Citation: Jean A. Rondal. Down syndrome: A curative prospect?[J]. AIMS Neuroscience, 2020, 7(2): 168-193. doi: 10.3934/Neuroscience.2020012
[1] | Nafissa Toureche Trouba, Mohamed E. M. Alngar, Reham M. A. Shohib, Haitham A. Mahmoud, Yakup Yildirim, Huiying Xu, Xinzhong Zhu . Novel solitary wave solutions of the (3+1)–dimensional nonlinear Schrödinger equation with generalized Kudryashov self–phase modulation. AIMS Mathematics, 2025, 10(2): 4374-4411. doi: 10.3934/math.2025202 |
[2] | Islam Samir, Hamdy M. Ahmed, Wafaa Rabie, W. Abbas, Ola Mostafa . Construction optical solitons of generalized nonlinear Schrödinger equation with quintuple power-law nonlinearity using Exp-function, projective Riccati, and new generalized methods. AIMS Mathematics, 2025, 10(2): 3392-3407. doi: 10.3934/math.2025157 |
[3] | Dumitru Baleanu, Kamyar Hosseini, Soheil Salahshour, Khadijeh Sadri, Mohammad Mirzazadeh, Choonkil Park, Ali Ahmadian . The (2+1)-dimensional hyperbolic nonlinear Schrödinger equation and its optical solitons. AIMS Mathematics, 2021, 6(9): 9568-9581. doi: 10.3934/math.2021556 |
[4] | Tianyong Han, Ying Liang, Wenjie Fan . Dynamics and soliton solutions of the perturbed Schrödinger-Hirota equation with cubic-quintic-septic nonlinearity in dispersive media. AIMS Mathematics, 2025, 10(1): 754-776. doi: 10.3934/math.2025035 |
[5] | Abdul Mateen, Ghulam Hussain Tipu, Loredana Ciurdariu, Fengping Yao . Analytical soliton solutions of the Kairat-Ⅱ equation using the Kumar–Malik and extended hyperbolic function methods. AIMS Mathematics, 2025, 10(4): 8721-8752. doi: 10.3934/math.2025400 |
[6] | Mahmoud Soliman, Hamdy M. Ahmed, Niveen Badra, Taher A. Nofal, Islam Samir . Highly dispersive gap solitons for conformable fractional model in optical fibers with dispersive reflectivity solutions using the modified extended direct algebraic method. AIMS Mathematics, 2024, 9(9): 25205-25222. doi: 10.3934/math.20241229 |
[7] | Yazid Alhojilan, Islam Samir . Investigating stochastic solutions for fourth order dispersive NLSE with quantic nonlinearity. AIMS Mathematics, 2023, 8(7): 15201-15213. doi: 10.3934/math.2023776 |
[8] | Emad H. M. Zahran, Ahmet Bekir, Reda A. Ibrahim, Ratbay Myrzakulov . The new soliton solution types to the Myrzakulov-Lakshmanan-XXXII-equation. AIMS Mathematics, 2024, 9(3): 6145-6160. doi: 10.3934/math.2024300 |
[9] | Da Shi, Zhao Li, Dan Chen . New traveling wave solutions, phase portrait and chaotic patterns for the dispersive concatenation model with spatio-temporal dispersion having multiplicative white noise. AIMS Mathematics, 2024, 9(9): 25732-25751. doi: 10.3934/math.20241257 |
[10] | Ghazala Akram, Saima Arshed, Maasoomah Sadaf, Hajra Mariyam, Muhammad Nauman Aslam, Riaz Ahmad, Ilyas Khan, Jawaher Alzahrani . Abundant solitary wave solutions of Gardner's equation using three effective integration techniques. AIMS Mathematics, 2023, 8(4): 8171-8184. doi: 10.3934/math.2023413 |
In combinatorics, the Catalan numbers are the numbers of Dyck words of length 2n or the numbers of different ways n+1 factors completely parenthesized or the numbers of non-isomorphic ordered trees with n+1 vertices or the numbers of monotonic lattice paths along the edges of a grid with n×n square cells, which do not pass above the diagonal or the numbers of noncrossing partitions of the set {1,...,n} and arise in many other counting problems with real-world applications [3,5,7,24,28]. The Catalan-Daehee numbers are defined by assigning √1−4t−1 instead of t in the definition of Daehee numbers which play important role in connecting relationship between special numbers [10,16]. Moreover, the generating function of Catalan numbers can be represented by the fermionic p-adic integral on Zp of (1−4t)x2 and the generating function of Catalan-Daehee numbers can be represented by the p-adic Volkenborn integral on Zp of the same function (1−4t)x2 [16,17]. Various identities of Catalan-Daehee polynomials have been studied in [5,16,17,29].
Many scholars in the field of mathematics have worked on degenerate versions of special polynomials and numbers which include the degenerate Stirling numbers of the first and second kinds, the degenerate Bernstein polynomials, the degenerate Bell numbers and polynomials, the degenerate gamma function, the degenerate gamma random variables, and so on [1,2,10,11,12,13,14,15,19,20,30,31]. We can find the motivation to study degenerate polynomials and numbers in the following real-world examples. Suppose the probability of a baseball player getting a hit in a match is p. We wonder if the probability that the player will succeed in the 11th trial after failing 9 times in 10 trials is still p. We can see cases where the probability is less than p because of the psychological burden that the player must succeed in the 11th trial [31].
In the 1970s, Rota and his collaborators [22,23,24] began to construct a rigorous foundation for the classical umbral calculus, which consisted of a symbolic technique for the manipulation of numerical and polynomial sequences. The umbral calculus has received much attention from researchers because of its numerous applications in many fields of mathematics, physics, chemistry, and engineering [4,6,9,11,13,15,16,20,21,22,23,24,25,26,28]. For instance, the connection between Sheffer polynomials and Riordan array and the isomorphism between the Sheffer groups and the Riordan Groups are proved [25,26]. Recently, Kim-Kim [11] introduced the λ-Sheffer sequences and the degenerate Sheffer sequences by substituting λ-linear functionals and λ-differential operators, respectively, instead of linear functionals and differential operators.
With these points in mind, in this paper, we first define the degenerate Catalan-Daehee numbers and polynomials and degenerate Catalan-Daehee polynomials of order r(≥1) as one of the generalizations of the degenerate Catalan-Daehee polynomials. It is difficult to study identities related to degenerate Catalan-Daehee polynomials and special polynomials using the p-adic integral on Zp or other properties. Thus, we explore various interesting identities related to the degenerate Catalan-Daehee polynomials of order r and special polynomials and numbers by using degenerate Sheffer sequences. At the same time we derive the inversion formulas of these identities. Some of them include the degenerate and other special polynomials and numbers such as the degenerate falling factorials, the falling factorials, the degenerate Bernoulli polynomials and numbers of order r, the degenerate Euler polynomials and numbers of order r, the degenerate Daehee polynomials of order r, the degenerate Bell polynomials, etc.
Now, we give some definitions and properties needed in this paper.
For any nonzero λ∈R, the degenerate exponential function is defined by
exλ(t)=(1+λt)xλ,eλ(t)=(1+λt)1λ, (|x∖λ|≤1)(see[10−17]). | (1.1) |
By Taylor expansion, we get
exλ(t)=∞∑n=0(x)n,λtnn!,(see [10−17]), | (1.2) |
where (x)0,λ=1, (x)n,λ=x(x−λ)(x−2λ)⋯(x−(n−1)λ), (n≥1).
The degenerate Bernoulli polynomials and degenerate Euler polynomials of order r, respectively, are given by the generating function
(teλ(t)−1)rexλ(t)=∞∑n=0B(r)n,λ(x)tnn!, (see [1,11−13]), | (1.3) |
and
(2eλ(t)+1)rexλ(t)=∞∑n=0E(r)n,λ(x)tnn!,(see[1,11,13]). | (1.4) |
We note that B(r)n,λ=B(r)n,λ(0) and E(r)n,λ=E(r)n,λ(0) (n≥0), which are called the degenerate Bernoulli and degenerate Euler numbers of order r, respectively.
The degenerate Bernoulli polynomials of the second kind of order r are defined by the generating function
(tlogλ(1+t))r(1+t)x=∞∑n=0b(r)n,λ(x)tnn!,(see [8,11]). | (1.5) |
When x=0, b(r)n,λ=b(r)n,λ(0), which are called the degenerate Bernoulli numbers of the second kind of order r.
The degenerate Daehee polynomials of order r are defined by the generating function
(logλ(1+t)t)r(1+t)x=∞∑n=0D(r)n,λ(x)tnn!,(see [6,11]), | (1.6) |
where logλ(1+t)=1λ((1+t)λ−1) and logλ(eλ(t))=eλ(logλ(t))=t.
When x=0, D(r)n,λ=D(r)n,λ(0), which are called the degenerate Daehee numbers of order r.
The Bell polynomials are defined by the generating function
ex(et−1)=∞∑n=0Beln(x)tnn!,(see [3,15,19,20]). |
Kim-Kim introduced the degenerate Bell polynomials given by the generating function
exλ(eλ(t)−1)=∞∑l=0Bell,λ(x)tll!,(see [13]). | (1.7) |
When x=1, Bel(r)n,λ=Bel(r)n,λ(1) are called the degenerate Bell numbers.
For n≥0, it is well known that the Stirling numbers of the first and second kind, respectively are given by
(x)n=n∑l=0S1(n,l)xl and 1k!(log(1+t))k=∞∑n=kS1(n,k)tnn!,(see [1,14]), |
and
xn=n∑l=0S2(n,l)(x)l and 1k!(et−1)k=∞∑n=kS2(n,k)tnn!,(see [1,14]), |
where (x)0=1,(x)n=x(x−1)…(x−n+1), (n≥1).
Moreover, the degenerate Stirling numbers of the first and second kind, respectively are given by
(x)n=n∑l=0S1,λ(n,l)(x)l,λ and 1k!(logλ(1+t))k=∞∑n=kS1,λ(n,k)tnn!,(k≥0),(see [12,14]), | (1.8) |
and
(x)n,λ=n∑l=0S2,λ(n,l)(x)l and 1k!(eλ(t)−1)k=∞∑n=kS2,λ(n,k)tnn!,(k≥0),(see [12,14]). | (1.9) |
For k≥0, as an extension of the notion of the degenerate Stirling numbers of the second kind, Kim et al. introduced Jindalrae-Stirling numbers of the second kind by
1k!(eλ(eλ(t)−1)−1)k=∞∑n=kS(2)j,λ(n,k)tnn!,(see [18]). | (1.10) |
From (1.9) and (1.10), we note that
S(2)j,λ(n,k)=n∑m=kS2,λ(n,m)S2,λ(m,k). | (1.11) |
Let C be the complex number field and let F be the set of all power series in the variable t over C with
F={f(t)=∞∑k=0aktkk! | ak∈C}. |
Let P=C[x] and P∗ be the vector space all linear functional on P:
Pn={ P(x)∈C[x] | degP(x)≤n}, (n≥0). |
Then Pn is an (n+1)-dimensional vector space over C.
Recently, Kim-Kim [11] considered λ-linear functional and λ-differential operator as follows:
For f(t)=∞∑k=0aktkk!∈F and a fixed nonzero real number λ, each λ gives rise to the linear functional ⟨f(t)|⋅⟩λ on P, called λ-linear functional given by f(t), which is defined by
⟨f(t)|(x)n,λ⟩λ=an,forall n≥0,(see [11]). | (1.12) |
In particular ⟨tk|(x)n,λ⟩λ=n!δn,k, for all n,k≥0, where δn,k is the Kronecker's symbol.
For λ=0, we observe that the linear functional ⟨f(t)|⋅⟩0 agrees with the one in ⟨f(t)|xn⟩=ak, (k≥0).
For each λ∈R and each nonnegative integer k, they also defined the differential operator on P by
(tk)λ(x)n,λ={(n)k(x)n−k,λ, if k≤n,0if k≥n,(see[11]). | (1.13) |
and for any power series f(t)=∞∑k=0aktkk!∈F, (f(t))λ(x)n,λ=n∑k=0(nk)ak(x)n−k,λ, (n≥0).
The order o(f(t)) of a power series f(t)(≠0) is the smallest integer k for which the coefficient of tk does not vanish. The series f(t) is called invertible if o(f(t))=0 and such series has a multiplicative inverse 1/f(t) of f(t). f(t) is called a delta series if o(f(t))=1 and it has a compositional inverse ¯f(t) of f(t) with ¯f(f(t))=f(¯f(t))=t.
Let f(t) and g(t) be a delta series and an invertible series, respectively. Then there exists a unique sequence sn,λ(x) such that the orthogonality condition holds
⟨g(t)(f(t))k|sn,λ(x)⟩λ=n!δn,k,(n,k≥0),(see [11]). | (1.14) |
The sequence sn,λ(x) is called the λ-Sheffer sequence for (g(t),f(t)), which is denoted by sn,λ(x)∼(g(t),f(t))λ.
The sequence sn,λ(x) ∼ (g(t),f(t))λ if and only if
1g(¯f(t))exλ(¯f(t)) = ∞∑k=0sk,λ(x)k!tk,(n,k≥0),(see [11]). | (1.15) |
Assume that for each λ∈R∗ of the set of nonzero real numbers, sn,λ(x) is λ-Sheffer for (gλ(t),fλ(t)). Assume also that limλ→0fλ(t)=f(t) and limλ→0gλ(t)=g(t), for some delta series f(t) and an invertible series g(t). Then limλ→0¯fλ(t)=¯f(t), where is the compositional inverse of f(t) with ¯f(f(t))=f(¯f(t))=t. Let limλ→0sk,λ(x)=sk(x). In this case, Kim-Kim called that the family {sn,λ(x)}λ∈R−{0} of λ-Sheffer sequences sn,λ is the degenerate (Sheffer) sequences for the Sheffer polynomial sn(x).
Let sn,λ(x)∼(g(t),f(t))λ and rn,λ(x)∼(h(t),g(t))λ, (n≥0). Then
sn,λ(x)=n∑k=0zn,krk,λ(x),(n≥0), where zn,k=1k!⟨h(¯f(t))g(¯f(t))(l(¯f(t)))k|(x)n,λ⟩λ,(n,k≥0),(see [11]). | (1.16) |
In this section, we define the degenerate Catalan-Daehee polynomials of order r, and derive several identities between the degenerate Catalan-Daehee polynomials of order r and some other polynomials arising from degenerate Sheffer sequences.
As is known, the Catalan numbers Cn are given by the generating function
1−√1−4t2t=21+√1−4t=∞∑n=0Cntn,(see [5,16,17]). |
The Catalan numbers C(r)n of order r, as a generalization of Catalan numbers, are given by the generating function
(1−√1−4t2t)r=(21+√1−4t)r=∞∑n=0C(r)ntn,(see [16,17]). |
Kim-Kim introduced the Catalan-Daehee polynomials which are given by the generating function
12log(1−4t)√1−4t−1(1−4t)x2=∞∑n=0Cn(x)tn=∞∑n=0n!Cn(x)tnn!,(see [16,17]). | (2.1) |
When x=0, Cn:=Cn(0), which are called Catalan-Daehee numbers.
From (1.6) and (2.1), we note that
∞∑n=0Cn(x)tn=12log(1−4t)√1−4t−1(1−4t)x2=∞∑n=0n!Dn,12(x2)(−4)ntnn!. |
We introduce the degenerate Catalan-Daehee polynomials Cn,λ(x) which are given by the generating function
(12logλ(1−4t)eλ(12logλ(1−4t))−1)exλ(12logλ(1−4t))=∞∑n=0n!Cn,λ(x)tnn!. | (2.2) |
When x=0, Cn,λ:=Cn,λ(0), which are called degenerate Catalan Daehee numbers.
When λ→0, we note that Cn,λ(x)=Cn(x).
As a generalization of the degenerate Catalan-Daehee polynomials, we also introduce degenerate Catalan-Daehee polynomials C(r)n,λ(x) of order r are given by the generating function
(12logλ(1−4t)eλ(12logλ(1−4t))−1)rexλ(12logλ(1−4t))=∞∑n=0n!C(r)n,λ(x)tnn!. | (2.3) |
When x=0, C(r)n,λ:=C(r)n,λ(0), which are called degenerate Catalan Daehee numbers of order r.
It easy to see that the compositional inverse of f(t)=14(1−eλ(2t)) such that f(¯f(t))=¯f(f(t))=t is
¯f(t)=12logλ(1−4t). | (2.4) |
From(1.15), (2.2), (2.3) and (2.4) we have
n!Cn,λ(x)∼(eλ(t)−1t,14(1−eλ(2t)))λ, | (2.5) |
and
n!C(r)n,λ(x)∼((eλ(t)−1t)r,14(1−eλ(2t))λ. | (2.6) |
Theorem 1. For n∈N∪{0}, we have
C(r)n,λ(x)=1n!n∑k=0((nm)(−1)m22m−kS1,λ(m,k)(n−m)!C(r)n−m,λ)(x)k,λ. |
Proof. From (1.2), (1.15) and (2.6), we consider the following two Sheffer sequence as follows:
n!C(r)n,λ(x)∼((eλ(t)−1t)r,14(1−eλ(2t)))λand (x)n,λ∼(1,t)λ. | (2.7) |
From (1.16) and (2.7), we have
n!C(r)n,λ(x)=n∑k=0zn,k(1)k,λ. | (2.8) |
From (1.8) and (2.3), we obtain
zn,k=1k!⟨(12logλ(1−4t)eλ(12logλ(1−4t))−1)r(12logλ(1−4t))k|(x)n,λ⟩λ=12k⟨(12logλ(1−4t)eλ(12logλ(1−4t))−1)r|(logλ(1+(−4t))kk!)λ(x)n,λ⟩λ=12kn∑m=k(nm)(−4)mS1,λ(m,k)⟨(12logλ(1−4t)eλ(12logλ(1−4t))−1)r|(x)n−m,λ⟩λ=n∑m=k(nm)(−1)m22m−kS1,λ(m,k)(n−m)!C(r)n−m,λ. | (2.9) |
Therefore, from (2.8) and (2.9), we have the desired result.
The next theorem gives the inversion formula of Theorem 1.
Theorem 2. For n∈N∪{0} and r∈N, we have
(1)n,λ=n∑k=0k!r!4k(−1)k(n∑l=k2l(nl)(n−l+r)rS2,λ(l,k)S2,λ(n−l+r,r))C(r)k,λ(x). |
Proof. From (2.7), we consider the following two degenerate Sheffer sequences
(x)n,λ∼(1,t)λand n!C(r)n,λ(x)∼((eλ(t)−1t)r,14(1−eλ(2t)))λ. | (2.10) |
From (1.16) and (2.10), we have
(1)n,λ=n∑k=0~zn,kC(r)k,λ(x). | (2.11) |
First, by (1.9), we observe that
(eλ(t)−1t)r=r!tr(eλ(t)−1)rr!=r!∞∑m=0(m+r)rS2,λ(m+r,r)tmn!. | (2.12) |
Then, from (1.2), (1.9), (1.16) and (2.12) we have
~zn,k=1k!⟨(eλ(t)−1t)r(14(1−eλ(2t)))k|(x)n,λ⟩λ=14k(−1)kn∑l=k2lS2,λ(l,k)(nl)⟨(eλ(t)−1t)r|(x)n−l,λ⟩λ=r!4k(−1)kn∑l=k2lS2,λ(l,k)(nl)(n−l+r)rS2,λ(n−l+r,r). | (2.13) |
Therefore, from (2.11) and (2.13), we have what we want.
Theorem 3. For n∈N∪{0}, we have
C(r)n,λ(x)=1n!n∑k=0(n∑l=kn∑m=ln!m!(−1)m22m−lS1,λ(m,l)S2,λ(l,k)C(r)n−m,λ)(x)k. |
Proof. We note that
(x)n∼(1,eλ(t)−1)λ | (2.14) |
because of exλ(log(1+t))=(1+t)x=∞∑n=0(x)ntnn!.
From (2.6) and (2.14), we consider the following two degenerate Sheffer sequences.
n!C(r)n,λ(x)∼((eλ(t)−1t)r,14(1−eλ(2t)))λand (x)n∼(1,eλ(t)−1)λ. | (2.15) |
From (1.8), (1.9), (1.16) and (2.15), we observe that
n!C(r)n,λ(x)=n∑k=0zn,k(x)k, | (2.16) |
and
(eλ(12logλ(1−4t))−1)kk!=∞∑l=kS2,λ(l,k)(12logλ(1−4t))ll!=∞∑m=l∞∑l=k(−1)m22m−lS1,λ(m,l)S2,λ(l,k)tmm!. | (2.17) |
From (1.16) and (2.17), we obtain
zn,k=1k!⟨(12logλ(1−4t)eλ(12logλ(1−4t))−1)r(eλ(12logλ(1−4t))−1)k|(x)n,λ⟩λ=n∑m=ln∑l=k(−1)m22m−lS1,λ(m,l)S2,λ(l,k)(nm)⟨(12logλ(1−4t)eλ(12logλ(1−4t))−1)r|(x)n−m,λ⟩λ=n∑m=ln∑l=k(−1)m22m−lS1,λ(m,l)S2,λ(l,k)(nm)(n−m)!C(r)n−m,λ=n∑l=kn∑m=ln!m!(−1)m22m−lS1,λ(m,l)S2,λ(l,k)C(r)n−m,λ. | (2.18) |
From (2.16) and (2.18), we get the desired result.
The next theorem is the inversion formula of Theorem 3.
Theorem 4. For n∈N∪{0} and r∈N, we have
(x)n=n∑k=0k!(n∑l=kn∑m=l(nm)(−1)k2l−2kS1,λ(m,l)S2,λ(l,k)b(r)n−m,λ)C(r)k,λ(x), |
where b(r)n,λ are the Bernoulli numbers of the second kind of order r.
Proof. From (2.15), we consider the following two degenerate Sheffer sequences.
(x)n∼(1,t)λand n!C(r)n,λ(x)∼((eλ(t)−1t)r,14(1−eλ(2t)))λ. | (2.19) |
From (1.16) and (2.19), we have
(x)n=n∑k=0~zn,kk!C(r)k,λ(x). | (2.20) |
From (1.5), (1.8), (1.9) and (1.16), we get
~zn,k=1k!⟨(tlogλ(1+t))r14k(1−eλ(2logλ(1+t)))k|(x)n,λ⟩λ=(−1)k4kn∑l=kS2,λ(l,k)2l⟨(tlogλ(1+t))r|((logλ(1+t))ll!)λ(x)n,λ⟩λ=(−1)k4kn∑l=kS2,λ(l,k)2ln∑m=lS1,λ(m,l)(nm)⟨(tlogλ(1+t))r|(x)n−m,λ⟩λ=n∑l=kn∑m=l(nm)(−1)k2l−2kS1,λ(m,l)S2,λ(l,k)b(r)n−m,λ. | (2.21) |
Combining (2.20) and (2.21), we prove the theorem.
Theorem 5. For n∈N∪{0}, we have
(1) when r1=r2, C(r1)n,λ(x)=1n!n∑k=0(−1)m22n−kS1,λ(n,k)B(r2)k,λ(x),
(2) when r1≠r2, C(r1)n,λ(x)=n∑k=0n∑l=k(nl)(−1)l22l−k(n−l)!S1,λ(l,k)C(r1−r2)n−k,λB(r2)k,λ(x),
where B(r)k,λ(x) are the Bernoulli polynomials of order r.
Proof. From (1.3), (1.15) and (2.6), we consider two degenerate Sheffer sequences as follows:
n!C(r1)n,λ(x)∼((eλ(t)−1t)r1,14(1−eλ(2t)))λand B(r2)n,λ(x)∼((eλ(t)−1t)r2,t)λ. | (2.22) |
From (1.16) and (2.22), we have
n!C(r1)n,λ(x)=n∑k=0zn,kB(r2)k,λ(x), | (2.23) |
From (1.8) and (1.16), we have
when r1=r2,
zn,k=1k!⟨12k(logλ(1−4t))k|(x)n,λ⟩λ=12kS1,λ(n,k)(−4)n=(−1)m22n−kS1,λ(n,k), | (2.24) |
when r1>r2,
zn,k=1k!⟨(eλ(12logλ(1−4t))−112logλ(1−4t))r2−r112k(logλ(1−4t))k|(x)n,λ⟩λ=12kn∑l=kS1,λ(l,k)(−4)l(nl)⟨(12logλ(1−4t)eλ(12logλ(1−4t))−1)r1−r2|(x)n−l,λ⟩λ=n∑l=k(−1)l22l−k(nl)S1,λ(l,k)(n−l)!C(r1−r2)n−k,λ, | (2.25) |
and when r1<r2,
zn,k=1k!⟨(eλ(12logλ(1−4t))−112logλ(1−4t))r2−r112k(logλ(1−4t))k|(x)n,λ⟩λ=n∑l=k(−1)l22l−k(nl)S1,λ(l,k)⟨(12logλ(1−4t)eλ(12logλ(1−4t))−1)r1−r2|(x)n−l,λ⟩λ=n∑l=k(−1)l22l−k(nl)S1,λ(l,k)(n−l)!C(r1−r2)n−k,λ. | (2.26) |
Therefore, from (2.23), (2.24), (2.25) and (2.26), we have the desired result.
The following theorem gives the inversion formula of Theorem 5.
Theorem 6. For n∈N∪{0}, we have
(1) when r1=r2, B(r2)n,λ(x)=n∑k=0k!((−1)k2n−2kS2,λ(n,k))C(r1)k,λ(x),
(2) when r1≠r2, B(r2)n,λ(x)=n∑k=0(−1)kk!(n∑l=k(nl)2l−2kS2,λ(l,k)B(r2−r1)n−l,λ)C(r1)k,λ(x).
Proof. From (2.22), we consider the two degenerate Sheffer sequences as follows:
B(r2)n,λ(x)∼((eλ(t)−1t)r2,t)λand n!C(r1)n,λ(x)∼((eλ(t)−1t)r1,14(1−eλ(2t)))λ. | (2.27) |
From (1.16) and (2.27), we have
B(r2)n,λ(x)=n∑k=0~zn,kk!C(r1)k,λ(x). | (2.28) |
And from (1.3), (1.5) and (1.16), we get
when r1=r2,
~zn,k=1k!⟨(−1)k4k(eλ(2t)−1)k|(x)n,λ⟩λ=(−1)k2−2k⟨∞∑l=kS2,λ(l,k)2ltll!|(x)n,λ⟩λ=(−1)k2n−2kS2,λ(n,k), | (2.29) |
when r1>r2,
~zn,k=1k!⟨(eλ(t)−1t)r1−r214k(1−eλ(2t))k|(x)n,λ⟩λ=(−1)k2−2kn∑l=kS2,λ(l,k)2l(nl)⟨(teλ(t)−1)r2−r1|(x)n−l,λ⟩λ=(−1)kn∑l=k2l−2k(nl)S2,λ(l,k)B(r2−r1)n−l,λ, | (2.30) |
and when r1<r2,
~zn,k=1k!⟨(teλ(t)−1)r2−r114k(1−eλ(2t))k|(x)n,λ⟩λ=(−1)kn∑l=k2l−2k(nl)S2,λ(l,k)B(r2−r1)n−l,λ. | (2.31) |
From (2.28), (2.29), (2.30) and (2.31), we arrive at the desired result.
Theorem 7. For n∈N∪{0} and s∈N, we have
C(r1)n,λ(x)=1n!n∑k=0(12k+1n∑l=kS1,λ(l,k)(−4)l(nl)n−l∑m=0m!C(r1)m,λ(n−lm)×n−l−m∑j=ir2∑i=0(−1)n−l−m2r2−i−j−2(n−l−m)S2,λ(j,i)S1,λ(n−l−m,j))E(r2)k,λ(x), |
where E(r)n,λ(x) are the degenerate Euler polynomials of order r.
Proof. From (1.4), (1.15) and (2.6), we consider the following two degenerate Sheffer sequences
n!C(r1)n,λ(x)∼((eλ(t)−1t)r1,14(1−eλ(2t)))λand E(r2)n,λ(x)∼((eλ(t)+12)r2,t)λ. | (2.32) |
From (1.16) and (2.32), we give
n!C(r1)n,λ(x)=n∑k=0zn,kE(r2)k,λ(x). | (2.33) |
Observe that
(eλ(12log(1−4t))+1)r=(eλ(12log(1−4t))−1+2)r=r∑i=0(ri)(eλ(12log(1−4t))−1)i2r−i=r∑i=0(ri)2r−ii!∞∑j=iS2,λ(j,i)(12)j(log(1−4t))jj!=r∑i=0(ri)2r−i−ji!∞∑j=iS2,λ(j,i)∞∑d=jS1,λ(d,j)(−4)dtdd!=∞∑d=id∑j=ir∑i=0(−1)d2r−i−j+2dS2,λ(j,i)S1,λ(d,j)tdd!. | (2.34) |
From (1.2), (1.8), (1.16), (2.3) and (2.34), we obtain
zn,k=1k!⟨(eλ(12logλ(1−4t))+12)r2(12(logλ(1−4t))eλ(12logλ(1−4t))−1)r1×12k(logλ(1−4t))k|(x)n,λ⟩λ=12k+1n∑l=kS1,λ(l,k)(−4)l(nl)n−l∑m=0m!C(r1)m,λ(n−lm)×⟨(eλ(12logλ(1−4t))+12)r2|(x)n−l−m,λ⟩λ=12k+1n∑l=kS1,λ(l,k)(−4)l(nl)n−l∑m=0m!C(r1)m,λ(n−lm)×n−l−m∑j=ir2∑i=0(−1)n−l−m2r2−i−j+2(n−l−m)S2,λ(j,i)S1,λ(n−l−m,j). | (2.35) |
Therefore, from (2.33) and (2.35), we arrive at the desired result.
Theorem 8. For n∈N∪{0} and s∈N, we have
E(r2)n,λ(x)=n∑k=0k!(2−2k(−1)kn∑l=kn−l∑m=0(nl)(n−lm)2l(1)n−l−m+1,λn−l−m+1×S2,λ(l,k)E(r2)m,λ)C(r1)k,λ(x), |
where E(r)n,λ(x) are the degenerate Euler polynomials of order r.
Proof. From (1.4), (1.15) and (2.5), we consider two degenerate Sheffer sequences as follows:
E(r2)n,λ(x)∼((eλ(t)+12)r2,t)λand n!C(r1)n,λ(x)∼((eλ(t)−1t)r1,14(1−eλ(2t)))λ. | (2.36) |
From (1.16) and (2.36), we have
E(r2)n,λ(x)=n∑k=0~zn,kk!C(r1)k,λ(x), | (2.37) |
and from (1.2), (1.4), (1.9) and (1.16), we get
~zn,k=⟨(2eλ(t)+1)r2(eλ(t)−1t)r114k(1−eλ(2t))kk!|(x)n,λ⟩λ.=2−2k(−1)kn∑l=kS2,λ(l,k)2l(nl)⟨(eλ(t)−1t)r1|(2eλ(t)+1)r2λ(x)n−l,λ⟩λ=2−2k(−1)kn∑l=k(nl)2lS2,λ(l,k)n−l∑m=0(n−lm)E(r2)m,λ⟨(eλ(t)−1t)r1|(x)n−l−m,λ⟩λ=2−2k(−1)kn∑l=k(nl)2lS2,λ(l,k)n−l∑m=0(n−lm)E(r2)m,λ(1)n−l−m+1,λn−l−m+1. | (2.38) |
From (2.37) and (2.38), we deduce the desired result.
Theorem 9. For n∈N∪{0} and s∈N, we have
C(r1)n−m,λ(x)=1n!n∑k=0(n∑m=lm∑l=k(nm)(−1)m22m−l(n−m)!S1,λ(m,l)S2,λ(l,k)C(r1+r2)n−m,λ)b(r2)k,λ(x), |
where b(r)n,λ(x) are degenerate Bernoulli polynomials of the second kind of order r.
Proof. From (1.5), (1.15) and (2.6), we consider the following two degenerate Sheffer sequences
n!C(r1)n,λ(x)∼((eλ(t)−1t)r1,14(1−eλ(2t)))λ and b(r2)n,λ(x)∼((teλ(t)−1)r2,eλ(t)−1)λ. | (2.39) |
From (1.16) and (2.39), we have
n!C(r1)n,λ(x)=n∑k=0zn,kb(r2)k,λ(x). | (2.40) |
From (1.8), (1.16) and (2.3), we derive
zn,k=⟨(12logλ(1−4t)eλ(12logλ(1−4t))−1)r1(12logλ(1−4t)eλ(12logλ(1−4t))−1)r2|(1k!(eλ(12logλ(1−4t))−1)k)λ(x)n,λ⟩λ=n∑m=lm∑l=k(−1)m22m−lS2,λ(l,k)S1,λ(m,l)(nm)⟨(12logλ(1−4t)eλ(12logλ(1−4t))−1)r1+r2|(x)n−m,λ⟩λ=n∑m=lm∑l=k(−1)m22m−l(nm)S1,λ(m,l)S2,λ(l,k)(n−m)!C(r1+r2)n−m,λ. | (2.41) |
Therefore, from (2.40) and (2.41), we have the desired result.
The next theorem is the inversion formula of Theorem 9.
Theorem 10. For n∈N∪{0} and s∈N, we have
b(r2)n,λ(x)=n∑k=0k!(n∑m=km∑l=k2l−2k(nm)S1,λ(m,l)S2,λ(l,k)b(r1+r2)n,λ)C(r1)k,λ(x), |
where b(r)n,λ(x) are degenerate Bernoulli polynomials of the second kind of order r.
Proof. From (1.8) and (1.9), we observe that
(eλ(2logλ(1+t))−1)kk!=∞∑l=kS2,λ(l,k)2l(logλ(1+t))ll!=∞∑l=kS2,λ(l,k)2l∞∑m=lS1,λ(m,l)tmm!=∞∑m=km∑l=k2lS1,λ(m,l)S2,λ(l,k)tmm!. | (2.42) |
From (2.39), we consider the following two degenerate Sheffer sequences
b(r2)n,λ(x)∼((teλ(t)−1)r2,eλ(t)−1)λand n!C(r1)n,λ(x)∼((eλ(t)−1t)r1,14(1−eλ(2t)))λ. | (2.43) |
We have
b(r2)n,λ(x)=n∑k=0~zn,kk!C(r1)k,λ(x). | (2.44) |
From (1.5), (1.8), (1.9), (1.16) and (2.42),
~zn,k=1k!⟨(tlogλ(1+t))r1+r214k(1−eλ(2logλ(1+t)))k|(x)n,λ⟩λ.=2−2kn∑m=km∑l=k2lS1,λ(m,l)S2,λ(l,k)(nm)⟨(tlogλ(1+t))r1+r2|(x)n−m,λ⟩λ=n∑m=km∑l=k2l−2k(nm)S1,λ(m,l)S2,λ(l,k)b(r1+r2)n,λ. | (2.45) |
Thus, from (2.44) and (2.45), we get the desired result.
Theorem 11. For n∈N∪{0} and s∈N, we have
C(r1)n,λ(x)=1n!n∑k=0n∑l=k2lS1,λ(n,l)S2,λ(l,k)D(r2)n,λ(x), |
where D(r)n,λ(x) are degenerate Daehee polynomials of order r.
Proof. From (1.6), (1.15) and (2.6), we consider the following two degenerate Sheffer sequences
n!C(r1)n,λ(x)∼((eλ(t)−1t)r1,14(1−eλ(2t)))λand D(r2)n,λ(x)∼((eλ(t)−1t)r2,eλ(t)−1)λ. | (2.46) |
From (1.16) and (2.44), we have
n!C(r1)n,λ(x)=n∑k=0zn,kD(r2)k,λ(x), | (2.47) |
and from (1.8), (1.9) and (1.16), we get
zn,k=1k!⟨(eλ(12logλ(1−4t))−1)k|(x)n,λ⟩λ=n∑m=km∑l=k2lS1,λ(m,l)S2,λ(l,k)1m!⟨tm|(x)n,λ⟩λ=n∑l=k2lS1,λ(n,l)S2,λ(l,k). | (2.48) |
From (2.47) and (2.48), we have the desired result.
The next theorem represents the inversion formula of Theorem 11.
Theorem 12. For n∈N∪{0} and s∈N, we have
D(r2)n,λ(x)=n∑k=0k!(n∑l=k2l−2k(−1)kk!S1,λ(n,l)S2,λ(l,k))C(r1)k,λ(x), |
where D(r)n,λ(x) are degenerate Daehee polynomials of order r.
Proof. By (2.46), we consider the following two degenerate Sheffer sequences
D(r2)n,λ(x)∼((eλ(t)−1t)r2,eλ(t)−1)λand n!C(r1)n,λ(x)∼((eλ(t)−1t)r1,14(1−eλ(2t)))λ, | (2.49) |
and from (1.16) and (2.49), we get
D(r2)n,λ(x)=n∑k=0~zn,kk!C(r1)k,λ(x). | (2.50) |
From (1.8), (1.9), (1.16) and (2.42), we have
~zn,k=1k!⟨14k(1−eλ(2logλ(1+t)))k|(x)n,λ⟩λ=(−1)k4kn∑m=km∑l=k2lS1,λ(m,l)S2,λ(l,k)1m!⟨tm|(x)n,λ⟩λ=(−1)kn∑l=k2l−2kS1,λ(n,l)S2,λ(l,k). | (2.51) |
From (2.50) and (2.51), we obtain the desired result.
Theorem 13. For n∈N∪{0} and s∈N, we have
C(r)n,λ(x)=1n!n∑k=0(n∑m=km∑l=k(−1)m22m−l(nm)(n−m)!S1,λ(m,l)S1,λ(l,k)C(r)n−m,λ)Belk,λ(x), |
where Beln,λ(x) are degenerate Bell polynomials.
Proof. From (1.8) and (2.3), we observe that
logλ(1+12logλ(1−4t))kk!=∞∑l=kS1,λ(l,k)(12)l(logλ(1−4t))ll!=∞∑m=km∑l=k(−1)m22m−lS1,λ(l,k)S1,λ(m,l)tmm!. | (2.52) |
From (1.7) and (1.15), we consider the following two degenerate Sheffer sequences as follows:
n!C(r)n,λ(x)∼((eλ(t)−1t)r,14(1−eλ(2t)))λand Belk,λ(x)∼(1,logλ(1+t))λ. | (2.53) |
From (1.16) and (2.53), we have
n!C(r)n,λ(x)=n∑k=0zn,kBelk,λ(x). | (2.54) |
From (1.16), (2.3) and (2.52), we get
zn,k=1k!⟨(12logλ(1−4t)eλ(12logλ(1−4t))−1)r(logλ(1+12(logλ(1−4t)))k|(x)n,λ⟩λ=n∑m=km∑l=k(−1)m22m−lS1,λ(l,k)S1,λ(m,l)(nm)⟨(12logλ(1−4t)eλ(12logλ(1−4t))−1)r|(x)n−m,λ⟩λ=n∑m=km∑l=k(−1)m22m−l(nm)(n−m)!S1,λ(m,l)S1,λ(l,k)C(r)n−m,λ. | (2.55) |
Thus, from (2.54) and (2.55), we have the desired result.
The next theorem is the inversion formula of Theorem 13.
Theorem 14. For n∈N∪{0} and s∈N, we have
Beln,λ(x)=n∑k=0k!r!(n∑m=km∑l=kn−m∑d=0d+r∑j=r(nm)(n−md)(−1)k2l−2k(d+r)r×S2,λ(m,l)S2,λ(l,k)S2,λ(d+r,j)S2,λ(j,r)B(r)n−m−d,λ)C(r)k,λ(x), |
where Beln,λ(x) are degenerate Bell polynomials.
Proof. From (2.53), we consider two degenerate Sheffer sequences as follows:
Belk,λ(x)∼(1,logλ(1+t))λand n!C(r)n,λ(x)∼((eλ(t)−1t)r,14(1−eλ(2t)))λ. | (2.56) |
From (1.16) and (2.56), we have
Beln,λ(x)=n∑k=0~zn,kk!C(r)k,λ(x). | (2.57) |
First, from (1.2), (1.9) and (1.10), we have two identities as follows:
(eλ(2(eλ(t)−1))−1)kk!=(−1)k∞∑l=kS2,λ(l,k)2l(eλ(t)−1)ll!=∞∑m=km∑l=kS2,λ(l,k)2lS2,λ(m,k)tmm!, | (2.58) |
and
(eλ(eλ(t)−1)t)r=r!tr1r!(eλ(eλ(t)−1)−1)r=r!1tr∞∑d=rSJ,λ(d,r)tdd!=r!∞∑d=0SJ,λ(d+r,r)td(d+r)!=r!∞∑l=0(d+r)rSJ,λ(d+r,r)tdd!, | (2.59) |
where SJ,λ(n,r) are the Jindalrae-Stirling numbers of the second kind [18].
From (1.11), (1.16), (2.58) and (2.59), we observe that
~zn,k=1k!⟨(eλ(eλ(t)−1)−1eλ(t)−1)r14k(1−eλ(2(eλ(t)−1)))k|(x)n,λ⟩λ=n∑m=km∑l=k(−1)k2l−2k(nm)S2,λ(m,l)S2,λ(l,k)×⟨(teλ(t)−1)r|((eλ(eλ(t)−1)−1t)r)λ(x)n−m,λ⟩λ=n∑m=km∑l=k(−1)k2l−2k(nm)S2,λ(m,l)S2,λ(l,k)r!n−m∑d=0(d+r)r×d+r∑j=rS2,λ(d+r,j)S2,λ(j,r)(n−md)B(r)n−m−d,λ. | (2.60) |
From (2.57) and (2.60), we get the desired result.
In this paper, we introduced the degenerate Catalan-Daehee numbers and polynomials of order r (r≥1). It was shown that the degenerate Catalan-Daehee polynomials of order r were expressed based on the degenerate falling factorials, the falling factorials, the degenerate Bernoulli polynomials of order r, the Euler polynomials (of order r), the degenerate Bernoulli polynomials of the second kind of order r, the degenerate Deahee polynomials of order r, and the degenerate Bell polynomials. We also obtained inverse formula for each of them.
It is difficult to single out where and why these formulas play an important role, but we do not doubt that they will be helpful to researchers in need of these identities. Further research would be related with the degenerate versions of some special combinatorial numbers and polynomials and then contribution in mathematics and physics applications.
The author would like to thank the referees for the detailed and valuable comments that helped improve the original manuscript in its present form.
This work was supported by research fund of Kwangwoon University in 2021.
The authors declare no conflict of interest.
[1] | Kalpana V, Ram PVV, Soujanya P, et al. (2017) Robertsonian translocations t(21q;21q) and t(14q;21q) in Down syndrome. Int J Med Health Sci 6: 53-58. |
[2] |
Asim A, Kumar A, Muthuswamy S, et al. (2015) Down syndrome: an insight of the disease. J Biomed Sci 22: 41-50. doi: 10.1186/s12929-015-0138-y
![]() |
[3] |
Lyle R, Bena F, Gagos S, et al. (2009) Genotype-phenotype correlations in Down syndrome identified by array CGH in 30 cases of partial trisomy and partial monosomy of chromosome 21. Eur J Hum Genet 17: 454-466. doi: 10.1038/ejhg.2008.214
![]() |
[4] |
Ait Yahya-Graison E, Aubert J, Dauphinot L, et al. (2007) Classification of human chromosome 21 gene-expression variations in Down syndrome: Impact on disease phenotypes. Am J Hum Genet 81: 475-491. doi: 10.1086/520000
![]() |
[5] | Di Cunto F, Berto G (2013) Molecular pathways of Down Syndrome Critical Region genes. |
[6] |
Barlow G, Chen X, Shi Z, et al. (2001) Down syndrome congenital heart disease: A narrowed region and a candidate gene. Genet Med 3: 91-101. doi: 10.1097/00125817-200103000-00002
![]() |
[7] |
Korbel J, Tirosh-Wagner T, Urban A, et al. (2009) The genetic architecture of Down syndrome phenotypes revealed by high-resolution analysis of human segmental trisomies. Proc Natl Acad Sci USA 106: 12031-12036. doi: 10.1073/pnas.0813248106
![]() |
[8] |
Antonorakis S, Lyle R, Dermitzakis E, et al. (2004) Chromosome 21 and Down syndrome: from genomics to pathophysiology. Nat Rev Genet 5: 725-738. doi: 10.1038/nrg1448
![]() |
[9] |
Sturgeon X, Le T, Ahmed M, et al. (2012) Pathways to cognitive deficits in Down syndrome. Prog Brain Res 197: 73-100. doi: 10.1016/B978-0-444-54299-1.00005-4
![]() |
[10] | Pelleri MC, Cicchini E, Locatelli C, et al. (2016) Systematic reanalysis of partial trisomy 21 cases with or without Down syndrome suggests a small region on 21q22.1.3 as critical to the phenotype. Hum Mol Genet 25: 2525-2538. |
[11] |
Pelleri MC, Cicchini E, Petersen M, et al. (2019) Partial trisomy map: Ten cases further supporting the highly restricted Down syndrome critical region (HR-DSCR) on human chromosome 21. Mol Genet Genomic Med 7: e797. doi: 10.1002/mgg3.797
![]() |
[12] | Homfray T, Farndon P (2014) Fetal anomalies. The geneticist's approach. Twining's Textbook of Fetal Abnormalities London: Churchill Livingstone, 139-160. |
[13] |
Rondal JA, Perera J, Spiker D (2011) Neurocognitive Rehabilitation of Down Syndrome Cambridge: Cambridge University Press. doi: 10.1017/CBO9780511919299
![]() |
[14] |
Chapman R, Hesketh L (2000) Behavioral phenotype of individuals with Down syndrome. Ment Retard Dev Dis Res Rev 6: 84-95. doi: 10.1002/1098-2779(2000)6:2<84::AID-MRDD2>3.0.CO;2-P
![]() |
[15] |
Abbeduto L, Warren S, Conners F (2007) Language development in Down syndrome: from the prelinguistic period to the acquisition of literacy. Ment Retard Dev Dis Res Rev 13: 247-261. doi: 10.1002/mrdd.20158
![]() |
[16] |
Takahashi K, Tanabe K, Ohnuki M, et al. (2007) Induction of pluripotent stem cells from adult human fiboblasts by defined factors. Cell 131: 861-72. doi: 10.1016/j.cell.2007.11.019
![]() |
[17] |
Li L, Chang K, Wang P, et al. (2012) Trisomy correction in Down syndrome induced pluripotent stem cells. Cell Stem Cell 11: 615-619. doi: 10.1016/j.stem.2012.08.004
![]() |
[18] |
Jiang J, Jing Y, Cost G, et al. (2013) Translating dosage compensation for trisomy 21. Nature 500: 296-300. doi: 10.1038/nature12394
![]() |
[19] |
Amano T, Jeffries E, Amano M, et al. (2015) Correction of Down syndrome and Edwards syndrome aneuploidies in human cell cultures. DNA Res 22: 331-342. doi: 10.1093/dnares/dsv016
![]() |
[20] |
Inoue M, Kajiwara K, Yamaguchi A, et al. (2019) Autonomous trisomic rescue of Down syndrome cells. Lab Invest 99: 885-897. doi: 10.1038/s41374-019-0230-0
![]() |
[21] | Epstein C (2001) Down syndrome (trisomy 21). The Metabolic and Molecular Bases of Inherited Disease New York: McGraw-Hill, 1223-1256. |
[22] |
Lejeune J (1990) Pathogenesis of mental deficiency in trisomy 21. Am J Med Genet 37: 20-30. doi: 10.1002/ajmg.1320370705
![]() |
[23] |
Delabar JM, Théophile D, Rahmani Z, et al. (1993) Molecular mapping of twenty-four features of Down syndrome on chromosome 21. Eur J Hum Genet 1: 114-124. doi: 10.1159/000472398
![]() |
[24] |
Tejedor F, Hammerle B (2011) MNB/DYRK1A as a multiple regulator of neuronal development. FEBS J 278: 223-235. doi: 10.1111/j.1742-4658.2010.07954.x
![]() |
[25] |
Thomazeau A, Lasalle O, Lafrati J, et al. (2014) Prefrontal deficits in a murine model overexpressing the Down syndrome candidate gene dyrk1a. J Neurosci 34: 1138-1147. doi: 10.1523/JNEUROSCI.2852-13.2014
![]() |
[26] |
Li S, Qu Z, Haas M, et al. (2016) The HSA21 gene EURL/C21ORF91 controls neurogenesis within the cerebral cortex and is implicated in the pathogenesis of Down syndrome. Sci Rep 6: 29514. doi: 10.1038/srep29514
![]() |
[27] |
Chakrabarti L, Best T, Cramer N, et al. (2010) Olig1 and Olig2 triplication causes developmental brain defects in Down syndrome. Nat Neurosci 13: 927-934. doi: 10.1038/nn.2600
![]() |
[28] |
Manley W, Anderson S (2019) Dosage counts: Correcting trisomy-21-related phenotypes in human organoids and xenografts. Cell Stem Cell 24: 835-36. doi: 10.1016/j.stem.2019.05.009
![]() |
[29] |
Ishihara K, Shimizu R, Takata K, et al. (2019) Perturbation of the immune cells and prenatal neurogenesis by the triplication of the Erg gene in mouse models of Down syndrome. Brain Pathol 30: 75-91. doi: 10.1111/bpa.12758
![]() |
[30] | Aboudafir E (2017) Trisomie 21: Perspectives Actuelles de Recherche de Traitement. Unpublished doctoral dissertation France: Université de Lorraine, Nancy, Available from: HAL, univ-Lorraine.fr/hal01932163. |
[31] |
Fillat C, Bofill-De Ros X, Santos M, et al. (2014) Identification de genes clave implicados en el sindrome de Down mediante terapia genetica. Rev Med Int Sindrome Down 18: 21-28. doi: 10.1016/S2171-9748(14)70049-2
![]() |
[32] |
Wang X, Zhao Y, Zhang X, et al. (2013) Loss of sorting nexin 27 contributes to excitatory synaptic dysfunction by modulating glutamate receptor recycling in Down syndrome. Nature Med 19: 473-480. doi: 10.1038/nm.3117
![]() |
[33] |
Rueda N, Flórez J, Martinez-Cue C (2012) Mouse models of Down syndrome as a tool to unravel the causes of mental disabilities. Neural Plast 2012: 584071. doi: 10.1155/2012/584071
![]() |
[34] |
Aziz N, Guedj F, Pennings J, et al. (2018) Lifespan analysis of brain development, gene expression and behavioral phenotypes in the Ts1Cje, Ts65Dn and Dp(16)1/Yey mouse models of Down syndrome. Dis Mod Mech 11: dmm031013. doi: 10.1242/dmm.031013
![]() |
[35] |
Yu T, Li Z, Jia Z, et al. (2010) A mouse model of Down syndrome trisomic for all human chromosome 21 syntenic regions. Hum Mol Genet 19: 2780-2791. doi: 10.1093/hmg/ddq179
![]() |
[36] |
Xu R, Brawner A, Li S, et al. (2019) OLIG2 drives abnormal neurodevelopmental phenotypes in human iPSC-based organoid and chimeric mouse models of Down syndrome. Cell Stem Cell 24: 908-926.E8. doi: 10.1016/j.stem.2019.04.014
![]() |
[37] |
Caplan A, Wilson J (2000) The clinical challenges of in utero therapy. Nat Genet 24: 107-108. doi: 10.1038/72747
![]() |
[38] |
Nakano-Kobayashi A, Awaya T, Kii I, et al. (2017) Prenatal neurogenesis induction therapy normalizes brain structure and function in Down syndrome mice. Proc Natl Acad Sci USA 114: 10268-10273. doi: 10.1073/pnas.1704143114
![]() |
[39] |
Hibaoui Y, Grad I, Letourneau A, et al. (2014) Modelling and rescuing neurodevelopmental defect of Down syndrome using pluripotent stem cells from monozygotic twins discordant for trisomy 21. EMBO Mol Med 6: 259-277. doi: 10.1002/emmm.201302848
![]() |
[40] |
Guedj F, Sebrie C, Rivals I, et al. (2009) Green tea polyphenols rescue brain defects induced by overexpression of DYRK1A. PloS One 4: 1-8. doi: 10.1371/journal.pone.0004606
![]() |
[41] |
Stagni F, Giacomini A, Emili M, et al. (2016) Short- and long-term effects of neonatal pharmacotherapy with epigallocatechin-3-gallate on hippocampal development in the Ts65Dn mouse model of Down syndrome. Neuroscience 333: 277-301. doi: 10.1016/j.neuroscience.2016.07.031
![]() |
[42] |
De la Torre R, De Sola S, Pons M, et al. (2014) Epigallocatechin-3-gallate, a DYRK1A inhibitor, rescues cognitive deficits in Down syndrome mouse models and in human. Mol Nutr Food Res 58: 278-288. doi: 10.1002/mnfr.201300325
![]() |
[43] |
De la Torre R, De Sola S, Hernandez G, et al. (2016) Safety and efficacy of cognitive training plus epigallocatechin-3-gallate in young adults with Down's syndrome (TESDAD): A double-blind, randomized, placebo-controlled, phase 2 trial. Lancet Neurol 15: 801-810. doi: 10.1016/S1474-4422(16)30034-5
![]() |
[44] |
Xicota L, Rodriguez J, Langohr K, et al. (2020) Effect of epigallocatechin gallate on the body composition and lipid profile of Down syndrome individuals: Implications for clinical management. Clin Nutr 39: 1292-1300. doi: 10.1016/j.clnu.2019.05.028
![]() |
[45] |
Long R, Drawbaugh M, Davis C, et al. (2019) Usage of and attitudes about green tea extract and epigallocathechin-3-gallate (EGCG) as a therapy in individuals with Down syndrome. Complement Ther Med 45: 234-241. doi: 10.1016/j.ctim.2019.07.002
![]() |
[46] |
Sparks A, Truble C, Wang E, et al. (2012) Noninvasive prenatal detection and selective analysis of cell-free DNA obtained from maternal blood: Evaluation for trisomy 21 and trisomy 18. Am J Obstet Gynecol 206: 319 e1-e9. doi: 10.1016/j.ajog.2012.01.030
![]() |
[47] |
Nicolaides K, Syngelaki A, Poon L, et al. (2014) First-trimester contingent screening for trisomy 21, 18, and 13 by biomarkers and maternal blood cell-free DNA testing. Fetal Diagn Ther 35: 185-192. doi: 10.1159/000356066
![]() |
[48] |
Sun X, Lu J, Ma X (2019) An efficient method for noninvasive prenatal diagnosis of fetal trisomy 13, trisomy 18, and trisomy 21. PloS One 14: e0215368. doi: 10.1371/journal.pone.0215368
![]() |
[49] |
Shan D, Wang H, Khatri P, et al. (2019) The urinary peptidome as a noninvasive biomarker development strategy for prenatal screening of Down's syndrome. OMICS 23: 439-447. doi: 10.1089/omi.2019.0098
![]() |
[50] |
Reena M, Pisani P, Conversano F, et al. (2013) Sonographic markers for early diagnosis of fetal malformations. World J Radiol 5: 356-371. doi: 10.4329/wjr.v5.i10.356
![]() |
[51] |
Zbucka-Kretowska M, Niemira M, Paczkowska-Abdulasam M, et al. (2019) Prenatal circulating microRNA signatures of foetal Down syndrome. Sci Rep 9: 1-6. doi: 10.1038/s41598-018-35876-5
![]() |
[52] |
Malik S, Vinukonda G, Vose L, et al. (2013) Neurogenesis continues in the third trimester of pregnancy and is suppressed by premature birth. J Neurosci 33: 411-423. doi: 10.1523/JNEUROSCI.4445-12.2013
![]() |
[53] |
Gotti S, Caricati E, Panzica G (2011) Alterations of brain circuits in DS murine models. J Chem Neuroanat 42: 317-326. doi: 10.1016/j.jchemneu.2011.09.002
![]() |
[54] |
Chang Q, Gold P (2008) Age-related changes in memory and in acetylcholine functions in the hippocampus in the Ts65Dn mouse, a model of Down syndrome. Neurobiol Learn Mem 89: 167-177. doi: 10.1016/j.nlm.2007.05.007
![]() |
[55] |
Kelley C, Ash J, Powers B, et al. (2016) Effects of maternal choline supplementation on the septohippocampal cholinergic system in the Ts65Dn mouse model of Down syndrome. Curr Alzheimer Res 13: 84-96. doi: 10.2174/1567205012666150921100515
![]() |
[56] |
Heller J, Spiridigliozzi G, Sullivan J, et al. (2003) Donepezil for the treatment of language deficits in adults with Down syndrome: a preliminary 24-week open trial. Am Med Genet 116A: 111-116. doi: 10.1002/ajmg.a.10074
![]() |
[57] |
Heller J, Spiridigliozzi G, Doraiswamy P, et al. (2004) Donepezil effects on language in children with Down syndrome. Results of the first 22-week pilot clinical trial. Am J Med Genet 130A: 325-26. doi: 10.1002/ajmg.a.30184
![]() |
[58] |
Kishnani P, Sommer B, Handen B, et al. (2009) The efficacy, safety, and tolerability of donepezil for the treatment of young adults with Down syndrome. Am J Med Genet 149A: 1641-1654. doi: 10.1002/ajmg.a.32953
![]() |
[59] |
Kishnani P, Heller J, Spiridigliozzi G, et al. (2010) Donepezil for treatment of cognitive dysfunction in children with Down syndrome aged 10–17. Am J Med Genet 152A: 3028-3035. doi: 10.1002/ajmg.a.33730
![]() |
[60] |
Heller J, Spiridigliozzi G, Crissman B, et al. (2006) Safety and efficacy of rivastigmine in adolescents with Down syndrome: A preliminary 20-week, open-label study. J Child Adolesc Psychopharmacol 16: 755-765. doi: 10.1089/cap.2006.16.755
![]() |
[61] |
Heller J, Spiridigliozzi G, Crissman B, et al. (2010) Safety and efficacy of rivastigmine in adolescents with Down syndrome: Long-term follow-up. J Child Adolesc Psychopharmacol 20: 517-520. doi: 10.1089/cap.2009.0099
![]() |
[62] | Gardiner K (2015) Pharmacological approaches to improving cognitive function in Down syndrome: current status and considerations. Drug Des Devel Ther 9: 103-125. |
[63] |
Costa A, Scott-McKean J, Stasko M (2008) Acute injections of the NMDA receptor antagonist memantine rescue performance deficits of the Ts65Dn mouse model of Down syndrome on a fear conditioning test. Neuropsychopharmacology 33: 1624-1632. doi: 10.1038/sj.npp.1301535
![]() |
[64] |
Capone G (2011) Pharmacotherapy for children with Down syndrome. Neurocognitive Rehabilitation of Down Syndrome Cambridge: Cambridge University Press, 96-116. doi: 10.1017/CBO9780511919299.008
![]() |
[65] |
Fernandez F, Morishita W, Zuniga E, et al. (2007) Pharmacotherapy for cognitive impairment in a mouse model of Down syndrome. Nat Neurosci 10: 411-413. doi: 10.1038/nn1860
![]() |
[66] |
Liogier d'Ardhuy X, Edgin J, Bouis C, et al. (2015) Assessment of cognitive scales to examine memory, executive function and language in individuals with Down syndrome: Implications of a 6-month observational study. Front Behav Neurosci 9: 300. doi: 10.3389/fnbeh.2015.00300
![]() |
[67] |
Guidi S, Stagni F, Bianchi P, et al. (2014) Prenatal pharmacotherapy rescues brain development in a Down's syndrome mouse model. Brain 137: 380-401. doi: 10.1093/brain/awt340
![]() |
[68] |
Lockrow J, Prakasam A, Huang P, et al. (2009) Cholinergic degeneration and memory loss delayed by vitamin E in a Down syndrome mouse model. Exp Neurol 216: 278-289. doi: 10.1016/j.expneurol.2008.11.021
![]() |
[69] |
Sano M, Aisen P, Andrews H, et al. (2016) Vitamin E in aging persons with Down syndrome: A randomized, placebo-controlled clinical trial. Neurology 86: 2071-2076. doi: 10.1212/WNL.0000000000002714
![]() |
[70] |
Lobaugh N, Karaskov V, Rombough V, et al. (2001) Piracetam therapy does not enhance cognitive functioning in children with Down syndrome. Arch Pediatr Adolesc Med 155: 442-448. doi: 10.1001/archpedi.155.4.442
![]() |
[71] |
Plane J, Chen Y, Pleasure D, et al. (2010) Prospects for minocycline protection. Arch Neurol 67: 1442-1448. doi: 10.1001/archneurol.2010.191
![]() |
[72] | Chen C, Jiang P, Xue H, et al. (2014) Role of astroglia in Down's syndrome revealed by patient-derived human-induced pluripotent stem cells. Nat Commun 5: 1-18. |
[73] |
Brose R, Svonenko A, Devenney B, et al. (2019) Hydroxyurea improves spatial memory and cognitive plasticity in mice and has a mild effect on these parameters in a Down syndrome mouse model. Front Aging Neurosci 11: 96. doi: 10.3389/fnagi.2019.00096
![]() |
[74] | Prasher V (2005) Alzheimer and Dementia in Down Syndrome and Intellectual Disabilities Abingdon: Radcliffe. |
[75] |
Doran E, Keator D, Head E, et al. (2017) Down syndrome, partial trisomy, and absence of Alzheimer's disease: The role of APP. J Alzheimers Dis 56: 459-470. doi: 10.3233/JAD-160836
![]() |
[76] |
O'Brien R, Wong P (2011) Amyloid precursor protein processing and Alzheimer's disease. Ann Rev Neurosci 34: 185-204. doi: 10.1146/annurev-neuro-061010-113613
![]() |
[77] |
Rafii M, Lukic A, Andrews R, et al. (2017) PET imaging of Tau pathology and relationship to amyloid, longitudinal MRI, and cognitive change in Down syndrome: Results from the Down Syndrome Biomarker Initiative (DSBI). J Alzheimers Dis 60: 439-450. doi: 10.3233/JAD-170390
![]() |
[78] |
Rafii M (2018) Tau PET for staging of Alzheimer's disease in Down syndrome. Dev Neurobiol 79: 711-715. doi: 10.1002/dneu.22658
![]() |
[79] | Vogels O (1990) The Nucleus Basalis of Meynert Complex and Adjacent Structures in Normal Aging and Alzheimer's Disease Nijmegen: Press of the Radbouw University. |
[80] |
King A, Liu L, Chang R, et al. (2015) Nucleus basalis of Meynert revisited: anatomy, history and differential involvement in Alzheimer's and Parkinson's disease. Acta Neuropathol 129: 527-40. doi: 10.1007/s00401-015-1392-5
![]() |
[81] | Zhou J, Bingquian L (2013) Alzheimer's disease and prion protein. Intractable Rare Dis Res 2: 35-44. |
[82] |
Novak P, Prcina M, Kontseva E (2011) Tauons and prions: Infamous cousins? Alzheimer Dis 26: 413-430. doi: 10.3233/JAD-2011-110194
![]() |
[83] |
Hsiung G, Sadovnick A (2007) Genetics and dementia: Risk factors, diagnosis, and management. Alzheimer Dement 3: 418-427. doi: 10.1016/j.jalz.2007.07.010
![]() |
[84] |
Schipper H (2011) Apolipoprotein E: implications for AD neurobiology, epidemiology and risk assessment. Neurobiol Aging 32: 77-90. doi: 10.1016/j.neurobiolaging.2009.04.021
![]() |
[85] |
Raha-Chowdhury R, Henderson J, Raha A, et al. (2019) Choroid plexus acts as gatekeeper for TREM2, abnoremal accumulation of ApoE, and fibrillary Tau in Alzheimer's disease and in Down syndrome dementia. J Alzheimers Dis 69: 91-101. doi: 10.3233/JAD-181179
![]() |
[86] |
Firth N, Startin C, Fisher E, et al. (2018) Aging related cognitive changes associated with Alzheimer's disease in Down syndrome. Ann Clin Transl Neurol 20: 741-751. doi: 10.1002/acn3.571
![]() |
[87] |
Arboleda-Velasquez J, Lopera F, O'Hare M, et al. (2019) Resistance to autosomal dominant Alzheimer's disease in an APOE3 Christchurch homozygote: A case report. Nat Med 25: 1680-1683. doi: 10.1038/s41591-019-0611-3
![]() |
[88] |
Rogaeva E, Meng Y, Lee J, et al. (2007) The neuronal sortilin-related receptor SORL1 is genetically associated with Alzheimer's disease. Nat Genet 39: 168-177. doi: 10.1038/ng1943
![]() |
[89] |
Wallon D, Rousseau S, Rovelet-Lecrux A, et al. (2012) The French series of autosomal dominant early onset Alzheimer's disease cases: mutation spectrum and cerebrospinal fluid biomarkers. J Alzheimers Dis 30: 847-856. doi: 10.3233/JAD-2012-120172
![]() |
[90] |
Hochino T, Kamino K, Matsumoto M (2002) Gene dose effect of the APOE-epsilon 4 allele on plasma HDL cholesterol level in patients with Alzheimer's disease. Neurobiol Aging 23: 41-45. doi: 10.1016/S0197-4580(01)00252-4
![]() |
[91] | Malegiannaki A, Katsarou D, Liolios A, et al. (2019) Ageing and Down syndrome: Neurocognitive characteristics and pharmacological treatment. Hell J Nucl Med 22: 123-132. |
[92] |
Sanchez M, Heyn S, Das D, et al. (2012) Neurobiological elements of cognitive dysfunction in Down syndrome: Exploring the role of APP. Biol Psychiatry 71: 403-409. doi: 10.1016/j.biopsych.2011.08.016
![]() |
[93] |
Boada R, Hutaff-Lee C, Schrader A, et al. (2012) Antagonism of NMDA receptors as a potential treatment for Down syndrome: A pilot randomized controlled trial. Transl Psychiatry 2: e141. doi: 10.1038/tp.2012.66
![]() |
[94] |
Schenk D, Barbour R, Dunn W, et al. (1999) Immunization with amyloid-beta attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature 400: 173-177. doi: 10.1038/22124
![]() |
[95] |
Matsunaga S, Kishi T, Annes P, et al. (2015) Lithium as a treatment for Alzheiner's disease: A systematic review and meta-analysis. J Alzheimers Dis 48: 403-410. doi: 10.3233/JAD-150437
![]() |
[96] | Rasore Quartino A (2012) Le terapie attuali per le persone con sindrome di Down: Lo stato del arte. Il Presente Incontra il Futuro. La Sindrome di Down Oggi e Domani Pieve di Cadore: Tiziano, 53-80. |
[97] |
Sabbagh M (2009) Drug development for Alzheimer's disease: Where are we now and where are we headed? Am J Geriatr Pharmacother 7: 167-185. doi: 10.1016/j.amjopharm.2009.06.003
![]() |
[98] |
Garcia-Cerro S, Rueda N, Vidal L, et al. (2017) Normalizing the gene dosage of DYRK1A in a mouse model of Down syndrome rescues several Alzheimer's disease phenotypes. Neurobiol Dis 106: 76-88. doi: 10.1016/j.nbd.2017.06.010
![]() |
[99] |
Kawakubo T, Mori R, Shirotani N, et al. (2017) Neprilysin is suppressed by dual-specificity tyrosine-phosphorylation regulated kinase 1A (DYRK1A) in Down syndrome derived fibroblasts. Biol Pharma Bull 40: 327-333. doi: 10.1248/bpb.b16-00825
![]() |
[100] |
Lee N, Chien Y, Hwu W (2017) A review of biomarkers for Alzheimer's disease in Down syndrome. Neurol Ther 6: 69-81. doi: 10.1007/s40120-017-0071-y
![]() |
[101] |
Hartley S, Handen B, Devenny D, et al. (2017) Cognitive decline and brain amyloid-bêta accumulation across 3 years in adults with Down syndrome. Neurobiol Aging 58: 68-76. doi: 10.1016/j.neurobiolaging.2017.05.019
![]() |
[102] |
Alhajraf F, Ness D, Hye A, et al. (2019) Plasma amyloid and tau as dementia biomarkers in Down syndrome: Systematic review and meta-analysis. Dev Neurobiol 79: 684-698. doi: 10.1002/dneu.22715
![]() |
[103] |
Bik-Multanowsky M, Pietrzyk J, Midro A (2015) MTRNRL12: A candidate blood marker of early Alzheimer's disease-like dementia in adults with Down syndrome. J Alzheimers Dis 46: 145-150. doi: 10.3233/JAD-143030
![]() |
[104] |
Shinomoto M, Kasai T, Tatebe H, et al. (2019) Plasma neurofilament light chain: A potential prognostic biomarker of dementia in adult Down syndrome patients. PloS One 14: e0211575. doi: 10.1371/journal.pone.0211575
![]() |
[105] |
Rafii M, Donohue M, Matthews D, et al. (2019) Plasma neurofilament light and Alzheimer's disease biomarkers in Down syndrome: Results from the Down Syndrome Biomarker Initiative (DSBI). J Alzheimers Dis 70: 131-138. doi: 10.3233/JAD-190322
![]() |
[106] |
Hamlett E, Ledreux A, Potter H, et al. (2018) Exosomal biomarkers in Down syndrome and Alzheimer's disease. Free Radical Biol Medicine 114: 110-121. doi: 10.1016/j.freeradbiomed.2017.08.028
![]() |
[107] |
Motta C, Di Lorenzo F, Ponzo V, et al. (2017) Transcranial magnetic stimulation predicts cognitive decline in patients with Alzheimer's disease. J Neurol Neurosurg Psychiatry 89: 1237-1242. doi: 10.1136/jnnp-2017-317879
![]() |
[108] |
Nawa N, Hirata K, Kawatani K, et al. (2019) Elimination of protein aggregates prevents premature senescence in human trisomy 21 fibroblasts. PloS One 14: e0219592. doi: 10.1371/journal.pone.0219592
![]() |
[109] | Li JG, Chiu J, Praticò D (2019) Full recovery of Alzheimer's disease phenotype by gain of function of vacuolar protein sorting 35. Mol Psychiatry 1-11. |
[110] | Vagnozzi A, Li JG, Chiu J, et al. (2019) VPS35 regulates tau phosphorylation and neuropathology in taupathy. Mol Psychiatry 1-14. |
1. | Byung Moon Kim, Taekyun Kim, Jin-Woo Park, Taha Ali Radwan, Sundarapandian Vaidyanathan, Identities on Changhee Polynomials Arising from λ -Sheffer Sequences, 2022, 2022, 1099-0526, 1, 10.1155/2022/5868689 | |
2. | Taekyun Kim, Dae San Kim, Hye Kyung Kim, λ-q-Sheffer sequence and its applications, 2022, 55, 2391-4661, 843, 10.1515/dema-2022-0174 | |
3. | Dorota Bród, Mariola Rubajczyk, Anetta Szynal-Liana, A New Hybrid Generalization of Balancing Polynomials, 2024, 16, 2073-8994, 1397, 10.3390/sym16101397 | |
4. | Sang Jo Yun, Jin-Woo Park, On a generation of degenerate Daehee polynomials, 2025, 10, 2473-6988, 12286, 10.3934/math.2025556 |