Citation: Dinesh Chouksey, Pankaj Rathi, Ajoy Sodani, Rahul Jain, Hashash Singh Ishar. Postural orthostatic tachycardia syndrome in patients of orthostatic intolerance symptoms: an ambispective study[J]. AIMS Neuroscience, 2021, 8(1): 74-85. doi: 10.3934/Neuroscience.2021004
[1] | Rajagopalan Ramaswamy, Gunaseelan Mani . Application of fixed point result to solve integral equation in the setting of graphical Branciari $ {\aleph } $-metric spaces. AIMS Mathematics, 2024, 9(11): 32945-32961. doi: 10.3934/math.20241576 |
[2] | Muhammad Sarwar, Muhammad Fawad, Muhammad Rashid, Zoran D. Mitrović, Qian-Qian Zhang, Nabil Mlaiki . Rational interpolative contractions with applications in extended $ b $-metric spaces. AIMS Mathematics, 2024, 9(6): 14043-14061. doi: 10.3934/math.2024683 |
[3] | Gunaseelan Mani, Arul Joseph Gnanaprakasam, Absar Ul Haq, Imran Abbas Baloch, Choonkil Park . On solution of Fredholm integral equations via fuzzy $ b $-metric spaces using triangular property. AIMS Mathematics, 2022, 7(6): 11102-11118. doi: 10.3934/math.2022620 |
[4] | Hasanen A. Hammad, Hassen Aydi, Choonkil Park . Fixed point approach for solving a system of Volterra integral equations and Lebesgue integral concept in F$ _{\text{CM}} $-spaces. AIMS Mathematics, 2022, 7(5): 9003-9022. doi: 10.3934/math.2022501 |
[5] | Aftab Hussain . Fractional convex type contraction with solution of fractional differential equation. AIMS Mathematics, 2020, 5(5): 5364-5380. doi: 10.3934/math.2020344 |
[6] | Nizar Souayah, Nabil Mlaiki, Salma Haque, Doaa Rizk, Amani S. Baazeem, Wasfi Shatanawi . A new type of three dimensional metric spaces with applications to fractional differential equations. AIMS Mathematics, 2022, 7(10): 17802-17814. doi: 10.3934/math.2022980 |
[7] | Zhenhua Ma, Jamshaid Ahmad, Abdullah Eqal Al-Mazrooei . Fixed point results for generalized contractions in controlled metric spaces with applications. AIMS Mathematics, 2023, 8(1): 529-549. doi: 10.3934/math.2023025 |
[8] | Saif Ur Rehman, Iqra Shamas, Shamoona Jabeen, Hassen Aydi, Manuel De La Sen . A novel approach of multi-valued contraction results on cone metric spaces with an application. AIMS Mathematics, 2023, 8(5): 12540-12558. doi: 10.3934/math.2023630 |
[9] | Mian Bahadur Zada, Muhammad Sarwar, Reny George, Zoran D. Mitrović . Darbo-Type $ \mathcal{Z}_{\rm{m}} $ and $ \mathcal{L}_{\rm{m}} $ contractions and its applications to Caputo fractional integro-differential equations. AIMS Mathematics, 2021, 6(6): 6340-6355. doi: 10.3934/math.2021372 |
[10] | Hongyan Guan, Jinze Gou, Yan Hao . On some weak contractive mappings of integral type and fixed point results in $ b $-metric spaces. AIMS Mathematics, 2024, 9(2): 4729-4748. doi: 10.3934/math.2024228 |
For a convex function f:I⊆R→R on I with c,d∈I and c<d, the Hermite–Hadamard inequality states that [1]:
f(c+d2)≤1d−c∫dcf(t)dt≤f(c)+f(d)2. | (1.1) |
The Hermite-Hadamard integral inequality (1.1) is one of the most famous and commonly used inequalities. The recently published papers [2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17] are focused on extending and generalizing the convexity, Hermite-Hadamard inequality, and other inequalities for convex functions.
The situation of the fractional calculus (integrals and derivatives) has won vast popularity and significance throughout the previous five decades or so, due generally to its demonstrated applications in numerous seemingly numerous and great fields of science and engineering [18,19,20].
Now, we recall the definitions of Riemann-Liouville (RL) and generalized Riemann–Liouville (GRL) fractional integrals given by Sarikaya and Ertuğral.
Definition 1.1 ([18,19,20]). Let f∈L1[c,d]. The Riemann–Liouville (RL) fractional integrals RLIνc+f and RLIνd−f of order ν>0 with c≥0 are respectively defined by
RLIνc+f(x)=1Γ(ν)∫xc(x−t)ν−1f(t)dt,c<x, | (1.2) |
and
RLIνd−f(x)=1Γ(ν)∫dx(t−x)ν−1f(t)dt,x<d, | (1.3) |
with RLI0c+f(x)=RLI0d−f(x)=f(x).
Definition 1.2 ([21]). Assume that the function ℏ:[0,+∞)→[0,+∞) satisfies the following condition:
∫10ℏ(t)tdt<+∞. |
Then, the left sided and right sided generalized Riemann–Liouville (GRL) fractional integrals, denoted by GRLℏIc+ and GRLℏId−, are defined as follows:
GRLℏIc+f(x)=∫xcℏ(x−t)x−tf(t)dt,c<x, | (1.4) |
GRLℏId−f(x)=∫dxℏ(t−x)t−xf(t)dt,x<d. | (1.5) |
Remark 1.1. From the Definition 1.1 one can obtain some known definitions of fractional calculus as special cases. That is,
● If ℏ(t)=tνΓ(ν), then Definition 1.2 reduces to Definition 1.1.
● If ℏ(t)=tνkkΓk(ν), then the GRL fractional integrals reduce to k–RL fractional integrals [22].
● If ℏ(t)=tνexp(−1−ννt), then the GRL fractional integrals reduce to the fractional integrals with exponential kernel [23].
● If ℏ(t)=t(y−t)ν−1, then the GRL fractional integrals reduce to the conformable fractional integrals [24].
With a huge application of RL fractional integration and Hermite–Hadamard inequality, many researchers in the field of fractional calculus extended their research to the Hermite–Hadamard inequality, including RL fractional integration rather than ordinary integration; for example see [25,26,27,28,29,30,31,32].
On the one hand, it is well known that RL and GRL fractional integrals have the same importance in theory of integral inequalities, and the GRL fractional integrals are more convenient for calculation. Therefore it is necessary to study the Hermite-Hadamard integral inequalities by using the GRL fractional integrals while by using the RL fractional integrals. Fortunately, studying the Hermite-Hadamard integral inequalities via the GRL fractional integrations can unify the research of ordinary and fractional integrations. So it is necessary and meaningful to study Hermite-Hadamard integral inequalities via the GRL fractional integrations (see for details [21,33,34,35,36]).
In this paper, we consider the integral inequality of HHM type that depends on the Hermite-Hadamard and Jensen–Mercer inequalities. For this reason, we recall the Jensen–Mercer inequality: Let 0<x1≤x2≤⋯≤xn and α=(α1,α2,…,αn) nonnegative weights such that ∑ni=1αi=1. Then, the Jensen inequality [37,38] is as follows, for a convex function f on the interval [c,d], we have
f(n∑i=1αixi)≤n∑i=1αif(xi), | (1.6) |
for all xi∈[c,d] and αi∈[0,1], i=1,2,...,n.
Theorem 1.1 ([11,38]). If f is convex function on [c,d], then
f(c+d−n∑i=1αixi)≤f(c)+f(d)−n∑i=1αif(xi), | (1.7) |
for each xi∈[c,d] and αi∈[0,1], i=1,2,...,n with ∑ni=1αi=1.
For some results related to Jensen-Mercer inequality, see [39,40,41].
Based on the above observations and discussion, the primary purpose of this article is to establish several inequalities of HHM type for convex functions by using the GRL fractional integrals.
Throughout this attempt, we consider the following notations:
Λ(t):=∫t0ℏ((y−x)u)udu<+∞andΔ(t):=∫t0ℏ((y−x2)u)udu<+∞. |
Theorem 2.1. For a convex function f:[c,d]→R, we have the following inequalities for GRL:
f(c+d−x+y2)≤f(c)+f(d)−12Λ(1)[GRLℏIx+f(y)+GRLℏIy−f(x)]≤f(c)+f(d)−f(x+y2), | (2.1) |
and
f(c+d−x+y2)≤12Λ(1)[GRLℏI(c+d−y)+f(c+d−x)+GRLℏI(c+d−x)−f(c+d−y)]≤f(c+d−x)+f(c+d−y)2≤f(c)+f(d)−f(x)+f(y)2. | (2.2) |
Proof. From Jensen-Mercer inequality, we have for u,v∈[c,d]:
f(c+d−u+v2)≤f(c)+f(d)−f(u)+f(v)2. | (2.3) |
Then, for u=tx+(1−t)y and v=ty+(1−t)x, it follows that
f(c+d−x+y2)≤f(c)+f(d)−f(tx+(1−t)y)+f(ty+(1−t)x)2, | (2.4) |
for each x,y∈[c,d] and t∈[0,1]. By multiplying both sides of (2.4) by ℏ((y−x)t)t and integrating the result with respect to t over [0,1], we can obtain
f(c+d−x+y2)Λ(1)≤[f(c)+f(d)]Λ(1)−12[∫10ℏ((y−x)t)t[f(tx+(1−t)y)+f(ty+(1−t)x)]dt]=[f(c)+f(d)]∫10Λ(1)−12[∫10ℏ((y−x)t)tf(tx+(1−t)y)dt+∫10ℏ((y−x)t)tf(ty+(1−t)x)dt]=[f(c)+f(d)]Λ(1)−12[∫yxℏ(y−w)y−wf(w)dw+∫yxℏ(w−x)w−xf(w)dw]=[f(c)+f(d)]Λ(1)−12[GRLℏIx+f(w)+GRLℏIy−f(w)]. |
This gives the first inequality in (2.1). To prove the second inequality in (2.1), first we have by the convexity of f:
f(u+v2)≤f(u)+f(v)2. | (2.5) |
By changing the variables u=tx+(1−t)y and v=ty+(1−t)x in (2.5), we have
f(x+y2)≤f(tx+(1−t)y)+f(ty+(1−t)x)2,t∈[0,1]. | (2.6) |
Multiplying both sides of (2.6) by ℏ((y−x)t)t and integrating the result with respect to t over [0,1], we get
f(x+y2)Λ(1)≤12[∫10ℏ((y−x)t)tf(tx+(1−t)y)dt+∫10ℏ((y−x)t)tf(ty+(1−t)x)dt]=12[∫yxℏ(y−w)y−wf(w)+∫yxℏ(w−x)w−xf(w)dw]=12[GRLℏIx+f(y)+GRLℏIy−f(x)], |
which implies that
−f(x+y2)≥−12Λ(1)[GRLℏIx+f(y)+GRLℏIy−f(x)]. | (2.7) |
By adding f(c)+f(d) on both sides of (1.4), we can obtain the second inequality in (2.1).
Now we give the proof of inequalities (2.2). Since f is convex function, then for all u,v∈[c,d], we have
f(c+d−u+v2)=f(c+d−u+c+d−v2)≤12[f(c+d−u)+f(c+d−v)]. | (2.8) |
Then, for c+d−u=t(c+d−x)+(1−t)(c+d−y) and c+d−v=t(c+d−y)+(1−t)(c+d−x), it follows that
f(c+d−u+v2)≤12[f(t(c+d−x)+(1−t)(c+d−y))+f(t(c+d−y)+(1−t)(c+d−x))]. | (2.9) |
for each x,y∈[c,d] and t∈[0,1]. Now, by multiplying both sides of (2.9) by ℏ((y−x)t)t and integrating the obtaining inequality with respect to t over [0,1], we obtain
f(c+d−u+v2)Λ(1)≤12[∫10ℏ((y−x)t)tf(t(c+d−x)+(1−t)(c+d−y))dt+∫10ℏ((y−x)t)tf(t(c+d−y)+(1−t)(c+d−x))dt]=12[∫c+d−xc+d−yℏ(w−(c+d−y))w−(c+d−y)f(w)dw+∫c+d−xc+d−yℏ((c+d−x)−w)(c+d−x)−wf(w)dw]=12[GRLℏI(c+d−y)+f(c+d−x)+GRLℏI(c+d−x)−f(c+d−y)], |
and this completes the proof of the first inequality in (2.2). To prove the second inequality in (2.2), first we use the convexity of f to get
f(t(c+d−x)+(1−t)(c+d−y))≤tf(c+d−x)+(1−t)f(c+d−y), | (2.10) |
f(t(c+d−y)+(1−t)(c+d−x))≤(1−t)f(c+d−x)+tf(c+d−y). | (2.11) |
Adding (2.10) and (2.11), we get
f(t(c+d−x)+(1−t)(c+d−y))+f(t(c+d−y)+(1−t)(c+d−x))≤f(c+d−x)+f(c+d−y)≤2[f(c)+f(d)]−[f(x)+f(y)]. | (2.12) |
Multiplying both sides of (2.12) by ℏ((y−x)t)t and integrating the result with respect to t over [0,1], we obtain
∫10ℏ((y−x)t)tf(t(c+d−x)+(1−t)(c+d−y))dt+∫10ℏ((y−x)t)tf(t(c+d−y)+(1−t)(c+d−x))dt≤Λ(1)f(c+d−x)+Λ(1)f(c+d−y)≤2Λ(1)[f(c)+f(d)]−Λ(1)[f(x)+f(y)]. |
By using the change of variables of integration and then by multiplying the result by 12Λ(1), we can obtain the second and third inequalities in (2.2). This completes the proof of Theorem 2.1.
Remark 2.1. Let the assumptions of Theorem 2.1 be satisfied. Then,
● If ℏ(t)=t, then Theorem 2.1 reduces to [42,Theorem 2.1].
● If ℏ(t)=tνΓ(ν), then Theorem 2.1 reduces to [43,Theorem 2].
● If we set ℏ(t)=t, x=c and y=d in (2.2), then (2.2) becomes (1.1).
● If ℏ(t)=tνkkΓk(a) in Theorem 2.1 (Eq. (2.2)), we get
f(c+d−x+y2)≤Γk(ν+k)2(y−x)νk[RLℏI(c+d−y)+,kf(c+d−x)+RLℏI(c+d−x)−,kf(c+d−y)]≤f(c+d−x)+f(c+d−y)2≤f(c)+f(d)−f(x)+f(y)2. |
● If we set ℏ(t)=tνΓ(ν), x=c and y=d in (2.2), then we have
f(c+d2)≤Γ(ν+1)2(b−a)ν[RLIνc+f(d)+RLIνd−f(c)]≤f(c)+f(d)2, |
which is derived in [25].
● If we set ℏ(t)=tνkkΓk(ν), x=c and y=d in (2.2), then we have
f(c+d2)≤Γk(ν+k)2(d−c)νk[RLIνc+,kf(d)+RLIνd−,kf(c)]≤f(c)+f(d)2, |
which is derived in [44].
● If x=c and y=d, then inequalities (2.1) reduces to the following inequalities:
f(c+d2)≤f(c)+f(d)−12Λ(1)[GRLℏIc+f(y)+GRLℏId−f(x)]≤f(c)+f(d)−f(c+d2). |
● If x=c and y=d, then inequalities (2.2) reduces to [21,Theorem 5].
Corollary 2.1. For a convex function f:[c,d]→R, we have the following inequalities of HHM type for conformable fractional integrals:
f(c+d−x+y2)≤f(c)+f(d)−ν2(yν−xν)∫yxf(t)dνt≤f(c)+f(d)−f(x+y2), | (2.13) |
and
f(c+d−x+y2)≤ν(yν−xν)∫c+d−xc+d−yf(t)dνt≤f(c+d−x)+f(c+d−y)2≤f(c)+f(d)−f(x)+f(y)2. | (2.14) |
Proof. By setting ℏ(t)=t(y−t)ν−1 in Theorem 2.1, we can directly obtain the proof.
Remark 2.2. If we set x=c and y=d in (2.14), then we have the well-known conformable fractional HH integral inequality:
f(c+d2)≤νdν−cν∫dcf(t)dνt≤f(c)+f(d)2, |
which is derived by Adil Khan et al. in [45].
Corollary 2.2. For a convex function f:[c,d]→R, we have the following inequalities of HHM type for fractional integrals with exponential kernel:
f(c+d−x+y2)≤f(c)+f(d)−(ν−1)2[exp(−1−νν(y−x))−1][expIνx+f(y)+expIνy−f(x)]≤f(c)+f(d)−f(x+y2), | (2.15) |
and
f(c+d−x+y2)≤(ν−1)2[exp(−1−νν(y−x))−1][expIν(c+d−y)+f(c+d−x)+expIν(c+d−x)−f(c+d−y)]≤f(c+d−x)+f(c+d−y)2≤f(c)+f(d)−f(x)+f(y)2. | (2.16) |
Proof. By setting ℏ(t)=tνexp(−1−ννt) in Theorem 2.1, we can easily obtain the proof of Corollary 2.2.
Remark 2.3. If we set x=c and y=d in (2.16), then we have the HH inequalities for fractional integrals with exponential kernel:
f(c+d2)≤(ν−1)2[exp(−1−νν(d−c))−1][expIνc+f(d)+expIνd−f(c)]≤f(c)+f(d)2, |
which is derived by Ahmad et al. in [46].
Theorem 2.2. For a convex function f:[c,d]→R, we have the following inequalities for GRL:
f(c+d−x+y2)≤12Δ(1)[GRLℏI(c+d−x+y2)−f(c+d−y)+GRLℏI(c+d−x+y2)+f(c+d−x)]≤f(c)+f(d)−f(x)+f(y)2. | (2.17) |
Proof. From the convexity of f, we have
f(c+d−u+v2)=f(c+d−u+c+d−v2)≤12f(c+d−u)+f(c+d−v). | (2.18) |
By setting u=t2x+2−t2y, v=2−t2x+t2y, it follows that
f(c+d−x+y2)≤12[f(c+d−(t2x+2−t2y))+f(c+d−(2−t2x+t2y))], | (2.19) |
for all x,y∈[c,d] and t∈[0,1]. Multiplying both sides of (2.19) by ℏ((y−x2)t)t and integrating its result with respect to t over [0,1], we get
f(c+d−x+y2)Δ(1)≤12[∫10ℏ((y−x2)t)tf(c+d−(t2x+2−t2y))dt+∫10ℏ((y−x2)t)tf(c+d−(2−t2x+t2y))dt]=12[∫c+d−x+y2c+d−yℏ(w−(c+d−y))w−(c+d−y)f(w)dw+∫c+d−xc+d−x+y2ℏ((c+d−x)−w)(c+d−x)−wf(w)dw]=12[GRLℏI(c+d−x+y2)−f(c+d−y)+GRLℏI(c+d−x+y2)+f(c+d−x)]. |
Thus, the first inequality in (2.17) is proved. To prove the second inequality in (2.17), by using the Jensen–Mercer inequality, we can deduce:
f(c+d−(t2x+2−t2y))≤f(c)+f(d)−[t2f(x)+2−t2f(y)] | (2.20) |
f(c+d−(2−t2x+t2y))≤f(c)+f(d)−[2−t2f(x)+t2f(y)]. | (2.21) |
By adding (2.20) and (2.21), we obtain
f(c+d−(t2x+2−t2y))+f(c+d−(2−t2x+t2y))≤2[f(c)+f(d)]−f(x)+f(y). | (2.22) |
Multiplying both sides of inequality (2.22) by ℏ((y−x2)t)t and integrating the result with respect to t over [0,1], we get
∫10ℏ((y−x2)t)tf(c+d−(t2x+2−t2y))dt+∫10ℏ((y−x2)t)tf(c+d−(2−t2x+t2y))dt≤2Δ(1)[f(c)+f(d)]−Δ(1)[f(x)+f(y)]. |
By using change of variables of integration and multiplying the result by 12Δ(1), we can easily obtain second inequality in (2.17).
Remark 2.4. Assume that the assumptions of Theorem 2.2 are satisfied.
● If ℏ(t)=t, then inequalities (2.17) becomes inequalities [42,Theorem 2.1].
● If we put ℏ(t)=t,x=c and y=d in Theorem 2.2, then inequalities (2.17) becomes inequalities (1.1).
● If ℏ(t)=tνΓ(ν), then Theorem 2.2 reduces to [43,Theorem 3].
● If we put ℏ(t)=tνΓ(ν),x=c and y=d in Theorem 2.2, then Theorem 2.2 reduces to [26,Theorem 4].
● If ℏ(t)=tνkkΓk(ν) in Theorem 2.2, we get
f(c+d−x+y2)≤2νk−1Γk(ν+k)(y−x)νk[RLℏI(c+d−x+y2)−,kf(c+d−y)+RLℏI(c+d−x+y2)+,kf(c+d−x)]≤f(c)+f(d)−f(x)+f(y)2. |
● If we put ℏ(t)=tνkkΓk(ν), x=c and y=d in Theorem 2.2, then Theorem 2.2 reduces to [44,Theorem 1.1].
● If x=c and y=d, then Theorem 2.2 becomes
f(c+d2)≤12Δ(1)[GRLℏI(c+d2)−f(c)+GRLℏI(c+d2)+f(d)]≤f(c)+f(d)2. |
Corollary 2.3. For a convex function f:[c,d]→R, we have the following inequalities of HHM type for conformable fractional integrals:
f(c+d−x+y2)≤ν[yν−(x+y2)ν]∫c+d−xc+d−yf(t)dνt≤f(c)+f(d)−f(x)+f(y)2. | (2.23) |
Proof. By setting ℏ(t)=t(y−t)ν−1 in Theorem 2.2, then we have proof of Corollary 2.3.
Remark 2.5. If we set x=c and y=d in (2.23), then we get
f(c+d2)≤ν[dν−(c+d2)ν]∫dcf(t)dνt≤f(c)+f(d)2. |
Corollary 2.4. For a convex function f:[c,d]→R, we have the following inequalities of HHM type for fractional integrals with exponential kernel:
f(c+d−x+y2)≤(ν−1)2[exp(−1−νν(y−x)2)−1][expIν(c+d−x+y2)−f(c+d−y)+expIν(c+d−x+y2)+f(c+d−x)]≤f(c)+f(d)−f(x)+f(y)2. | (2.24) |
Proof. By setting ℏ(t)=tνexp(−1−ννt) in Theorem 2.2, we get proof of Corollary 2.4.
Remark 2.6. If we set x=c and y=d in (2.24), then we get
f(c+d2)≤(ν−1)2[exp(−1−νν(d−c)2)−1][expIν(c+d2)−f(c)+expIν(c+d2)+f(d)]≤f(c)+f(d)2. |
In view of the inequalities (2.1) and (2.17), we can generate some related results in this section.
Lemma 3.1. Let f:[c,d]→R be a differentiable function on (c,d) such that f′∈L[c,d]. Then, the following equality holds for GRL:
f(c+d−y)+f(c+d−x)2−12Λ(1)[GRLℏI(c+d−y)+f(c+d−x)+GRLℏI(c+d−x)−f(c+d−y)]=(y−x)2Λ(1)∫10[Λ(t)−Λ(1−t)]f′(c+d−(tx+(1−t)y))dt=(y−x)2Λ(1)∫10Λ(t)[f′(c+d−(tx+(1−t)y))−f′(c+d−(ty+(1−t)x))]dt. | (3.1) |
Proof. By the help of the right hand side of (3.1), we have
(y−x)2Λ(1)∫10Λ(t)[f′(c+d−(tx+(1−t)y))−f′(c+d−(ty+(1−t)x))]dt=(y−x)2Λ(1)[∫10Λ(t)f′(c+d−(tx+(1−t)y))dt−∫10Λ(t)f′(c+d−(ty+(1−t)x))dt]=(y−x)2Λ(1)[S1−S2]. | (3.2) |
By applying integration by parts, one can obtain
S2=∫10Λ(t)f′(c+d−(ty+(1−t)x))dt=−Λ(1)f(c+d−y)y−x+1y−x∫10ℏ((y−x)t)tf(c+d−(ty+(1−t)x))=−Λ(1)f(c+d−y)y−x+1y−x=−Λ(1)f(c+d−y)y−x+1y−x[GRLℏI(c+d−y)+f(c+d−x)]. |
Similarly, one can obtain
S1=∫10Λ(t)f(c+d−(tx+(1−t)y))dt=Λ(1)f(c+d−x)y−x−1y−x[GRLℏI(c+d−x)−f(c+d−y)]. |
By making use of S1 and S2 in (3.2), we get the identity (3.1).
Remark 3.1. Let the assumptions of Lemma 3.1 be satisfied.
● If ℏ(t)=t, then Lemma 3.1 reduces to [43,Corollary 1].
● If ℏ(t)=tνΓ(ν), then Lemma 3.1 reduces to [43,Lemma 1].
● If ℏ(t)=tνkkΓk(ν) in Lemma 3.1, we get
f(c+d−x)+f(c+d−y)2−Γk(ν+k)2(y−x)νk[RLℏI(c+d−y)+,kf(c+d−x)+RLℏI(c+d−x)−,kf(c+d−y)]=y−x2∫10[tνk−(1−t)νk]f′(c+d−(tx+(1−t)y))dt. | (3.3) |
● If x=c and y=d, then Lemma 3.1 reduces to [47,Lemma 2.1].
Corollary 3.1. Let the assumptions of Lemma 3.1 be satisfied, then the following equality holds for the conformable fractional integrals:
f(c+d−y)+f(c+d−x)2−νyν−xν∫c+d−xc+d−yf(t)dνt=(y−x)2Λ1(1)∫10[Λ1(t)−Λ1(1−t)]f′(c+d−(tx+(1−t)y))dt=(y−x)2Λ1(1)∫10Λ1(t)[f′(c+d−(tx+(1−t)y))−f′(c+d−(ty+(1−t)x))]dt, | (3.4) |
where
Λ1(t)=yν−(tx+(1−t)y)νν. |
Proof. By setting ℏ(t)=t(y−t)ν−1 in Lemma 3.1, then we have proof of Corollary 3.1.
Remark 3.2. By setting x=c and y=d in (3.4), we get
f(c)+f(d)2−νdν−cν∫dcf(t)dνt=(d−c)2Λ2(1)∫10[Λ2(t)−Λ2(1−t)]f′(td+(1−t)c)dt=(d−c)2Λ2(1)∫10Λ2(t)[f′(td+(1−t)c)−f′(tc+(1−t)d)]dt, |
where
Λ2(t)=yν−(tc+(1−t)d)νν. |
Corollary 3.2. Let the assumptions of Lemma 3.1 be satisfied, then the following equality holds for the fractional integrals with exponential kernel:
f(c+d−y)+f(c+d−x)2−(ν−1)2[exp(−1−νν(y−x))−1]×[expIν(c+d−y)+f(c+d−x)+expIν(c+d−x)−f(c+d−y)]=(y−x)2Λ3(1)∫10[Λ3(t)−Λ3(1−t)]f′(c+d−(tx+(1−t)y))dt=(y−x)2Λ3(1)∫10Λ3(t)[f′(c+d−(tx+(1−t)y))−f′(c+d−(ty+(1−t)x))]dt, | (3.5) |
where
Λ3(t)=exp(−1−νν(y−x)t)−1ν−1. |
Proof. By setting ℏ(t)=tνexp(−1−ννt) in Lemma 3.1, we get proof of Corollary 3.2.
Remark 3.3. If we set x=c and y=d in (3.5), we get
f(c)+f(d)2−(ν−1)2[exp(−1−νν(d−c))−1][expIνc+f(d)+expIνd−f(c)]=(d−c)2Λ4(1)∫10[Λ4(t)−Λ4(1−t)]f′(td+(1−t)c)dt=(d−c)2Λ4(1)∫10Λ4(t)[f′(td+(1−t)c)−f′(tc+(1−t)d)]dt, |
where
Λ4(t)=exp(−1−νν(d−c)t)−1ν−1. |
Lemma 3.2. Let f:[c,d]→R be a differentiable function on (c,d) such that f′∈L[c,d]. Then, the following equality holds for GRL:
12Δ(1)[GRLℏI(c+d−x+y2)+f(c+d−x)+GRLℏI(c+d−x+y2)−f(c+d−y)]−f(c+d−x+y2)=(y−x)4Δ(1)∫10Δ(t)[f′(c+d−(2−t2x+t2y))−f′(c+d−(t2x+2−t2y))]dt. | (3.6) |
Proof. The proof of Lemma 3.2 is similar to Lemma 3.1, so we omit it.
Remark 3.4. Let the assumptions of Lemma 3.2 be satisfied.
● If ℏ(t)=tνΓ(ν), then Lemma 3.2 reduces to [43,Lemma 2].
● If ℏ(t)=tνkkΓk(ν) in Lemma 3.2, we get
2νk−1Γk(ν+k)(y−x)νk[RLℏI(c+d−x+y2)−,kf(c+d−y)+RLℏI(c+d−x+y2)+,kf(c+d−x)]−f(c+d−x+y2)=y−x4∫10tνk[f′(c+d−(2−t2x+t2y))−f′(c+d−(t2x+2−t2y))]dt. | (3.7) |
● If x=c and y=d, then Lemma 3.2 becomes
12Δ(1)[GRLℏI(c+d2)−f(c)+GRLℏI(c+d2)+f(d)]−f(c+d2)=d−c4Δ(1)∫10Δ(t)[f′(t2c+2−t2d)−f′(2−t2c+t2d)]dt. |
Corollary 3.3. Let the assumptions of Lemma 3.2 be satisfied, then the following equality holds for the conformable fractional integrals:
ν[yν−(x+y2)ν]∫c+d−xc+d−yf(t)dνt=(y−x)4Δ1(1)∫10Δ1(t)[f′(c+d−(2−t2x+t2y))−f′(c+d−(t2x+2−t2y))]dt, | (3.8) |
where
Δ1(t)=yν−(y−(y−x2)t)νν. |
Proof. By setting ℏ(t)=t(y−t)ν−1 in Lemma 3.2, we have proof of Corollary 3.3.
Remark 3.5. If we set x=c and y=d in (3.8), we get
ν[dν−(d+c2)ν]∫dcf(t)dνt=(d−c)4Δ2(1)∫10Δ2(t)[f′(2−t2d+t2c)−f′(t2d+2−t2c)]dt, |
where
Δ2(t)=dν−(d−(d−c2)t)νν. |
Corollary 3.4. Let the assumptions of Lemma 3.2 be satisfied, then the following equality holds for the fractional integrals with exponential kernel:
(ν−1)2[exp(−1−νν(y−x)2)−1][expIν(c+d−x+y2)+f(c+d−x)+expIν(c+d−x+y2)−f(c+d−y)]−f(c+d−x+y2)=(y−x)4Δ3(1)∫10Δ3(t)[f′(c+d−(2−t2x+t2y))−f′(c+d−(t2x+2−t2y))]dt, | (3.9) |
where
Δ3(t)=exp(−1−νν(y−x)t2)−1ν−1. |
Proof. By setting ℏ(t)=tνexp(−1−ννt) in Lemma 3.2, we get proof of Corollary 3.4.
Remark 3.6. If we put x=c and y=d in (3.9), we get
(ν−1)2[exp(−1−νν(d−c)2)−1][expIν(c+d2)+f(d)+expIν(c+d2)−f(c)]−f(c+d2)=(d−c)4Δ4(1)∫10Δ4(t)[f′(2−t2d+t2c)−f′(t2d+2−t2c)]dt, |
where
Δ4(t)=exp(−1−νν(d−c)t2)−1ν−1. |
Theorem 3.1. Let f:[c,d]→R be a differentiable function on (c,d) such that |f′| is convex on [c,d]. Then, the following inequality holds for GRL:
|GRLℏF(c,d;x,y)|≤(y−x)2Λ(1)[[|f′(c)|+|f′(d)|]∫10|Λ(t)−Λ(1−t)|dt−[|f′(x)|+|f′(y)|]∫10t|Λ(t)−Λ(1−t)|dt], | (3.10) |
where
|GRLℏF(c,d;x,y)|:=|f(c+d−y)+f(c+d−x)2−12Λ(1)[GRLℏI(c+d−y)+f(c+d−x)+GRLℏI(c+d−x)−f(c+d−y)]|. |
Proof. In view of Lemma 3.1, we have
|GRLℏF(c,d;x,y)|≤(y−x)2Λ(1)∫10|Λ(t)−Λ(1−t)||f′(c+d−(tx+(1−t)y))|dt. |
Then, by using the Jensen–Mercer inequality, we obtain
|GRLℏF(c,d;x,y)|≤(y−x)2Λ(1)∫10|Λ(t)−Λ(1−t)|[|f′(c)|+|f′(d)|−t|f′(x)|−(1−t)|f′(y)|]dt=(y−x)2Λ(1)[∫10|Λ(t)−Λ(1−t)|[|f′(c)|+|f′(d)|]dt−|f′(x)|∫10t|Λ(t)−Λ(1−t)|dt−|f′(y)|∫10(1−t)|Λ(t)−Λ(1−t)|dt]=(y−x)2Λ(1)[[|f′(c)|+|f′(d)|]∫10|Λ(t)−Λ(1−t)|dt−[|f′(x)|+|f′(y)|]∫10t|Λ(t)−Λ(1−t)|dt], |
which completes the proof of Theorem 3.1.
Remark 3.7. Let the assumptions of Theorem 3.1 be satisfied. Then,
● If ℏ(t)=tνΓ(ν), then Theorem 3.1 reduces to [43,Theorem 4].
● If ℏ(t)=tνkkΓk(ν) in Theorem 3.1, we get
|f(c+d−x)+f(c+d−y)2−Γk(ν+k)2(y−x)νk[RLℏI(c+d−y)+,kf(c+d−x)+RLℏI(c+d−x)−,kf(c+d−y)]|≤y−xν+k(k−k2νk)[|f′(c)|+|f′(d)|−|f′(x)|+|f′(y)|2]. | (3.11) |
● If x=c and y=d, then Theorem 3.1 reduces to [21,Theorem 6].
Corollary 3.5. Let the assumptions of Theorem 3.1 be satisfied. Then, we have
|f(c+d−y)+f(c+d−x)2−1y−x∫c+d−xc+d−yf(x)dx|≤14[|f′(c)|+|f′(d)|−|f′(x)|+|f′(y)|2]. | (3.12) |
Proof. If we set ℏ(t)=t in Theorem 3.1, then we have proof of Corollary 3.5.
Remark 3.8. If we use x=c and y=d in Corollary 3.5, then Corollary 3.5 reduces to [47,Theorem 2.2].
Corollary 3.6. Let the assumptions of Theorem 3.1 be satisfied. Then, we have the following inequality holds for conformable fractional integrals:
|f(c+d−y)+f(c+d−x)2−νyν−xν∫c+d−xc+d−yf(t)dνt|≤ν(y−x)2(yν−xν)×[[|f′(c)|+|f′(d)|]∫10|Λ1(t)−Λ1(1−t)|dt−[|f′(x)|+|f′(y)|]∫10t|Λ1(t)−Λ1(1−t)|dt]. | (3.13) |
Proof. By setting ℏ(t)=t(y−t)ν−1 in Theorem 3.1, we have proof of Corollary 3.6.
Remark 3.9. If we set x=c and y=d, then we have
|f(c)+f(d)2−νdν−cν∫dcf(t)dνt|≤ν(d−c)2(dν−cν)[[|f′(c)|+|f′(d)|]∫10t|Λ2(t)−Λ2(1−t)|dt]. |
Corollary 3.7. Let the assumptions of Theorem 3.1 be satisfied. Then, we have the following inequality for fractional integrals with exponential kernel:
|f(c+d−y)+f(c+d−x)2−(ν−1)2[exp(−1−νν(y−x))−1]×[expIν(c+d−y)+f(c+d−x)+expIν(c+d−x)−f(c+d−y)]|≤(ν−1)(y−x)2[exp(−1−νν(y−x))−1][[|f′(c)|+|f′(d)|]∫10|Λ3(t)−Λ3(1−t)|dt−[|f′(x)|+|f′(y)|]∫10t|Λ3(t)−Λ3(1−t)|dt]. | (3.14) |
Proof. By setting ℏ(t)=tνexp(−1−ννt) in Theorem 3.1, we get proof of Corollary 3.7.
Remark 3.10. If we set x=c and y=d in (3.14), then we have
|f(c)+f(d)2−(ν−1)2[exp(−1−νν(d−c))−1][expIνc+f(d)+expIνd−f(c)]|≤(ν−1)(d−c)2[exp(−1−νν(d−c))−1][[|f′(c)|+|f′(d)|]∫10t|Λ4(t)−Λ4(1−t)|dt]. |
Theorem 3.2. Let f:[c,d]→R be a differentiable function on (c,d) such that |f′|q is convex on [c,d] for some q>1. Then, the following inequality holds for GRL:
|GRLℏF(c,d;x,y)|≤(y−x)2Λ(1)(∫10|Λ(t)−Λ(1−t)|pdt)1p×(|f′(c)|q+|f′(d)|q−|f′(x)|q+|f′(y)|q2)1q, | (3.15) |
where 1p+1q=1.
Proof. In view of Lemma 3.1 and the well–known Hölder's inequality, one can obtain
|GRLℏF(c,d;x,y)|≤(y−x)2Λ(1)(∫10|Λ(t)−Λ(1−t)|pdt)1p(∫10|f′(c+d−(tx+(1−t)y))|qdt)1q. |
We can apply the Jensen–Mercer inequality due to the convexity of |f′|q, to get
|GRLℏF(c,d;x,y)|≤(y−x)2Λ(1)(∫10|Λ(t)−Λ(1−t)|pdt)1p×(∫10[|f′(c)|q+|f′(d)|q−(t|f′(x)|q+(1−t)|f′(y)|q)]dt)1q=(y−x)2Λ(1)(∫10|Λ(t)−Λ(1−t)|pdt)1p(|f′(c)|q+|f′(d)|q−|f′(x)|q+|f′(y)|q2)1q, |
which completes the proof of Theorem 3.2.
Corollary 3.8. Let the assumptions of Theorem 3.2 be satisfied, then we have
|f(c+d−y)+f(c+d−x)2−1y−x∫c+d−xc+d−yf(x)dx|≤(y−x)2(1+p)1p×(|f′(c)|q+|f′(d)|q−|f′(x)|q+|f′(y)|q2)1q. | (3.16) |
Remark 3.11. If we use x=c and y=d in Corollary 3.8, then Corollary 3.8 reduces to [47,Theorem 2.3].
Proof. By using ℏ(t)=t in inequality (3.15), we can obtain inequality (3.16).
Corollary 3.9. Let the assumptions of Theorem 3.2 be satisfied, then we have the following inequality holds for RL:
|f(c+d−y)+f(c+d−x)2−Γ(ν+1)2(y−x)ν[RLIν(c+d−y)+f(c+d−x)+RLIν(c+d−x)−f(c+d−y)]|≤(y−x)2(νp+1)1p(|f′(c)|q+|f′(d)|q−|f′(x)|q+|f′(y)|q2)1q. | (3.17) |
Proof. By setting ℏ(t)=tνΓ(ν) in inequality (3.15), we obtain inequality (3.17).
Remark 3.12. If we set x=c and y=d in Corollary 3.9, then we have
|f(c)+f(d)2−Γ(ν+1)2(d−c)ν[RLIνc+f(d)+RLIνd−f(c)]|≤(d−c)2(νp+1)1p(|f′(c)|q+|f′(d)|q2)1q. |
Corollary 3.10. Let the assumptions of Theorem 3.2 be satisfied, then we have for k–RL:
|f(c+d−y)+f(c+d−x)2−Γk(ν+k)2(y−x)νk[RLIν(c+d−y)+,kf(c+d−x)+RLIν(c+d−x)−,kf(c+d−y)]|≤(y−x)2(νkp+1)1p(|f′(c)|q+|f′(d)|q−|f′(x)|q+|f′(y)|q2)1q. | (3.18) |
Proof. By setting ℏ(t)=tνkkΓk(ν) in inequality (3.15), we can obtain inequality (3.18).
Remark 3.13. If we set x=c and y=d in Corollary 3.10, then we obtain
|f(c)+f(d)2−Γk(ν+k)2(d−c)νk[RLIνc+,kf(d)+RLIνd−,kf(c)]|≤(d−c)2(νkp+1)1p(|f′(c)|q+|f′(d)|q2)1q. |
Corollary 3.11. Let the assumptions of Theorem 3.2 be satisfied, then we have the following inequality for the conformable fractional integrals:
|f(c+d−y)+f(c+d−x)2−νyν−xν∫c+d−xc+d−yf(t)dνt|≤ν(y−x)2(yν−xν)×(∫10|Λ1(t)−Λ1(1−t)|pdt)1p(|f′(c)|q+|f′(d)|q−|f′(x)|q+|f′(y)|q2)1q. | (3.19) |
Proof. By setting ℏ(t)=t(y−t)ν−1 in Theorem 3.2, we get proof of Corollary 3.11.
Remark 3.14. If we set x=c and y=d in (3.19), then we have
|f(c)+f(d)2−νdν−cν∫dcf(t)dνt|≤ν(d−c)2(dν−cν)(∫10|Λ2(t)−Λ2(1−t)|pdt)1p×(|f′(c)|q+|f′(d)|q2)1q. |
Corollary 3.12. Let the assumptions of Theorem 3.2 be satisfied, then we have the following inequality for the fractional integrals with exponential kernel:
|f(c+d−y)+f(c+d−x)2−(ν−1)2[exp(−1−νν(y−x))−1]×[expIν(c+d−y)+f(c+d−x)+expIν(c+d−x)−f(c+d−y)]|≤(ν−1)(y−x)2[exp(−1−νν(y−x))−1](∫10|Λ3(t)−Λ3(1−t)|pdt)1p×(|f′(c)|q+|f′(d)|q−|f′(x)|q+|f′(y)|q2)1q. | (3.20) |
Proof. By setting ℏ(t)=tνexp(−1−ννt) in Theorem 3.2, we have proof of Corollary 3.12.
Remark 3.15. If we set x=c and y=d in (3.20), then we have
|f(c)+f(d)2−(ν−1)2[exp(−1−νν(d−c))−1][expIνc+f(d)+expIνd−f(c)]|≤(ν−1)(d−c)2[exp(−1−νν(d−c))−1](∫10|Λ4(t)−Λ4(1−t)|pdt)1p(|f′(c)|q+|f′(d)|q2)1q. |
Theorem 3.3. Let f:[c,d]→R be a differentiable function on (c,d) such that |f| is convex on [c,d]. Then, the following inequality holds for GRL:
|GRLℏG(c,d;x,y)|≤(y−x)2Δ(1)[|f′(c)|+|f′(d)|−|f′(x)|+|f′(y)|2]∫10|Δ(t)|dt, | (3.21) |
where
|GRLℏG(c,d;x,y)|:=|12Δ(1)[GRLℏI(c+d−x+y2)+f(c+d−x)+GRLℏI(c+d−x+y2)−f(c+d−y)]−f(c+d−x+y2)|. |
Proof. From Lemma 3.2, we have
|GRLℏG(c,d;x,y)|≤(y−x)4Δ(1)[∫10|Δ(t)||f′(c+d−(2−t2x+t2y))|dt+∫10|Δ(t)||f′(c+d−(t2x+2−t2y))|dt] |
Then, by using the Jensen–Mercer inequality, we get
|GRLℏG(c,d;x,y)|≤(y−x)4Δ(1)[∫10|Δ(t)|(|f′c|+|f′(d)|−(2−t2|f′(x)|+t2|f′(y)|))dt+∫10|Δ(t)|(|f′(c)|+|f′(d)|−(t2|f′(x)|+2−t2|f′(y)|))dt]=(y−x)4Δ(1)[∫10|Δ(t)|[2|f′(c)|+2|f′(d)|−(|f′(x)|+|f′(y)|)]dt]=(y−x)2Δ(1)[|f′(c)|+|f′(d)|−|f′(x)|+|f′(y)|2]∫10|Δ(t)|dt, |
which completes the proof of Theorem 3.3.
Remark 3.16. Let the assumptions of Theorem 3.3 be satisfied. Then, the following special cases can be considered.
● If ℏ(t)=t, then Theorem 3.3 reduces to [43,Corollary 2].
● If ℏ(t)=t, x=c and y=d, then Theorem 3.3 reduces to [48,Theorem 2.2].
● If ℏ(t)=tνΓ(ν), then Theorem 3.3 reduces to [43,Theorem 5].
● If ℏ(t)=tνΓ(ν),x=c and y=d, then Theorem 3.3 reduces to [26,Theorem 5] with q=1.
● If ℏ(t)=tνkkΓk(ν) in Theorem 3.3, we get
|2νk−1Γk(ν+k)(y−x)νk[RLℏI(c+d−x+y2)−,kf(c+d−y)+RLℏI(c+d−x+y2)+,kf(c+d−x)]−f(c+d−x+y2)|≤k(y−x)2(ν+k)[|f′(c)|+|f′(d)|−|f′(x)|+|f′(y)|2]. | (3.22) |
● If we set ℏ(t)=tνkkΓk(ν),x=c and y=d in Theorem 3.3, then we have
|2ν−kkΓk(ν+k)(d−c)νk[RLIν(c+d2)+,kf(d)+RLIν(c+d2)−,kf(c)]−f(c+d2)|≤k(d−c)2(ν+k)[|f′(c)|+|f′(d)|2]. |
Corollary 3.13. Let the assumptions of Theorem 3.3 be satisfied. Then, the following inequality holds for the conformable fractional integrals:
|ν[yν−(x+y2)ν]∫c+d−xc+d−yf(t)dνt|≤ν(y−x)2[yν−(x+y2)ν]×[|f′(c)|+|f′(d)|−|f′(x)|+|f′(y)|2]∫10|Δ1(t)|dt. | (3.23) |
Proof. By setting ℏ(t)=t(y−t)ν−1 in Theorem 3.3, we can get proof of Corollary 3.13.
Remark 3.17. If we set x=c and y=d in (3.23), then we have
|ν[dν−(c+d2)ν]∫dcf(t)dνt|≤ν(d−c)2[dν−(c+d2)ν][|f′(c)|+|f′(d)|2]∫10|Δ2(t)|dt. |
Corollary 3.14. Let the assumptions of Theorem 3.3 be satisfied. Then, the following inequality holds for the fractional integrals with exponential kernel:
|(ν−1)2[exp(−1−νν(y−x)2)−1][[expIν(c+d−x+y2)+f(c+d−x)+expIν(c+d−x+y2)−f(c+d−y)]]−f(c+d−x+y2)|≤(ν−1)(y−x)2[exp(−1−νν(y−x)2)−1][|f′(c)|+|f′(d)|−|f′(x)|+|f′(y)|2]∫10|Δ3(t)|dt. | (3.24) |
Proof. By setting ℏ(t)=tνexp(−1−ννt) in Theorem 3.3, we can obtain proof of Corollary 3.14.
Remark 3.18. If we set x=c and y=d in (3.24), then we have
|(ν−1)2[exp(−1−νν(d−c)2)−1][[expIν(c+d2)+f(d)+expIν(c+d2)−f(c)]]−f(c+d2)|≤(ν−1)(d−c)2[exp(−1−νν(d−c)2)−1][|f′(c)|+|f′(d)|2]∫10|Δ4(t)|dt. |
Theorem 3.4. Let f:[c,d]→R be a differentiable function on (c,d) such that |f′|q is convex on [c,d] for some q>1. Then, the following inequality holds for GRL:
|GRLℏG(c,d;x,y)|≤(y−x)4Δ(1)(∫10|Δ(t)|pdt)1p[(|f′(c)|q+|f′(d)|q−3|f′(x)|q+|f′(y)|q4)1q+(|f′(c)|q+|f′(d)|q−(|f′(x)|q+3|f′(y)|q4))1q], | (3.25) |
where 1p+1q=1.
Proof. From Lemma 3.2 and well-known Hölder's inequality, we obtain
|GRLℏG(c,d;x,y)|≤(y−x)4Δ(1)(∫10|Δ(t)|pdt)1p[(∫10|f′(c+d−(2−t2x+t2y))|qdt)1q+(∫10|f′(c+d−(t2x+2−t2y))|qdt)1q]. |
By applying the Jensen–Mercer inequality due to convexity of |f′|q, we can obtain
|GRLℏG(c,d;x,y)|≤(y−x)4Δ(1)(∫10|Δ(t)|pdt)1p[(∫10[|f′(c)|q+|f′(d)|q−(2−t2|f′(x)|q+t2|f′(y)|q)]dt)1q+(∫10[|f′(c)|q+|f′(d)|q−(t2|f′(x)|q+2−t2|f′(y)|q)]dt)1q]=(y−x)4Δ(1)(∫10|Δ(t)|pdt)1p[(|f′(c)|q+|f′(d)|q−3|f′(x)|q+|f′(y)|q4)1q+(|f′(c)|q+|f′(d)|q−(|f′(x)|q+3|f′(y)|q4))1q], |
and this completes proof of the Theorem 3.4.
Remark 3.19. Let the assumptions of Theorem 3.4 be satisfied. Then, the following special cases can be considered.
● If ℏ(t)=t, then Theorem 3.4 reduces to [43,Corollary 3].
● If ℏ(t)=t,x=c and y=d, then Theorem 3.4 reduces to [48,Theorem 2.3].
● If ℏ(t)=tνΓ(ν), then Theorem 3.4 reduces to [43,Theorem 6].
● If ℏ(t)=tνΓ(ν),x=c and y=d, then Theorem 3.4 reduces to [26,Theorem 6].
● If ℏ(t)=tνkkΓk(ν) in Theorem 3.4, we get
|2νk−1Γk(ν+k)(y−x)νk[RLℏI(c+d−x+y2)−,kf(c+d−y)+RLℏI(c+d−x+y2)+,kf(c+d−x)]−f(c+d−x+y2)|≤y−x4(kνp+k)1p[(|f′(c)|q+|f′(d)|q−3|f′(x)|q+|f′(y)|q4)1q+(|f′(c)|q+|f′(d)|q−|f′(x)|q+3|f′(y)|q4)1q]. | (3.26) |
● If ℏ(t)=tνkkΓk(ν),x=c and y=d, then we have
|2ν−kkΓk(ν+k)(d−c)νk[RLIν(c+d2)+,kf(d)+RLIν(c+d2)−,kf(c)]−f(c+d2)|≤(d−c)4(kνp+k)1p[(|f′(c)|q+3|f′(d)|q4)1q+(3|f′(c)|q+|f′(d)|q4)1q]. |
Corollary 3.15. Let the assumptions of Theorem 3.4 be satisfied. Then, the following inequality holds for the conformable fractional integrals:
|ν[yν−(x+y2)ν]∫c+d−xc+d−yf(t)dνt|≤ν(y−x)4(yν−(x+y2)ν)(∫10|Δ1(t)|pdt)1p×[(|f′(c)|q+|f′(d)|q−3|f′(x)|q+|f′(y)|q4)1q+(|f′(c)|q+|f′(d)|q−(|f′(x)|q+3|f′(y)|q4))1q]. | (3.27) |
Proof. By setting ℏ(t)=t(y−t)ν−1 in Theorem 3.4, we can obtain proof of Corollary 3.15.
Remark 3.20. If we set x=c and y=d in (3.27), then we have
|ν[dν−(c+d2)ν]∫dcf(t)dνt|≤ν(d−c)4(dν−(c+d2)ν)(∫10|Δ2(t)|pdt)1p[(|f′(c)|q+3|f′(d)|q4)1q+(3|f′(c)|q+|f′(d)|q4)1q]. |
Corollary 3.16. Let the assumptions of Theorem 3.4 be satisfied. Then, the following inequality holds for the fractional integrals with exponential kernel:
|(ν−1)2[exp(−1−νν(y−x)2)−1][[expIν(c+d−x+y2)+f(c+d−x)+expIν(c+d−x+y2)−f(c+d−y)]]−f(c+d−x+y2)|≤(ν−1)(y−x)4[exp(−1−νν(y−x)2)−1](∫10|Δ3(t)|pdt)1p[(|f′(c)|q+|f′(d)|q−3|f′(x)|q+|f′(y)|q4)1q+(|f′(c)|q+|f′(d)|q−(|f′(x)|q+3|f′(y)|q4))1q]. | (3.28) |
Proof. By setting ℏ(t)=tνexp(−1−ννt) in Theorem 3.4, we can obtain proof of Corollary 3.16.
Remark 3.21. If we set x=c and y=d in (3.28), then we have
|(ν−1)2[exp(−1−νν(d−c)2)−1][[expIν(c+d2)+f(d)+expIν(c+d2)−f(c)]]−f(c+d2)|≤(ν−1)(d−c)4[exp(−1−νν(d−c)2)−1](∫10|Δ4(t)|pdt)1p[(|f′(c)|q+3|f′(d)|q4)1q+(3|f′(c)|q+|f′(d)|q4)1q]. |
In this work inequalities of Hermite-Hadamard-Mercer type via generalized fractional integrals are obtained. It is also proved that the results in this paper are generalization of the several existing comparable results in literature. As future direction, one may finds some new interesting inequalities through different types of convexities. Our results may stimulate further research in different areas of pure and applied sciences.
We want to give thanks to the Dirección de investigación from Pontificia Universidad Católica del Ecuador for technical support to our research project entitled: "Algunas desigualdades integrales para funciones convexas generalizadas y aplicaciones". This work is partially supported by National Natural Sciences Foundation of China (Grant No. 11971241).
The authors declare that they have no conflict of interest.
[1] |
Kanjwal Y, Kosinski D, Grubb BP (2003) The postural orthostatic tachycardia syndrome: definitions, diagnosis, and management. Pacing Clin Electrophysiol 26: 1747-1757. doi: 10.1046/j.1460-9592.2003.t01-1-00262.x
![]() |
[2] |
Freeman R, Wieling W, Axelrod FB, et al. (2011) Consensus statement on the definition of orthostatic hypotension, neurally mediated syncope and the postural tachycardia syndrome. Clin Auton Res 21: 69-72. doi: 10.1007/s10286-011-0119-5
![]() |
[3] |
Stewart JM (2009) Postural tachycardia syndrome and reflex syncope: similarities and differences. J Pediatr 154: 481-485. doi: 10.1016/j.jpeds.2009.01.004
![]() |
[4] |
Thieben MJ, Sandroni P, Sletten DM, et al. (2007) Postural orthostatic tachycardia syndrome: the Mayo clinic experience. Mayo Clin Proc 82: 308-313. doi: 10.1016/S0025-6196(11)61027-6
![]() |
[5] |
Peltier AC, Garland E, Raj SR, et al. (2010) Distal sudomotor findings in postural tachycardia syndrome. Clin Auton Res 20: 93-99. doi: 10.1007/s10286-009-0045-y
![]() |
[6] |
Sandroni P, Opfer-Gehrking TL, McPhee BR, et al. (1999) Postural tachycardia syndrome: clinical features and follow-up study. Mayo Clin Proc 74: 1106-1110. doi: 10.4065/74.11.1106
![]() |
[7] |
Low PA, Sandroni P, Joyner M, et al. (2009) Postural tachycardia syndrome (POTS). J Cardiovasc Electrophysiol 20: 352-358. doi: 10.1111/j.1540-8167.2008.01407.x
![]() |
[8] |
Raj SR (2013) Postural tachycardia syndrome (POTS). Circulation 127: 2336-2342. doi: 10.1161/CIRCULATIONAHA.112.144501
![]() |
[9] |
Safavi-Naeini P, Razavi M (2020) Postural Orthostatic Tachycardia Syndrome. Tex Heart Inst J 47: 57-59. doi: 10.14503/THIJ-19-7060
![]() |
[10] |
Bryarly M, Phillips LT, Fu Q, et al. (2019) Postural Orthostatic Tachycardia Syndrome: JACC Focus Seminar. J Am Coll Cardiol 73: 1207-1228. doi: 10.1016/j.jacc.2018.11.059
![]() |
[11] |
Chen-Scarabelli C, Scarabelli TM (2004) Neurocardiogenic syncope. BMJ 329: 336-341. doi: 10.1136/bmj.329.7461.336
![]() |
[12] | Raj SR (2006) The Postural Tachycardia Syndrome (POTS): pathophysiology, diagnosis & management. Indian Pacing Electrophysiol J 6: 84-99. |
[13] | Chouksey D, Sodani A (2015) Extended head-up tilt table test (HUTT) in unexplained recurrent loss of consciousness;asingle-center prospective study. Int J Adv Res 3: 661-670. |
[14] | Zaqqa M, Massumi A (2000) Neurally mediated syncope. Tex Heart Inst J 27: 268-272. |
[15] |
Carew S, Connor MO, Cooke J, et al. (2009) A review of postural orthostatic tachycardia syndrome. Europace 11: 18-25. doi: 10.1093/europace/eun324
![]() |
[16] |
Wells R, Spurrier AJ, Linz D, et al. (2018) Postural tachycardia syndrome: current perspectives. Vasc Health Risk Manag 14: 1-11. doi: 10.2147/VHRM.S127393
![]() |
[17] |
Grubb BP (2005) Neurocardiogenic syncope and related disorders of orthostatic intolerance. Circulation 111: 2997-3006. doi: 10.1161/CIRCULATIONAHA.104.482018
![]() |
[18] |
Kanjwal K, Sheikh M, Karabin B, et al. (2011) Neurocardiogenic syncope coexisting with postural orthostatic tachycardia syndrome in patients suffering from orthostatic intolerance: a combined form of autonomic dysfunction. Pacing Clin Electrophysiol 34: 549-554. doi: 10.1111/j.1540-8159.2010.02994.x
![]() |
[19] |
Bartoletti A, Alboni P, Ammirati F, et al. (2000) ‘The Italian Protocol’: a simplified head-up tilt testing potentiated with oral nitroglycerin to assess patients with unexplained syncope. Europace 2: 339-342. doi: 10.1053/eupc.2000.0125
![]() |
[20] |
Sheldon RS, Grubb BP, Olshansky B, et al. (2015) 2015 heart rhythm society expert consensus statement on the diagnosis and treatment of postural tachycardia syndrome, inappropriate sinus tachycardia, and vasovagal syncope. Heart Rhythm 12: e41-e63. doi: 10.1016/j.hrthm.2015.03.029
![]() |
[21] |
Jacob G, Costa F, Shannon JR, et al. (2000) The neuropathic postural tachycardia syndrome. N Engl J Med 343: 1008-1014. doi: 10.1056/NEJM200010053431404
![]() |
[22] |
Lee H, Low PA, Kim HA (2017) Patients with Orthostatic Intolerance: Relationship to Autonomic Function Tests results and Reproducibility of Symptoms on Tilt. Sci Rep 7: 5706. doi: 10.1038/s41598-017-05668-4
![]() |
[23] |
Thieben MJ, Sandroni P, Sletten DM, et al. (2007) Postural orthostatic tachycardia syndrome: the Mayo clinic experience. Mayo Clin Proc 82: 308-313. doi: 10.1016/S0025-6196(11)61027-6
![]() |
[24] |
Pandian JD, Dalton K, Henderson RD, et al. (2007) Postural orthostatic tachycardia syndrome: an underrecognized disorder. Intern Med J 37: 529-535. doi: 10.1111/j.1445-5994.2007.01356.x
![]() |
[25] |
Neeraj, Deolalikar S, Pannu A, et al. (2019) Clinical profile and cardiovascular autonomic function tests in patients with postural orthostatic tachycardia syndrome. CHRISMED J Health Res 6: 79-82. doi: 10.4103/cjhr.cjhr_81_18
![]() |
[26] |
Ives CT, Kimpinski K (2013) Higher postural heart rate increments on head-up tilt correlate with younger age but not orthostatic symptoms. J Appl Physiol (1985) 115: 525-528. doi: 10.1152/japplphysiol.00292.2013
![]() |
[27] |
Huh TE, Yeom JS, Kim YS, et al. (2013) Orthostatic symptoms does not always manifest during tilt-table test in pediatric postural orthostatic tachycardia syndrome patients. Korean J Pediatr 56: 32-36. doi: 10.3345/kjp.2013.56.1.32
![]() |
[28] | Wieling W (1988) Standing, orthostatic stress and autonomic function. A textbook of clinical disorders of the autonomic nervous system Oxford: Oxford University Press, 308-320. |
[29] |
Ojha A, McNeeley K, Heller E, et al. (2010) Orthostatic syndromes differ in syncope frequency. Am J Med 123: 245-249. doi: 10.1016/j.amjmed.2009.09.018
![]() |
[30] |
Krediet CT, van Dijk N, Linzer M, et al. (2002) Management of vasovagal syncope: controlling or aborting faints by leg crossing and muscle tensing. Circulation 106: 1684-1689. doi: 10.1161/01.CIR.0000030939.12646.8F
![]() |
[31] |
Galbreath MM, Shibata S, VanGundy TB, et al. (2011) Effects of exercise training on arterial-cardiac baroreflex function in POTS. Clin Auton Res 21: 73-80. doi: 10.1007/s10286-010-0091-5
![]() |
[32] |
Alshekhlee A, Guerch M, Ridha F, et al. (2008) Postural tachycardia syndrome with asystole on head-up tilt. Clin Auton Res 18: 36-39. doi: 10.1007/s10286-007-0445-9
![]() |
[33] |
Kimpinski K, Figueroa JJ, Singer W, et al. (2012) A prospective, 1-yearfollow-up study of postural tachycardia syndrome. Mayo Clin Proc 87: 746-752. doi: 10.1016/j.mayocp.2012.02.020
![]() |