a,b], then the following equality is obtained:
1b−aa∫bg(x)dx−g(a)+g(b)2+⋯+−(b−a)n−4[n.(n−1)(n−2).an+⋯+4.3.2.a4]2.n!.an×(g(n−4)(a)+g(n−4)(b))+(b−a)n−3[n.(n−1).an+⋯+4.3.a4+3.2.a3+4.a2]2.n!.an×[g(n−3)(b)−g(n−3)(a)]−(b−a)n−2[n.an+⋯+2.a2]2.n!.an×[g(n−2)(a)+g(n−2)(b)]+(b−a)n−1[an+⋯+a1+2a0]2.n!.an×[g(n−1)(b)−g(n−1)(a)]=(b−a)n2.n!.an×1∫0(antn+⋯+a1t+a0)[g(n)(ta+(1−t)b)+g(n)(tb+(1−t)a)]dt | (2.1) |
Proof. If the right-hand side of the equality is considered and the integration by parts is applied, then one obtains
I1=1∫0(antn+⋯+a1t+a0)g(n)(ta+(1−t)b)dt=(antn+⋯+a1t+a0)g(n−1)(ta+(1−t)b)a−b|10−1(a−b)1∫0(n.antn−1+⋯+2a2t+a1)g(n−1)(ta+(1−t)b)dt=(an+⋯+a1+a0)a−bg(n−1)(a)−a0a−bg(n−1)(b)−1(a−b)1∫0(n.antn−1+⋯+2a2t+a1)g(n−1)(ta+(1−t)b)dt=(an+⋯+a1+a0)a−bg(n−1)(a)−a0a−bg(n−1)(b)−n.an+⋯+2a2+a1(a−b)2g(n−2)(a)+a1(a−b)2g(n−2)(b)+1(a−b)2×1∫0(n.(n−1).antn−2+⋯+3.2.a3t+2.a2)×g(n−2)(ta+(1−t)b)dt=(an+⋯+a1+a0)a−bg(n−1)(a)−a0a−bg(n−1)(b)−n.an+⋯+2a2+a1(a−b)2g(n−2)(a)+a1(a−b)2g(n−2)(b)+n.(n−1).an+⋯+4.3.a4+3.2.a3+2.a2(a−b)3g(n−3)(a)−2.a2(a−b)3g(n−3)(b)−n.(n−1).(n−2).an+⋯+3.2.1.a3(a−b)4g(n−4)(a)+3.2.a3(a−b)4g(n−4)(b)+⋯−n!.an+(n−1)!.an−1(a−b)ng(a)+(n−1)!.an−1(a−b)ng(b)+n!an(a−b)n1∫0g(ta+(1−t)b)dt |
I2=∫10(antn+⋯+a1t+a0)g(n)(tb+(1−t)a)dt=(antn+⋯+a1t+a0)g(n−1)(tb+(1−t)a)b−a|10−1(b−a)∫10(n.antn−1+⋯+2a2t+a1)g(n−1)(tb+(1−t)a)dt=(an+⋯+a1+a0)b−ag(n−1)(b)−a0b−ag(n−1)(a)−1(b−a)∫10(n.antn−1+⋯+2a2t+a1)g(n−1)(tb+(1−t)a)dt=(an+⋯+a1+a0)b−ag(n−1)(b)−a0b−ag(n−1)(a)−n.an+⋯+2a2+a1(b−a)2g(n−2)(b)+a1(b−a)2g(n−2)(a)+1(b−a)2∫10[n.(n−1)antn−2+⋯+3.2.a3t+2.a2]×g(n−2)(tb+(1−t)a)dt=(an+⋯+a1+a0)b−ag(n−1)(b)−a0b−ag(n−1)(a)−n.an+⋯+2a2+a1(b−a)2g(n−2)(b)+a1(b−a)2g(n−2)(a)+n.(n−1).an+⋯+4.3.a4+3.2.a3+2.a2(b−a)3g(n−3)(b)−2.a2(b−a)3g(n−3)(a)−n.(n−1).(n−2).an+⋯+3.2.a3(b−a)4g(n−4)(b)+3.2.a3(b−a)4g(n−4)(a)+⋯−n!.an+(n−1)!.an−1(b−a)ng(b)+(n−1)!.an−1(b−a)ng(a)+n!an(b−a)n∫10g(tb+(1−t)a)dt |
Summing I1 and I2, then one obtains
I1+I2=∫10(antn+⋯+a1t+a0)[g(n)(ta+(1−t)b)+g(n)(tb+(1−t)a)]dt=(an+⋯+a1+a0)b−a[g(n−1)(b)−g(n−1)(a)]+a0b−a[g(n−1)(b)−g(n−1)(a)]−(n.an+⋯+2a2+a1)(b−a)2[g(n−2)(a)+g(n−2)(b)]+a1(b−a)2[g(n−2)(a)+g(n−2)(b)]+(n.(n−1).an+⋯+4.3.a4+3.2a3+2.a2)(b−a)3[g(n−3)(b)−g(n−3)(a)]+2.a2(b−a)3[g(n−3)(b)−g(n−3)(a)]−(n.(n−1).(n−2)an+⋯+3.2a3)(b−a)4[g(n−4)(a)+g(n−4)(b)]+3.2.a3(b−a)4[g(n−4)(a)+g(n−4)(b)]+⋯−n!.an+(n−1)!.an−1(b−a)n[g(a)+g(b)]+(n−1)!.an−1(b−a)n[g(a)+g(b)]+(n)!.an(b−a)n[∫10[g(n)(ta+(1−t)b)+g(n)(tb+(1−t)a)]dt]=an+⋯+a1+2a0b−a[g(n−1)(b)−g(n−1)(a)]−n.an+⋯+2a2(b−a)2[g(n−2)(a)+g(n−2)(b)]+n.(n−1)an+⋯+4.3.a4+3.2.a3+4a2(b−a)3[g(n−3)(b)−g(n−3)(a)]−n.(n−1).(n−2).an+⋯+4.3.2.a4(b−a)4[g(n−4)(a)+g(n−4)(b)]+⋯−n!.an(b−a)n[g(a)+g(b)]+2.n!.an(b−a)n+1∫bag(x)dx |
so
1b−a∫bag(x)dx−g(a)+g(b)2+⋯+−(b−a)n−4[n.(n−1)(n−2).an+⋯+4.3.2.a4]2.n!.an[g(n−4)(a)+g(n−4)(b)]+(b−a)n−3[n.(n−1).an+⋯+4.3.a4+3.2.a3+4.a2]2.n!.an[g(n−3)(b)−g(n−3)(a)]−(b−a)n−2[n.an+⋯+2.a2]2.n!.an[g(n−2)(a)+g(n−2)(b)]+(b−a)n−1[an+⋯+a1+2a0]2.n!.an[g(n−1)(b)−g(n−1)(a)]=(b−a)n2.n!.an∫10(antn+⋯+a1t+a0)×[g(n)(ta+(1−t)b)+g(n)(tb+(1−t)a)]dt |
Thus, the proof is completed.
Remark 1. Using the change of the variable x=ta+(1−t)b where t∈[0,1], Eq.(2.1) can be written as
1b−a∫bag(x)dx−g(a)+g(b)2+⋯+−(b−a)n−4[n.(n−1)(n−2).an+⋯+4.3.2.a4]2.n!.an×[g(n−4)(a)+g(n−4)(b)]+(b−a)n−3[n.(n−1).an+⋯+4.3.a4+3.2.a3+4a2]2.n!.an×[g(n−3)(b)−g(n−3)(a)]−(b−a)n−2[n.an+⋯+2.a2]2.n!.an×[g(n−2)(a)+g(n−2)(b)]+(b−a)n−1[an+⋯+a1+2a0]2.n!.an×[g(n−1)(b)−g(n−1)(a)]=−(b−a)n−12.n!.an×∫10(an(x−ba−b)n+⋯+a1(x−ba−b)+a0)[g(n)(x)+g(n)(a+b−x)]dx |
Theorem 3. Let g:I⊆R→R be n times differentiable mapping on I∘, a,b∈I∘ with a<b where n is even number. If |g(n)| is convex on [a,b], then the inequality in the following holds:
|1b−a∫bag(x)dx−g(a)+g(b)2+⋯+−(b−a)n−4[n.(n−1)(n−2).an+⋯+4.3.2.a4]2.n!.an×[g(n−4)(a)+g(n−4)(b)]+(b−a)n−3[n.(n−1).an+⋯+4.3.a4+3.2.a3+2.a2]2.n!.an×[g(n−3)(b)−g(n−3)(a)]−(b−a)n−2[n.an+⋯+2.a2]2.n!.an×[g(n−2)(a)+g(n−2)(b)]+(b−a)n−1[an+⋯+a1+2.a0]2.n!.an×[g(n−1)(b)−g(n−1)(a)]|≤(b−a)n2.n!.|an|×[n∑k=0|ak|k+1]×[|g(n)(a)|+|g(n)(b)|] | (2.2) |
Proof. From Lemma 2, it is concluded that
|1b−a∫bag(x)dx−g(a)+g(b)2+⋯+−(b−a)n−4[n.(n−1)(n−2).an+⋯+4.3.2.a4]2.n!.an×[g(n−4)(a)+g(n−4)(b)]+(b−a)n−3[n.(n−1).an+⋯+4.3.a4+3.2.a3+2.a2]2.n!.an×[g(n−3)(b)−g(n−3)(a)]−(b−a)n−2[n.an+⋯+2.a2]2.n!.an×[g(n−2)(a)+g(n−2)(b)]+(b−a)n−1[an+...+a1+2a0]2.n!.an×[g(n−1)(b)−g(n−1)(a)]|=|(b−a)n2.n!.an×{∫10(antn+⋯+a1t+a0)[g(n)(ta+(1−t)b)+g(n)(tb+(1−t)a)]dt}|≤(b−a)n2.n!.|an|×{∫10|antn+⋯+a1t+a0|[|g(n)(ta+(1−t)b)|+|g(n)(tb+(1−t)a)|]dt}≤(b−a)n2.n!.|an|×{∫10|antn+⋯+a1t+a0|[t|g(n)(a)|+(1−t)|g(n)(b)|+t|g(n)(b)|+(1−t)|g(n)(a)|]dt}≤(b−a)n2.n!.|an|[|g(n)(a)|+|g(n)(b)|]×∫10[|antn|+⋯+|a1t|+|a0|]dt≤(b−a)n2.n!.|an|×n∑k=0|ak|k+1×[|g(n)(a)|+|g(n)(b)|] |
The theorem is proved.
Theorem 4. Let g:I⊆R→R be n times differentiable mapping on I∘, a,b∈I∘ with a<b, and p>1 with 1/p+1/q=1 where n is even number. If the mapping |g(n)|q is convex on [a,b], then we obtain:
|1b−a∫bag(x)dx−g(a)+g(b)2+⋯+−(b−a)n−4[n.(n−1)(n−2).an+⋯+4.3.2.a4]2.n!.an×[g(n−4)(a)+g(n−4)(b)]+(b−a)n−3[n.(n−1).an+⋯+4.3.a4+3.2.a3+2.a2]2.n!.an×[g(n−3)(b)−g(n−3)(a)]−(b−a)n−2[n.an+⋯+2.a2]2.n!.an×[g(n−2)(a)+g(n−2)(b)]+(b−a)n−1[an+⋯+a1+2.a0]2.n!.an×[g(n−1)(b)−g(n−1)(a)]|≤(b−a)nn!.|an|×[n∑k=0|ak|(kp+1)1/p]×[|g(n)(a)|q+|g(n)(b)|q2]1/q | (2.3) |
Proof. Using Lemma 2, Hölder's integral inequality and Minkowsky's integral inequality, we establish
|1b−a∫bag(x)dx−g(a)+g(b)2+⋯+−(b−a)n−4[n.(n−1)(n−2).an+⋯+4.3.2.a4]2.n!.an×[g(n−4)(a)+g(n−4)(b)]+(b−a)n−3[n.(n−1).an+⋯+4.3.a4+3.2.a3+2.a2]2.n!.an×[g(n−3)(b)−g(n−3)(a)]−(b−a)n−2[n.an+⋯+2.a2]2.n!.an×[g(n−2)(a)+g(n−2)(b)]+(b−a)n−1[an+⋯+a1+2a0]2.n!.an×[g(n−1)(b)−g(n−1)(a)]|=|(b−a)n2.n!.an×{∫10(antn+⋯+a1t+a0)[g(n)(ta+(1−t)b)+g(n)(tb+(1−t)a)]dt}|≤(b−a)n2.n!.|an|×[∫10|antn+⋯+a1t+a0||g(n)(ta+(1−t)b)|dt+∫10|antn+⋯+a1t+a0||g(n)(tb+(1−t)a)|dt]≤(b−a)n2.n!.|an|×[(∫10|antn+⋯+a1t+a0|pdt)1p×(∫10|g(n)(ta+(1−t)b)|qdt)1q+(∫10|antn+⋯+a1t+a0|pdt)1p×(∫10|g(n)(tb+(1−t)a)|qdt)1q]≤(b−a)nn!.|an|×[n∑k=0|ak|(kp+1)1/p]×[|g(n)(a)|q+|g(n)(b)|q2]1/q | (2.4) |
such that 1p+1q=1. Considering the convexity of |g(n)|q, then we find
∫10|g(n)(ta+(1−t)b)|qdt≤∫10[t|g(n)(a)|q+(1−t)|g(n)(b)|q]dt=|g(n)(a)|q+|g(n)(b)|q2∫10|g(n)(tb+(1−t)a)|qdt≤∫10[t|g(n)(b)|q+(1−t)|g(n)(a)|q]dt=|g(n)(a)|q+|g(n)(b)|q2 | (2.5) |
Using the Theorem 2, we have
(∫10|antn+⋯+a1t+a0|pdt)1p≤[∫10(antn)pdt]1p+⋯+[∫10(a1t)pdt]1p+[∫10(a0)pdt]1p=|an|(np+1)1/p+|an−1||(n−1)p+1|1/p+⋯+|a1|(p+1)1/p+|a0|=[n∑k=0|ak|(kp+1)1/p] | (2.6) |
By using (2.5) and (2.6), the inequality (2.3) is obtained.
Theorem 5. Let g:I⊆R→R be n times differentiable mapping on I∘, a,b∈I∘ with a<b, and p>1such that 1/p+1/q=1 where n is even number. If the mapping |g(n)|p is convex on [a,b], then the inequality in the following holds:
|1b−a∫bag(x)dx−g(a)+g(b)2+⋯+−(b−a)n−4[n.(n−1)(n−2).an+⋯+4.3.2.a4]2.n!.an×[g(n−4)(a)+g(n−4)(b)]+(b−a)n−3[n.(n−1).an+⋯+4.3.a4+3.2.a3+4.a2]2.n!.an×[g(n−3)(b)−g(n−3)(a)]−(b−a)n−2[n.an+⋯+2.a2]2.n!.an×[g(n−2)(a)+g(n−2)(b)]+(b−a)n−1[an+⋯+a1+2a0]2.n!.an×[g(n−1)(b)−g(n−1)(a)]|≤(b−a)n2.n!.|an|[n∑k=0|ak|k+1]1−1p×{([n∑k=0|ak|k+2]|g(n)(a)|p+[n∑k=0|ak|(k+1)(k+2)]|g(n)(b)|p)1p+([n∑k=0|ak|k+2]|g(n)(b)|p+[n∑k=0|ak|(k+1)(k+2)]|g(n)(a)|p)1p} | (2.7) |
Proof. Using Lemma 2 and power mean integral inequality, one obtains
|1b−a∫bag(x)dx−g(a)+g(b)2+⋯+−(b−a)n−4[n.(n−1)(n−2).an+⋯+4.3.2.a4]2.n!.an×[g(n−4)(a)+g(n−4)(b)]+(b−a)n−3[n.(n−1).an+⋯+4.3.a4+3.2.a3+4.a2]2.n!.an×[g(n−3)(b)−g(n−3)(a)]−(b−a)n−2[n.an+⋯+2.a2]2.n!.an×[g(n−2)(a)+g(n−2)(b)]+(b−a)n−1[an+⋯+a1+2a0]2.n!.an×[g(n−1)(b)−g(n−1)(a)]|=|(b−a)n2.n!.an×{∫10(antn+⋯+a1t+a0)[g(n)(ta+(1−t)b)+g(n)(tb+(1−t)a)]dt}|≤(b−a)n2.n!.|an|×[∫10|antn+⋯+a1t+a0||g(n)(ta+(1−t)b)|dt+∫10|antn+⋯+a1t+a0||g(n)(tb+(1−t)a)|dt]≤(b−a)n2.n!.|an|(∫10|antn+⋯+a1t+a0|dt)1−1p×{(∫10|antn+⋯+a1t+a0|(t|g(n)(a)|p+(1−t)|g(n)(b)|p)dt)1p+(∫10|antn+⋯+a1t+a0|(t|g(n)(b)|p+(1−t)|gn(a)|p)dt)1p}≤(b−a)n2.n!.|an|.[n∑k=0|ak|k+1]1−1p×{([n∑k=0|ak|k+2].|g(n)(a)|p+[n∑k=0|ak|(k+1)(k+2)].|g(n)(b)|p)1p+([n∑k=0|ak|k+2].|g(n)(b)|p+[n∑k=0|ak|(k+1)(k+2)].|g(n)(a)|p)1p} |
The proof is completed.
In this section, we consider the results of Section 2 to verify the new proposed inequalities.
Proposition 1. Let a,b∈R, 0<a<b, n>2 where n is even number. Then, the inequality in the following holds:
|Lnn(a,b)−A(an,bn)+⋯+−(b−a)n−4[n.(n−1).(n−2).an+⋯+4.3.2.a4](a4+b4)2.4!.an+(b−a)n−3[n.(n−1).an+⋯+3.2.a3+4.a2](b3−a3)2.3!.an−(b−a)n−2[n.an+⋯+2.a2](a2+b2)2.2!.an+(b−a)n−1[an+⋯+2.a0](b−a)2.an|≤(b−a)n|an|×n∑k=0|ak|k+1 | (3.1) |
Proof. The proof is clearly obtained from Theorem 3 for g(x)=xn, x∈R.
Proposition 2. Let a,b∈R, 0<a<b, n>2 where n is even number. For all p>1, one obtains
|Lnn(a,b)−A(an,bn)+⋯+−(b−a)n−4[n.(n−1).(n−2).an+⋯+4.3.2.a4](a4+b4)2.4!.an+(b−a)n−3[n.(n−1).an+⋯+3.2.a3+4.a2](b3−a3)2.3!.an−(b−a)n−2[n.an+⋯+2.a2](a2+b3)2.2!.an+(b−a)n−1[an+⋯+2.a0](b−a)2.an|≤(b−a)n|an|×n∑k=0|ak|(kp+1)1/p | (3.2) |
Proof. The proof is completed from Theorem 4 applied for g(x)=xn, x∈R.
Proposition 3. Let a,b∈R, 0<a<b, n>2 where n is even number. Then, we obtain for all p>1,
|Lnn(a,b)−A(an,bn)+⋯+−(b−a)n−4[n.(n−1).(n−2).an+⋯+4.3.2.a4](a4+b4)2.4!.an+(b−a)n−3[n.(n−1).an+⋯++3.2.a3+4.a2](b3−a3)2.3!.an−(b−a)n−2[n.an+⋯+2.a2](a2+b3)2.2!.an+(b−a)n−1[an+...+2.a0](b−a)2.an|≤(b−a)n|an|×(n∑k=0|ak|k+1)1−1/p×(n∑k=0|ak|k+2+n∑k=0|ak|(k+1)(k+2))1p | (3.3) |
Proof. The proof is obtained from Theorem 5 such that g(x)=xn, x∈[a,b].
The authors declare that there is no conflict of interest.
[1] |
Abdullah M (2015) An Empirical Analysis of Liquidity, Profitability and Solvency of Bangladeshi Banks. J Bus Fin Aff 5: 1–12. https://doi.org/10.4172/2167-0234.1000157 doi: 10.4172/2167-0234.1000157
![]() |
[2] |
Abdullah M (2021) The implication of machine learning for financial solvency prediction: an empirical analysis on public listed companies of Bangladesh. J Asian Bus Econ Stud 28: 303–320. https://doi.org/10.1108/JABES-11-2020-0128 doi: 10.1108/JABES-11-2020-0128
![]() |
[3] |
Abdullah M, Wali Ullah GM, Chowdhury MAF (2022) The Asymmetric Effect of COVID-19 Government Interventions on Global Stock Markets: New evidence from QARDL and Threshold Regression Approaches. Invest Anal J 51. https://doi.org/10.1080/10293523.2022.2112665 doi: 10.1080/10293523.2022.2112665
![]() |
[4] |
Abreo C, Bustillo R, Rodriguez C (2021) The role of institutional quality in the international trade of a Latin American country: evidence from Colombian export performance. J Econ Struct 10: 1–21. https://doi.org/10.1186/s40008-021-00253-5 doi: 10.1186/s40008-021-00253-5
![]() |
[5] | Acharya A, Roemer JE, Somanathan R (2015) Caste, corruption and political competition in India. Res Econ 69: 336–352. https://doi.org/DOI:10.1016/j.rie.2015.02.001 |
[6] |
Ahmed SU, Ahmed SP, Abdullah M, et al. (2022) Do socio-political factors affect investment performance? Cogent Econ Financ 10: 2113496. https://doi.org/10.1080/23322039.2022.2113496 doi: 10.1080/23322039.2022.2113496
![]() |
[7] |
Ahmed SU, Mahtab N, Islam MN, et al. (2017) Impact of Working Capital Management on Profitability: A Study on Textile Companies of Bangladesh. J Bus Financ Aff 06. https://doi.org/10.4172/2167-0234.1000292 doi: 10.4172/2167-0234.1000292
![]() |
[8] |
Altayligil YB, Çetrez M (2020) Macroeconomic, institutional and financial determinants of current account balances: a panel data assessment. J Econ Struct 9: 1–23. https://doi.org/10.1186/s40008-020-00225-1 doi: 10.1186/s40008-020-00225-1
![]() |
[9] | Altman EI, Hotchkiss E (2010) Corporate financial distress and bankruptcy: Predict and avoid bankruptcy, analyze and invest in distressed debt. John Wiley & Sons. |
[10] |
Anyanwu JC, Yaméogo ND (2015) Regional Comparison of Foreign Direct Investment to Africa: Empirical Analysis. Afr Dev Rev 27: 345–363. https://doi.org/10.1111/1467-8268.12152 doi: 10.1111/1467-8268.12152
![]() |
[11] |
Arellano M, Bond S (1991) Some Tests of Specification for Panel Data: Monte Carlo Evidence and an Application to Employment Equations. Rev Econ Stud 58: 277–297. https://doi.org/10.2307/2297968 doi: 10.2307/2297968
![]() |
[12] |
Athari SA (2021) Domestic political risk, global economic policy uncertainty, and banks' profitability: evidence from Ukrainian banks. Post-Communist Econ 33: 458–483. https://doi.org/10.1080/14631377.2020.1745563 doi: 10.1080/14631377.2020.1745563
![]() |
[13] |
Avina J (2013) The evolution of corporate social responsibility (CSR) in the Arab Spring. Middle East J 67: 77–92. https://doi.org/10.2307/23361694 doi: 10.2307/23361694
![]() |
[14] |
Ayyagari M, Demirgüç-Kunt A, Maksimovic V (2008) How important are financing constraints? The role of finance in the business environment. World Bank Econ Rev 22: 483–516. https://doi.org/10.1093/wber/lhn018 doi: 10.1093/wber/lhn018
![]() |
[15] | Baker M (2016) QREGPD: Stata module to perform quantile regression for panel data. |
[16] | Batzilis D (2020) The political determinants of government spending allocation and growth. Res Econ 74: 213–220. https://doi.org/DOI:10.1016/j.rie.2020.07.001 |
[17] |
Borojo DG, Yushi J (2020) The impacts of institutional quality and business environment on Chinese foreign direct investment flow to African countries. Econ Res-Ekon Istraz 33: 26–45. https://doi.org/10.1080/1331677X.2019.1696691 doi: 10.1080/1331677X.2019.1696691
![]() |
[18] | Bucciol A (2018) False claims in politics: Evidence from the US. Res Econ 72: 196–210. https://doi.org/DOI:10.1016/j.rie.2018.04.002 |
[19] | Chowdhury MAF (2017) The nexus between institutional quality and foreign direct investments (FDI) in South Asia: dynamic heterogeneous panel approach. In: Dorożyński, T., Kuna-Marszałek, A., Outward Foreign Direct Investment (FDI) in Emerging Market Economies, IGI Global, 293–310. https://doi.org/10.4018/978-1-5225-2345-1.ch015 |
[20] |
Çolak G, Durnev A, Qian Y (2017) Political uncertainty and IPO activity: Evidence from U.S. gubernatorial elections. J Financ Quant Anal 52: 2523–2564. https://doi.org/10.1017/S0022109017000862 doi: 10.1017/S0022109017000862
![]() |
[21] |
Constantine C (2017) Economic structures, institutions and economic performance. J Econ Struct 6. https://doi.org/10.1186/s40008-017-0063-1 doi: 10.1186/s40008-017-0063-1
![]() |
[22] | Das NC, Chowdhury MAF, Islam MN (2021a) Nonlinear threshold effects of institutional quality on capital flight: insights from Bangladesh. Int J Asian Bus Inf Manage 12: 43–59. http://doi.org/10.4018/IJABIM.20210101.oa3 |
[23] |
Das NC, Chowdhury MAF, Islam MN (2021b) The heterogeneous impact of leverage on firm performance: empirical evidence from Bangladesh. S Asian J Bus Stud 11: 235–252. https://doi.org/10.1108/SAJBS-04-2020-0100 doi: 10.1108/SAJBS-04-2020-0100
![]() |
[24] |
Diamonte RL, Liew JM, Stevens RL (1996) Political risk in emerging and developed markets. Financ Anal J 52: 71–76. https://doi.org/10.2469/faj.v52.n3.1998 doi: 10.2469/faj.v52.n3.1998
![]() |
[25] |
Dietrich A, Wanzenried G (2011) Determinants of bank profitability before and during the crisis: Evidence from Switzerland. J Int Financ Mark I 21: 307–327. https://doi.org/10.1016/j.intfin.2010.11.002 doi: 10.1016/j.intfin.2010.11.002
![]() |
[26] |
Dupasquier C, Osakwe PN (2006) Foreign direct investment in Africa: Performance, challenges, and responsibilities. J Asian Econ 17: 241–260. https://doi.org/10.1016/j.asieco.2005.07.002 doi: 10.1016/j.asieco.2005.07.002
![]() |
[27] |
Fairfield PM, Yohn TL (2001) Using asset turnover and profit margin to forecast changes in profitability. Rev Account Stud 6: 371–385. https://doi.org/10.1023/A:1012430513430 doi: 10.1023/A:1012430513430
![]() |
[28] |
Gaganis C, Pasiouras F, Voulgari F (2019) Culture, business environment and SMEs' profitability: Evidence from European Countries. Econ Model 78: 275–292. https://doi.org/10.1016/j.econmod.2018.09.023 doi: 10.1016/j.econmod.2018.09.023
![]() |
[29] |
Gan H, Park MS, Suh SH (2020) Non-financial performance measures, CEO compensation, and firms' future value. J Bus Res 110: 213–227. https://doi.org/10.1016/j.jbusres.2020.01.002 doi: 10.1016/j.jbusres.2020.01.002
![]() |
[30] |
Goldsmith AA (1987) Does Political Stability Hinder Economic Development? Mancur Olson's Theory and the Third World. Compa Polit 19: 471. https://doi.org/10.2307/421818 doi: 10.2307/421818
![]() |
[31] |
Gruszczynski M (2006) Corporate governance and financial performance of companies in Poland. Int Adv Econ Res 12: 251–259. https://doi.org/10.1007/s11294-006-9007-5 doi: 10.1007/s11294-006-9007-5
![]() |
[32] |
Hansen BE (1999) Threshold effects in non-dynamic panels: Estimation, testing, and inference. J Econom 93: 345–368. https://doi.org/10.1016/S0304-4076(99)00025-1 doi: 10.1016/S0304-4076(99)00025-1
![]() |
[33] |
Hansen LP (1982) Large Sample Properties of Generalized Method of Moments Estimators. Econometrica 50: 1029–1054. https://doi.org/10.2307/1912775 doi: 10.2307/1912775
![]() |
[34] | Hayakawa K, Hayakawa, Kazuhiko (2007) Small sample bias properties of the system GMM estimator in dynamic panel data models. Econ Lett 95: 32–38. https://EconPapers.repec.org/RePEc:eee:ecolet:v:95:y:2007:i:1:p:32-38 |
[35] |
Hillman AJ, Hitt MA (1999) Corporate Political Strategy Formulation: A Model of Approach, Participation, and Strategy Decisions. Acad Manage Rev 24: 825–842. https://doi.org/10.2307/259357 doi: 10.2307/259357
![]() |
[36] |
Hoque ME, Akhter T, Yakob NA (2018) Revisiting endogeneity among foreign direct investment, economic growth and stock market development: Moderating role of political instability. Cogent Econ Financ 6:1–21. https://doi.org/10.1080/23322039.2018.1492311 doi: 10.1080/23322039.2018.1492311
![]() |
[37] |
Hosny A (2017) Political Stability, Firm Characteristics and Performance: Evidence from 6,083 Private Firms in the Middle East. Rev Middle East Econ Financ 13. https://doi.org/10.1515/rmeef-2017-0005 doi: 10.1515/rmeef-2017-0005
![]() |
[38] | Hosny A (2020) What is the Cost of Political Instability in Tunisia? Evidence from 592 Private Firms. Afr J Econ Rev 8: 1–19. |
[39] |
Jens CE (2017) Political uncertainty and investment: Causal evidence from U.S. gubernatorial elections. J Financ Econ 124: 563–579. https://doi.org/10.1016/j.jfineco.2016.01.034 doi: 10.1016/j.jfineco.2016.01.034
![]() |
[40] |
Julio B, Yook Y (2012) Political uncertainty and corporate investment cycles. J Financ 67: 45–83. https://doi.org/10.1111/j.1540-6261.2011.01707.x doi: 10.1111/j.1540-6261.2011.01707.x
![]() |
[41] |
Killins RN (2020) Firm-specific, industry-specific and macroeconomic factors of life insurers' profitability: Evidence from Canada. North Am J Econ Financ 51: 101068. https://doi.org/10.1016/j.najef.2019.101068 doi: 10.1016/j.najef.2019.101068
![]() |
[42] |
Kim H (2010) Political Stability and Foreign Direct Investment. Int J Econ Financ 2: 59. https://doi.org/10.5539/ijef.v2n3p59 doi: 10.5539/ijef.v2n3p59
![]() |
[43] |
Kirikkaleli D (2020) Does political risk matter for economic and financial risks in Venezuela? J Econ Struct 9. https://doi.org/10.1186/s40008-020-0188-5 doi: 10.1186/s40008-020-0188-5
![]() |
[44] | Koenker R (2004) Quantile regression for longitudinal data. J Multivar Anal 91: 74–89. https://doi.org/DOI:10.1016/j.jmva.2004.05.006 |
[45] |
Kurecic P, Kokotovic F (2017) The relevance of political stability on FDI: A VAR analysis and ARDL models for selected small, developed, and instability threatened economies. Economies 5: 22. https://doi.org/10.3390/economies5030022 doi: 10.3390/economies5030022
![]() |
[46] | Lucas RE (1990) Why Doesn't Capital Flow from Rich to Poor Countries? Am Econ Rev 80: 92–96. http://www.jstor.org/stable/2006549 |
[47] |
Manolova TS, Eunni RV, Gyoshev BS (2008) Institutional environments for entrepreneurship: Evidence from emerging economies in Eastern Europe. Entrep: Theory Pract 32: 203–218. https://doi.org/10.1111/j.1540-6520.2007.00222.x doi: 10.1111/j.1540-6520.2007.00222.x
![]() |
[48] |
Marquis C, Raynard M (2015) Institutional Strategies in Emerging Markets. Acad Manag Ann 9: 291–335. https://doi.org/10.1080/19416520.2015.1014661 doi: 10.1080/19416520.2015.1014661
![]() |
[49] |
Nariswari TN, Nugraha NM (2020) Profit Growth: Impact of Net Profit Margin, Gross Profit Margin and Total Assests Turnover. Int J Financ Bank Stud 9: 87–96. https://doi.org/10.20525/ijfbs.v9i4.937 doi: 10.20525/ijfbs.v9i4.937
![]() |
[50] |
Nguyen TNL, Nguyen VC (2020) The determinants of profitability in listed enterprises: A study from vietnamese stock exchange. J Asian Financ Econ Bus 7: 47–58. https://doi.org/10.13106/jafeb.2020.vol7.no1.47 doi: 10.13106/jafeb.2020.vol7.no1.47
![]() |
[51] |
Ouà E, Ouà I, Lompo E (2020) Political Instability and Firm Performance: A Microeconomic Evidence from Ivory Coast. Am J Econ Bus Admin 12: 49–55. https://doi.org/10.3844/ajebasp.2020.49.55 doi: 10.3844/ajebasp.2020.49.55
![]() |
[52] | Petracco C, Schweiger H (2012) The Impact of Armed Conflict on Firms' Performance and Perceptions. European Bank for Reconstruction and Development Working Paper, 152. http://dx.doi.org/10.2139/ssrn.2189409 |
[53] |
Rahman R, Rashid MM (2018) Political instability and economic growth in Bangladesh. Innov Issues Approaches Soc Sci 11: 91–105. http://dx.doi.org/10.12959/issn.1855-0541.ⅡASS-2018-no2-art5 doi: 10.12959/issn.1855-0541.ⅡASS-2018-no2-art5
![]() |
[54] |
Rashid A, Nasimi AN, Nasimi RN (2021) The uncertainty–investment relationship: scrutinizing the role of firm size. Int J Emerg Mark. https://doi.org/10.1108/IJOEM-09-2019-0698 doi: 10.1108/IJOEM-09-2019-0698
![]() |
[55] |
Roe MJ, Siegel JI (2011) Political instability: Effects on financial development, roots in the severity of economic inequality. J Comp Econ 39: 279–309. https://doi.org/10.1016/j.jce.2011.02.001 doi: 10.1016/j.jce.2011.02.001
![]() |
[56] |
Roxas B, Chadee D, Erwee R (2012) Effects of rule of law on firm performance in South Africa. Eur Bus Rev 24: 478–492. https://doi.org/10.1108/09555341211254544 doi: 10.1108/09555341211254544
![]() |
[57] | Seo MH, Shin Y (2016) Dynamic panels with threshold effect and endogeneity. J Econom 195: 169–186. https://doi.org/DOI:10.1016/j.jeconom.2016.03.005 |
[58] |
Shaddady A (2021) Business environment, political risk, governance, Shariah compliance and efficiency in insurance companies in the MENA region. Geneva Pap Risk Insur Issues Pract 47: 1–44. https://doi.org/10.1057/s41288-021-00232-8 doi: 10.1057/s41288-021-00232-8
![]() |
[59] | Taani K, Hamed Banykhaled H (2011) THE EFFECT OF FINANCIAL RATIOS, FIRM SIZE AND CASH FLOWS FROM OPERATING ACTIVITIES ON EARNINGS PER SHARE: (AN APPLIED STUDY: ON JORDANIAN INDUSTRIAL SECTOR). Int J Soc Sci Humanity Stud 3: 197–205. |
[60] |
Tiwari AK (2013) Taxation, Economic Growth and Political Stability. Transit Stud Rev 20: 49–61. https://doi.org/10.1007/s11300-013-0264-8 doi: 10.1007/s11300-013-0264-8
![]() |
[61] | Uddin A, Chowdhury MAF, Islam MN (2017a) Do Socio-Economic Factors Matter for the Financial Development of a Muslim Country? A Study in Bangladesh Banking Sector. Int J Bus Soc 18: 59–78. |
[62] |
Uddin A, Chowdhury MAF, Sajib SD, et al. (2020) Revisiting the impact of institutional quality on post-GFC bank risk-taking: Evidence from emerging countries. Emerg Mark Rev 42: 100659. https://doi.org/10.1016/j.ememar.2019.100659 doi: 10.1016/j.ememar.2019.100659
![]() |
[63] | Uddin Ahmed M, Habibullah Pulok M (2013) The role of political stability on economic performance: The case of Bangladesh. J Econ Coop Dev 34: 61–99. |
[64] |
Uddin MA, Ali MH, Masih M (2017b) Political stability and growth: An application of dynamic GMM and quantile regression. Econ Model 64: 610–625. https://doi.org/10.1016/j.econmod.2017.04.028 doi: 10.1016/j.econmod.2017.04.028
![]() |
[65] | WGI (2020) The Worldwide Governance Indicators (WGI) project. Available from: http://info.worldbank.org/governance/wgi/ |
[66] |
Wolin SS (1981) Max weber: Legitimation, Method, and the Politics of Theory. Polit Theory 9: 401–424. https://doi.org/10.1177/009059178100900308 doi: 10.1177/009059178100900308
![]() |
[67] |
Yahya AT, Akhtar A, Tabash MI (2017) The impact of political instability, macroeconomic and bank-specific factors on the profitability of Islamic banks: An empirical evidence. Invest Manage Financ Innov 14: 30–39. https://doi.org/10.21511/imfi.14(4).2017.04 doi: 10.21511/imfi.14(4).2017.04
![]() |
[68] | Yoffie DB (1988) How an industry builds political advantage. Harvard Bus Rev 66: 82–89. |
[69] |
Zhao M (2012) CSR-Based Political Legitimacy Strategy: Managing the State by Doing Good in China and Russia. J Bus Ethics 111: 439–460. https://doi.org/10.1007/s10551-012-1209-6 doi: 10.1007/s10551-012-1209-6
![]() |
1. | Miguel Vivas-Cortez, Muhammad Uzair Awan, Sadia Talib, Muhammad Aslam Noor, Khalida Inayat Noor, Trapezium-like Inequalities Involving k-th Order Differentiable Rγ-Convex Functions and Applications, 2022, 14, 2073-8994, 448, 10.3390/sym14030448 | |
2. | Duygu Dönmez Demir, Gülsüm Şanal, On n-times differentiable strongly s-convex functions, 2023, 1, 2956-7068, 201, 10.2478/ijmce-2023-0016 | |
3. | Hasan Kara, Hüseyin Budak, Ahmet Akdemir, Some new parameterized inequalities based on Riemann-Liouville fractional integrals, 2023, 37, 0354-5180, 7867, 10.2298/FIL2323867K | |
4. | Duygu Dönmez Demir, Gülsüm Şanal, SOME APPLICATIONS OF S−LOG-CONVEX FUNCTIONS IN NUMERICAL INTEGRATION, 2024, 8, 2667-6990, 1, 10.53508/ijiam.1521759 |