Citation: Marios G. Krokidis. Identification of biomarkers associated with Parkinson’s disease by gene expression profiling studies and bioinformatics analysis[J]. AIMS Neuroscience, 2019, 6(4): 333-345. doi: 10.3934/Neuroscience.2019.4.333
[1] | Ewelina Nerek, Barbara Sokołowska . Pseudomonas spp. in biological plant protection and growth promotion. AIMS Environmental Science, 2022, 9(4): 493-504. doi: 10.3934/environsci.2022029 |
[2] | Karolina Nowocień, Barbara Sokołowska . Bacillus spp. as a new direction in biocontrol and deodorization of organic fertilizers. AIMS Environmental Science, 2022, 9(2): 95-105. doi: 10.3934/environsci.2022007 |
[3] | Delianis Pringgenies, Wilis Ari Setyati, Nirwani Soenardjo, Rini Pramesti . Investigation of extra-cellular protease in indigenous bacteria of sea cucumbers as a candidate for bio-detergent material in bio-industry. AIMS Environmental Science, 2020, 7(4): 335-349. doi: 10.3934/environsci.2020022 |
[4] | Raden Darmawan, Sri Rachmania Juliastuti, Nuniek Hendrianie, Orchidea Rachmaniah, Nadila Shafira Kusnadi, Ghassani Salsabila Ramadhani, Yawo Serge Marcel, Simpliste Dusabe, Masato Tominaga . Effect of electrode modification on the production of electrical energy and degradation of Cr (Ⅵ) waste using tubular microbial fuel cell. AIMS Environmental Science, 2022, 9(4): 505-525. doi: 10.3934/environsci.2022030 |
[5] | Navid Ahmadi, Mozhgan Ahmadi Nadoushan, Mohammad Hadi Abolhasani, Abbas Hosseini . Investigating the efficiency of biological treatment process of oil pollutants using mix of Scenedesmus obliquus and Chlamydomonas reinhardtii algae: A case study. AIMS Environmental Science, 2021, 8(3): 221-237. doi: 10.3934/environsci.2021015 |
[6] | Jabir H. Al-Fahemi, Faten A. Aljiffrey, Elshafie A. M. Gad, Mahmoud A. A. Ibrahim . QSAR study and theoretical investigation on the lethality of halogenated aliphatic hydrocarbons toward Aspergillus (A.) Nidulans. AIMS Environmental Science, 2025, 12(3): 419-434. doi: 10.3934/environsci.2025019 |
[7] | Alma Sobrino-Figueroa, Sergio H. Álvarez Hernandez, Carlos Álvarez Silva C . Evaluation of the freshwater copepod Acanthocyclops americanus (Marsh, 1983) (Cyclopidae) response to Cd, Cr, Cu, Hg, Mn, Ni and Pb. AIMS Environmental Science, 2020, 7(6): 449-463. doi: 10.3934/environsci.2020029 |
[8] | Abigail W. Porter, Sarah J. Wolfson, Lily. Young . Pharmaceutical transforming microbes from wastewater and natural environments can colonize microplastics. AIMS Environmental Science, 2020, 7(1): 99-116. doi: 10.3934/environsci.2020006 |
[9] | Arriya Mungsunti, Kevin A. Parton . The sustainability of the muang fai irrigation system of northern Thailand. AIMS Environmental Science, 2019, 6(2): 77-93. doi: 10.3934/environsci.2019.2.77 |
[10] | HsiaoDao Chang, XiuYou Wan, HsiaoLan Huang, YiSu Chen, ChaoYing Chen . Anaerobic enrichment of Bacillus alkylbenzene remedial consortia from waste biomass melanoid sources. AIMS Environmental Science, 2021, 8(4): 341-357. doi: 10.3934/environsci.2021022 |
In many infectious diseases, such as HIV, schistosomiasis, tuberculosis, the infectiousness of an infected individual can be very different at various stages of infection. Hence, the age of infection may be an important factor to consider in modeling transmission dynamics of infectious diseases. In the epidemic model of Kermack and Mckendrick [9], infectivity is allowed to depend on the age of infection. Because the age-structured epidemic model is described by first order PDEs, it is more difficult to theoretically analyze the dynamical behavior of the PDE models, particularly the global stability. Several recent studies [10,11,18] have focused on age structured models, and the results show that age of infection may play an important role in the transmission dynamics of infectious diseases.
In our pervious work [4], we formulated an infection-age structured epidemic model to describe the transmission dynamics of vector-borne diseases. The model includes both incubation age of the exposed hosts and infection age of the infectious hosts, both of which describe the different removal rates in the latent period and the variable infectiousness in the infectious period, respectively. The results in [4] show that the basic reproduction number determines transmission dynamics of vector-borne diseases: the disease-free equilibrium is globally asymptotically stable if the basic reproduction number is less than 1, and the endemic equilibrium is globally asymptotically stable if the basic reproduction number is greater than 1. However, the vector-borne epidemic model formulated in [4] only incorporates a single strain. In reality, many diseases are caused by more than one antigenically different strains of the causative agent [15]. For instance, the dengue virus has 4 different serotypes [6], and bacterial pneumonia is caused by more than ninety different serotypes of Streptoccus pneumoniae. Therefore, it is necessary to study infection-age structured epidemic models with multiple strains.
In this paper, we will extend the model with a single strain to the model with multiple strains, and obtain the following infection-age-structured vector-borne epidemic model with multiple strains:
$ \left\{dSvdt=Λv−n∑j=1Sv∫∞0βjv(a)Ijh(a,t)da−μvSv,dIjvdt=Sv∫∞0βjv(a)Ijh(a,t)da−(μv+αjv)Ijv,dRvdt=n∑j=1αjvIjv−μvRv,dShdt=Λh−n∑j=1βjhShIjv−μhSh,∂Ejh(τ,t)∂τ+∂Ejh(τ,t)∂t=−(μh+mjh(τ))Ejh(τ,t),Ejh(0,t)=βjhShIjv,∂Ijh(a,t)∂a+∂Ijh(a,t)∂t=−(μh+αjh(a)+rjh(a))Ijh(a,t),Ijh(0,t)=∫∞0mjh(τ)Ejh(τ,t)dτ,dRhdt=n∑j=1∫∞0rjh(a)Ijh(a,t)da−μhRh.\right. $ | (1) |
In the model (1),
The dynamics of the epidemic model involving multiple strains has fascinated researchers for a long time (see [3,5,6,7,17] and the references therein), and one of the important results is the competitive exclusion principle. In epidemiology, the competitive exclusion principle states that if multiple strains circulate in the population, only the strain with the largest reproduction number persists and the strains with suboptimal reproduction numbers are eliminated [13]. Using a multiple-strain ODE model Bremermann and Thieme [2] first proved that the principle of competitive exclusion is valid under the assumption that infection with one strain precludes additional infections with other strains. In 2013, Maracheva and Li [13] extended the competitive exclusion principle to a multi-stain age-since-infection structured model of SIR/SI-type. The goal of this paper is to extend this principle to model (1).
As we all know, the proof of competitive exclusion principle is based on the global stability of the single-strain equilibrium. The stability analysis of nonlinear dynamical systems has always been an important topic theoretically and practically since global stability is one of the most important issues related to their dynamic behaviors. Due to the lack of generically applicable tools proving the global stability is very challenging, especially for the continuous age-structured models which are described by first order PDEs. Although there are various approaches for some general nonlinear systems, the method of Lyapunov functions is the most common tool used to prove the global stability. In this paper, we will apply a class of Lyaponuv functions to study the global dynamics of system (1) and draw on the results to derive the competitive exclusion principle for infinite dimensional systems.
This paper is organized as follows. In the next section we derive an explicit formula for the basic reproduction number
In this section, we mainly derive the reproduction numbers for each strain, and show that the stain will die out if its basic reproduction number is less than one.
Since the equations for the recovered individuals and the recovered vectors are decoupled from the system, it follows that the dynamical behavior of system (1) is equivalent to the dynamical behavior of the following system:
$ \left\{dSvdt=Λv−n∑j=1Sv∫∞0βjv(a)Ijh(a,t)da−μvSv,dIjvdt=Sv∫∞0βjv(a)Ijh(a,t)da−(μv+αjv)Ijv,dShdt=Λh−n∑j=1βjhShIjv−μhSh,∂Ejh(τ,t)∂τ+∂Ejh(τ,t)∂t=−(μh+mjh(τ))Ejh(τ,t),Ejh(0,t)=βjhShIjv,∂Ijh(a,t)∂a+∂Ijh(a,t)∂t=−(μh+αjh(a)+rjh(a))Ijh(a,t),Ijh(0,t)=∫∞0mjh(τ)Ejh(τ,t)dτ.\right. $ | (2) |
Model (2) is equipped with the following initial conditions:
$S_v(0)=S_{v_0}, I_v^j(0)=I_{v_0}^j, S_h(0)=S_{h_0} , E_h^j(\tau, 0)=\varphi_j(\tau), I_h^j(a, 0)=\psi_j(a).$ |
All parameters are nonnegative,
Assumption 2.1.
1. The function
2. The functions
3. The functions
Let us define
$X=R×n∏j=1R×R×n∏j=1(L1(0,∞)×L1(0,∞)).$ |
It is easily verified that solutions of (2) with nonnegative initial conditions belong to the positive cone for
$ddt(Sv(t)+n∑j=1Ijv(t))≤Λv−μv(Sv(t)+n∑j=1Ijv(t)).$ |
Hence,
$lim supt→+∞(Sv(t)+n∑j=1Ijv(t))≤Λvμv.$ |
Similarly, adding the equation for
$ddt(Sh(t)+n∑j=1∫∞0Ejh(τ,t)dτ+n∑j=1∫∞0Ijh(a,t)da)$ |
$≤Λh−μh(Sh(t)+n∑j=1∫∞0Ejh(τ,t)dτ+n∑j=1∫∞0Ijh(a,t)da),$ |
and it then follows that
$lim supt→+∞(Sh(t)+n∑j=1∫∞0Ejh(τ,t)dτ+n∑j=1∫∞0Ijh(a,t)da)≤Λhμh.$ |
Therefore, the following set is positively invariant for system (2)
$Ω={(Sv, I1v, ⋯, Inv, Sh, E1h, I1h, ⋯, Enh, Inh)∈X+|(Sv(t)+n∑j=1Ijv(t))≤Λvμv,(Sh(t)+n∑j=1∫∞0Ejh(τ,t)dτ+n∑j=1∫∞0Ijh(a,t)da)≤Λhμh}.$ | (3) |
In what follows, we only consider the solutions of the system (2) with initial conditions which lie in the region
Definition 2.1. The exit rate of exposed host individuals with strain
$πj1(τ)=e−μhτe−∫τ0mjh(σ))dσ. $ | (4) |
Definition 2.2. The exit rate of infected individuals with strain
$ \label{eq:4}πj2(a)=e−μhae−∫a0(αjh(σ)+rjh(σ))dσ. $ | (5) |
Then we can give the expression for the basic reproduction number of strain
$Rj0=βjhΛvΛhμvμh(μv+αjv)∫∞0mjh(τ)πj1(τ)dτ∫∞0βjv(a)πj2(a)da. $ | (6) |
The reproduction number of strain
$Rjh=Λvμv∫∞0βjv(a)πj2(a)da,Rjv=βjhΛhμh(μv+αjv)∫∞0mjh(τ)πj1(τ)dτ.$ |
The first term
Now we are able to state the results on threshold dynamics of strain
Theorem 2.3. If
Proof. Let
$BjE(t)=Ejh(0,t),BjI(t)=Ijh(0,t).$ |
Integrating along the characteristic lines of system (2) yields
$
\begin{array}{ll} \displaystyle E_h^j(\tau, t)= \left\{\begin{array} {ll} \displaystyle B_E^j(t-\tau)\pi^j_1(\tau), \mbox{ } & t>\tau,\\[1ex] \displaystyle \varphi_j(\tau-t)\frac{\pi^j_1(\tau)}{\pi^j_1(\tau-t)}, \mbox{ } & t<\tau, \end{array}\right.\\[3ex] \displaystyle I_h^j (a, t)= \left\{\begin{array} {ll} \displaystyle B_I^j(t-a)\pi^j_2(a), \mbox{ } & t>a,\\[1ex] \displaystyle \psi_j(a-t)\frac{\pi^j_2(a)}{\pi^j_2(a-t)}, \mbox{ } & t<a. \end{array}\right. \end{array} $ |
(7) |
From the first and the third equations of system (2), we obtain
$ \displaystyle \limsup\limits_{t\rightarrow +\infty} S_v(t)\leq\frac{\Lambda_v}{\mu_v}, \limsup\limits_{t\rightarrow +\infty} S_h(t)\leq\frac{\Lambda_h}{\mu_h}. $ | (8) |
Thus, from system (2) and inequalities (8), we have
$ \left\{ dIjv(t)dt≤Λvμv∫∞0βjv(a)Ijh(a,t)da−(μv+αjv)Ijv,Ejh(τ,t)=Ejh(0,t−τ)πj1(τ),t>τ,Ijh(a,t)=Ijh(0,t−a)πj2(a),t>a.\right. $ | (9) |
From the first inequality of (9), we obtain that
$ Ijv(t)≤Ijv(0)e−(μv+αjv)t+Λvμv∫t0e−(μv+αjv)(t−s)∫∞0βjv(a)Ijh(a,s)dads≤Ijv(0)e−(μv+αjv)t+Λvμv∫t0e−(μv+αjv)(t−s)(∫s0βjv(a)Ijh(0,s−a)πj2(a)da+∫tsβjv(a)ψj(a−s)πj2(a)πj2(a−s)da+∫∞tβjv(a)Ijh(a,s)da)ds. $ | (10) |
Notice that
$ lim supt→+∞∫t0e−(μv+αjv)(t−s)∫s0βjv(a)Ijh(0,s−a)πj2(a)dads≤(lim supt→+∞∫t0e−(μv+αjv)(t−s)ds)∫∞0βjv(a)πj2(a)da(lim supt→+∞Ijh(0,t))=1μv+αjv∫∞0βjv(a)πj2(a)da(lim supt→+∞Ijh(0,t)), $ | (11) |
$ lim supt→+∞∫t0e−(μv+αjv)(t−s)∫tsβjv(a)ψj(a−s)πj2(a)πj2(a−s)dads≤ˉβlim supt→+∞∫t0e−(μv+αjv)(t−s)∫tsψj(a−s)e−∫aa−s(μh+αjh(σ)+rjh(σ))dσdads≤ˉβlim supt→+∞∫t0e−(μv+αjv)(t−s)∫tsψj(a−s)e−μhsdads $ |
$ =ˉβlim supt→+∞(e−(μv+αjv)t∫t0e(μv+αjv−μh)s∫t−s0ψj(a)dads)=ˉβ∫∞0ψj(a)dalim supt→+∞(e−(μv+αjv)te(μv+αjv−μh)t−1μv+αjv−μh)=0, $ | (12) |
and
$ lim supt→+∞∫t0e−(μv+αjv)(t−s)∫∞tβjv(a)Ijh(a,s)dads=0. $ | (13) |
It then follows from (11), (12) and (13) that
$ lim supt→+∞Ijv(t)≤Λvμv(μv+αjv)∫∞0βjv(a)πj2(a)da(lim supt→+∞Ijh(0,t))≤Λvμv(μv+αjv)∫∞0βjv(a)πj2(a)da(lim supt→+∞∫∞0mjh(τ)Ejh(τ,t)dτ)≤Λvμv(μv+αjv)∫∞0βjv(a)πj2(a)dalim supt→+∞(∫t0mjh(τ)Ejh(τ,t)dτ+∫∞tmjh(τ)Ejh(τ,t)dτ)=Λvμv(μv+αjv)∫∞0βjv(a)πj2(a)da(lim supt→+∞∫t0mjh(τ)Ejh(0,t−τ)πj1(τ)dτ)≤Λvμv(μv+αjv)∫∞0βjv(a)πj2(a)da∫∞0mjh(τ)πj1(τ)dτ(lim supt→+∞Ejh(0,t))≤βjhΛvΛhμvμh(μv+αjv)∫∞0βjv(a)πj2(a)da∫∞0mjh(τ)πj1(τ)dτlim supt→+∞Ijv(t)≤Rj0lim supt→+∞Ijv(t). $ | (14) |
Since
$ \displaystyle \limsup\limits_{t\rightarrow +\infty} I_v^j(t)=0, j=1,\cdots,n. $ | (15) |
Hence, we have
$ \displaystyle \limsup\limits_{t\rightarrow +\infty}E_h^j(0,t)=0, \limsup\limits_{t\rightarrow +\infty}E_h^j(\tau,t)=\limsup\limits_{t\rightarrow +\infty} E_h^j(0,t-\tau)\pi^j_1(\tau)=0. $ | (16) |
By using the same argument, we have
$ \displaystyle \limsup\limits_{t\rightarrow +\infty}I_h^j(0,t)=0, \limsup\limits_{t\rightarrow +\infty}I_h^j(a,t)=0. $ | (17) |
Therefore,
In this section, we mainly define the disease reproduction number and show that the disease free equilibrium is globally asymptotically stable if the disease reproduction number
$R0=max{R10,⋯,Rn0}.$ |
System (2) always has a unique disease-free equilibrium
${{\cal E}_0} = \left( {S_{{v_0}}^*,{\bf{0}},S_{{h_0}}^*,{\bf{0}},{\bf{0}}} \right),$ |
where
$S∗v0=Λvμv,S∗h0=Λhμh,$ |
and
Now let us establish the local stability of the disease-free equilibrium. Let
$Sv(t)=S∗v0+xv(t),Ijv(t)=yjv(t),Sh(t)=S∗h0+xh(t),Ejh(τ,t)=zjh(τ,t),Ijh(a,t)=yjh(a,t).$ |
Then the linearized system of system (2) at the disease-free equilibrium
$\left\{dxv(t)dt=−n∑j=1S∗v0∫∞0βjv(a)yjh(a,t)da−μvxv(t),dyjv(t)dt=S∗v0∫∞0βjv(a)yjh(a,t)da−(μv+αjv)yjv(t),dxh(t)dt=−n∑j=1βjhS∗h0yjv(t)−μhxh(t),∂zjh(τ,t)∂τ+∂zjh(τ,t)∂t=−(μh+mjh(τ))zjh(τ,t),zjh(0,t)=βjhS∗h0yjv(t),∂yjh(a,t)∂a+∂yjh(a,t)∂t=−(μh+αjh(a)+rjh(a))yjh(a,t),yjh(0,t)=∫∞0mjh(τ)zjh(τ,t)dτ.\right. $ | (18) |
Let
$ \label{eq:char} y_v^j{(t)}=\bar{y}_v^je^{\lambda t},\ z_h^j{(\tau, t)}=\bar{z}_h^j(\tau)e^{\lambda t}, \ y_h^j{(a, t)}=\bar{y}_h^j(a)e^{\lambda t}, $ | (19) |
where
$ \left\{ λˉyjv=S∗v0∫∞0βjv(a)ˉyjh(a)da−(μv+αjv)ˉyjv,dˉzjh(τ)dτ=−(λ+μh+mjh(τ))ˉzjh(τ),ˉzjh(0)=βjhS∗h0ˉyjv,dˉyjh(a)da=−(λ+μh+αjh(a)+rjh(a))ˉyjh(a),ˉyjh(0)=∫∞0mjh(τ)ˉzjh(τ)dτ.\right. $ | (20) |
Solving the differential equation, we obtain
$ˉzjh(τ)=ˉzjh(0) e−λτπj1(τ)=βjhS∗h0ˉyjv e−λτπj1(τ).$ |
Substituting the expression for
$ˉyjh(a)=ˉyjh(0) e−λaπj2(a)=βjhS∗h0ˉyjv e−λaπj2(a)∫∞0mjh(τ) e−λτπj1(τ)dτ.$ |
Substituting the above expression for
$ λ+μv+αjv=βjhS∗v0S∗h0∫∞0mjh(τ)e−λτπj1(τ)dτ∫∞0βjv(a)e−λaπj2(a)da. $ | (21) |
Now we are able to state the following result.
Theorem 3.1. If
$ \mathcal R_0=\max \{\mathcal R^1_0,\cdots,\mathcal R^n_0\}< 1, $ |
then the disease-free equilibrium is locally asymptotically stable. If
Proof. We first prove the first result. Let us assume
$ LHSdef=λ+μv+αjv,RHSdef=G1(λ)=βjhS∗v0S∗h0∫∞0mjh(τ)e−λτπj1(τ)dτ∫∞0βjv(a)e−λaπj2(a)da. $ | (22) |
We can easily verify that
$|LHS|≥μv+αjv,|RHS|≤G1(ℜλ)≤G1(0)=βjhS∗v0S∗h0∫∞0mjh(τ)πj1(τ)dτ∫∞0βjv(a)πj2(a)da=βjhΛvΛhμvμh∫∞0mjh(τ)πj1(τ)dτ∫∞0βjv(a)πj2(a)da=Rj0(μv+αjv)<|LHS|,$ |
for any
Next, let us assume
$ \displaystyle \mathcal{G}_2(\lambda)=0, $ | (23) |
where
$G2(λ)=(λ+μv+αj0v)−βj0hS∗v0S∗h0∫∞0mj0h(τ)e−λτπj01(τ)dτ∫∞0βj0v(a)e−λaπj02(a)da.$ |
It is easily verified that
$ G2(0)=(μv+αj0v)−βj0hS∗v0S∗h0∫∞0mj0h(τ)πj01(τ)dτ∫∞0βj0v(a)πj02(a)da=(μv+αj0v)(1−Rj00)<0, $ |
and
$\mathop {\lim }\limits_{\lambda \to + \infty } {{\cal G}_2}(\lambda ) = + \infty .$ |
Hence, the characteristic equation (23) has a real positive root. Therefore, the disease free equilibrium
We have proved that the disease-free equilibrium is locally stable if
Theorem 3.2. If
$\mathcal R_0=\max \{\mathcal R^1_0,\cdots,\mathcal R^n_0\}< 1,$ |
then the disease-free equilibrium
In this section, we mainly investigate the existence and stability of the boundary equilibria. For ease of notation, let
$ Δj=βjhΛhΛvμhμv(μv+αjv),bj=∫∞0mjh(τ)πj1(τ)dτ∫∞0βjv(a)πj2(a)da,bj(λ)=∫∞0mjh(τ)e−λτπj1(τ)dτ∫∞0βjv(a)e−λaπj2(a)da. $ | (24) |
From Theorem 2.3, it follows that strain
$ \mathcal{E}_j=(S_v^{j*},0,\cdots,0, I_v^{j*}, 0,\cdots,0,S_h^{j*}, 0,\cdots,0,E_h^{j*}(\tau), I_h^{j*}(a),0,\cdots,0). $ |
The non-zero components
$ Ij∗v=μvμh(Rj0−1)βjh(Λhbj+μv),Sj∗v=Λv−(μv+αjv)Ij∗vμv=βjhΛv(μv+Λhbj)−μvμh(μv+αjv)(Rj0−1)βjhμv(μv+Λhbj), $ |
$ Sj∗h=ΛhβjhIj∗v+μh=Λh(μv+Λhbj)μh(μvRj0+Λhbj),Ej∗h(τ)=Ej∗h(0)πj1(τ),Ej∗h(0)=βjhSj∗hIj∗v,Ij∗h(a)=Ij∗h(0)πj2(a),Ij∗h(0)=Ej∗h(0)∫∞0mjh(τ)πj1(τ)dτ. $ | (25) |
The results on the local stability of single-strain equilibrium
Theorem 4.1. Assume
$ \mathcal{R}^j_0 < \mathcal{R}^{j_0}_0 \;for\;all \; j\neq j_0. $ |
Then single-strain equilibrium
$ \mathcal{R}^{i_0}_0 > \mathcal{R}^{j_0}_0, $ |
then the single-strain equilibrium
Proof. Without loss of generality, we assume that
$ Sv(t)=S1∗v+xv(t), Sh(t)=S1∗h+xh(t),I1v(t)=I1∗v+y1v(t), E1h(τ,t)=E1∗h(τ)+z1h(τ,t), I1h(a,t)=I1∗h(a)+y1h(a,t),Iiv(t)=yiv(t),Eih(τ,t)=zih(τ,t), Iih(a,t)=yih(a,t), $ |
where
$\left\{ dxv(t)dt=−S1∗v∫∞0β1v(a)y1h(a,t)da−xv(t)∫∞0β1v(a)I1∗h(a)da−n∑i=2S1∗v∫∞0βiv(a)yih(a,t)da−μvxv(t),dy1v(t)dt=S1∗v∫∞0β1v(a)y1h(a,t)da+xv(t)∫∞0β1v(a)I1∗h(a)da−(μv+α1v)y1v(t),dyiv(t)dt=S1∗v∫∞0βiv(a)yih(a,t)da−(μv+αiv)yiv(t),dxh(t)dt=−β1hS1∗hy1v(t)−β1hxh(t)I1∗v−n∑i=2βihS1∗hyiv(t)−μhxh(t),∂zjh(τ,t)∂τ+∂zjh(τ,t)∂t=−(μh+mjh(τ))zjh(τ,t),z1h(0,t)=β1hS1∗hy1v(t)+β1hxh(t)I1∗v,zih(0,t)=βihS1∗hyiv(t),∂yjh(a,t)∂a+∂yjh(a,t)∂t=−(μh+αjh(a)+rjh(a))yjh(a,t),yjh(0,t)=∫∞0mjh(τ)zjh(τ,t)dτ.\right. $ | (26) |
An approach similar to [14] (see Appendix B in [14]) can show that the linear stability of the system is determined by the eigenvalues of the linearized system (26). In order to investigate the linear stability of the linearized system (26), we consider exponential solutions (see the case of the disease-free equilibrium) and obtain a linear eigenvalue problem. For the whole system, we only consider the equations for strains
$\left\{ dyiv(t)dt=S1∗v∫∞0βiv(a)yih(a,t)da−(μv+αiv)yiv(t),∂zih(τ,t)∂τ+∂zih(τ,t)∂t=−(μh+mih(τ))zih(τ,t),zih(0,t)=βihS1∗hyiv(t),∂yih(a,t)∂a+∂yih(a,t)∂t=−(μh+αih(a)+rih(a))yih(a,t),yih(0,t)=∫∞0mih(τ)zih(τ,t)dτ.\right. $ | (27) |
For each
$ λ+μv+αiv=βihS1∗vS1∗h∫∞0mih(τ)e−λτπi1(τ)dτ∫∞0βiv(a)e−λaπi2(a)da. $ | (28) |
Notice that
$ \displaystyle \beta_h^jS_v^{j*}S_h^{j*}\int^\infty_0m_h^j(\tau)\pi^j_1(\tau)d\tau\int^\infty_0\beta_v^j(a)\pi^j_2(a)da=\mu_v+\alpha_v^j, $ | (29) |
for
$ \displaystyle S_v^{1^*}S_h^{1^*}=\frac{\mu_v+\alpha_v^1}{\beta_h^1b_1}=\frac{\Lambda_v\Lambda_h}{\mu_v\mu_h\mathcal R^1_0}. $ | (30) |
Substituting (30) into the equation (28), we get the following characteristic equation
$ λ+μv+αiv=βihΛvΛhμvμhR10bi(λ), $ | (31) |
where
First, assume that
$\displaystyle \mathcal{G}_{i_0}(\lambda)\stackrel{\it def}{=}(\lambda+\mu_v+\alpha_v^{i_0}) -\beta_h^{i_0}\frac{\Lambda_v\Lambda_h}{\mu_v\mu_h\mathcal R^1_0}b_{i_0}(\lambda).$ |
Straightforward computation yields that
$ \displaystyle \mathcal{G}_{i_0}(0)=(\mu_v+\alpha_v^{i_0}) -\beta_h^{i_0}\frac{\Lambda_v\Lambda_h}{\mu_v\mu_h\mathcal R^1_0}b_{i_0}=(\mu_v+\alpha_v^{i_0})(1-\frac{R^{i_0}_0}{R^1_0})<0. $ |
Furthermore, for
Next, assume
$ \displaystyle \mathcal{G}_3(\lambda)\stackrel{\it def}{=}\lambda+\mu_v+\alpha_v^i, \mathcal{G}_4(\lambda)\stackrel{\it def}{=}\displaystyle \beta_h^i\frac{\Lambda_v\Lambda_h}{\mu_v\mu_h\mathcal R^1_0}b_i(\lambda). $ | (32) |
Consider
$ |G3(λ)|≥μv+αiv,|G4(λ)|≤G4(ℜλ)≤G4(0)=1R10βihΛvΛhμvμh∫∞0mih(τ)πi1(τ)dτ∫∞0βiv(a)πi2(a)da=Ri0R10(μv+αiv)<|G3(λ)|.$ |
This gives a contradiction. Hence, the equation (31) have no solutions with positive real part and all eigenvalues of these equations have negative real parts. Therefore, the stability of
$\left\{ λxv=−S1∗v∫∞0β1v(a)y1h(a)da−xv∫∞0β1v(a)I1∗h(a)da−μvxv,λy1v=S1∗v∫∞0β1v(a)y1h(a)da+xv∫∞0β1v(a)I1∗h(a)da−(μv+α1v)y1v,λxh=−z1h(0)−μhxh,dz1h(τ)dτ=−(λ+μh+m1h(τ))z1h(τ),z1h(0)=β1hS1∗hy1v+β1hI1∗vxh,dy1h(a)da=−(λ+μh+α1h(a)+r1h(a))y1h(a),y1h(0)=∫∞0m1h(τ)z1h(τ)dτ.\right. $ | (33) |
Solving the differential equation, we have
$ z1h(τ)=z1h(0) e−λτπ11(τ),y1h(a)=y1h(0) e−λaπ12(a)=z1h(0) e−λaπ12(a)∫∞0m1h(τ) e−λτπ11(τ)dτ. $ |
Substituting the above expression for
$\left\{ (λ+μv+∫∞0β1v(a)I1∗h(a)da)xv+S1∗vb1(λ)z1h(0)=0,−xv∫∞0β1v(a)I1∗h(a)da+(λ+μv+α1v)y1v−S1∗vb1(λ)z1h(0)=0,(λ+μh)xh+z1h(0)=0,−β1hI1∗vxh−β1hS1∗hy1v+z1h(0)=0.\right. $ | (34) |
Direct calculation yields the following characteristic equation
$ (λ+μv+∫∞0β1v(a)I1∗h(a)da)(λ+μv+α1v)(λ+μh+β1hI1∗v)=β1hS1∗hS1∗vb1(λ)(λ+μv)(λ+μh). $ | (35) |
Dividing both sides by
$ \displaystyle \mathcal{G}_5(\lambda)=\mathcal{G}_6(\lambda), $ | (36) |
where
$ G5(λ)=(λ+μv+∫∞0β1v(a)I1∗h(a)da)(λ+μv+α1v)(λ+μh+β1hI1∗v)(λ+μv)(λ+μh),G6(λ)=β1hS1∗hS1∗vb1(λ)=β1hS1∗hS1∗v∫∞0m1h(τ)e−λτπ11(τ)dτ∫∞0β1v(a)e−λaπ12(a)da. $ | (37) |
If
$ |G5(λ)|>|λ+μv+α1v|≥μv+α1v. $ | (38) |
From (29), we have
$ |G6(λ)|≤|G6(ℜλ)|≤G6(0)=β1hS1∗hS1∗v∫∞0m1h(τ)π11(τ)dτ∫∞0β1v(a)π12(a)da=μv+α1v<|G5(λ)|. $ | (39) |
This leads to a contradiction. The contradiction implies that (36) has no roots such that
In the previous section, we proved that if the disease reproduction number is less than one, all strains are eliminated and the disease dies out. Our next step is to show that the competitive exclusion principle holds for system (2). In the later sections, we always assume that
$\displaystyle \mathcal R^1_0=\max \{\mathcal R^1_0,\cdots,\mathcal R^n_0\}>1.$ |
In the following we will show that strain
Mathematically speaking, establishing the competitive exclusion principle means establishing the global stability of the single-strain equilibrium
Set
$f(x)=x-1-\ln x.$ |
It is easy to check that
$ U(t)=U1(t)+U12(t)+n∑i=2Ui2(t)+U3(t)+U14(t)+n∑i=2Ui4(t)+U15(t)+n∑i=2Ui5(t), $ | (40) |
where
$ \left. U1(t)=1q1(0)∫∞0m1h(τ)π11(τ)dτf(SvS1∗v),U12(t)=1S1∗vq1(0)∫∞0m1h(τ)π11(τ)dτI1∗vf(I1vI1∗v),Ui2(t)=1S1∗vq1(0)∫∞0m1h(τ)π11(τ)dτIiv,U3(t)=S1∗hf(ShS1∗h),U14(t)=1R10∫∞0p1(τ)E1∗h(τ)f(E1h(τ,t)E1∗h(τ))dτ,Ui4(t)=1Δiq1(0)∫∞0m1h(τ)π11(τ)dτ∫∞0pi(τ)Eih(τ,t)dτ,U15(t)=1q1(0)∫∞0m1h(τ)π11(τ)dτ∫∞0q1(a)I1∗h(a)f(I1h(a,t)I1∗h(a))da.Ui5(t)=1q1(0)∫∞0m1h(τ)π11(τ)dτ∫∞0qi(a)Iih(a,t)da,\right. $ | (41) |
and
$ qj(a)=∫∞aβjv(s)e−∫sa(μh+αjh(σ)+rjh(σ))dσds,pj(τ)=Δjqj(0)∫∞τmjh(s)e−∫sτ(μh+mjh(σ))dσds. $ | (42) |
Direct computation gives
$ \displaystyle p_j(0)=\mathcal R^j_0, $ |
and
$ q′j(a)=−βjv(a)+(μh+αjh(a)+rjh(a))qj(a),p′j(τ)=−Δjqj(0)mjh(τ)+(μh+mjh(τ))pj(τ). $ | (43) |
The main difficulty with the Lyapunov function
$ \displaystyle \hat{X }_1=\bigg\{\varphi_1\in L^1_+(0, \infty)\bigg|\exists s\geq0:\ \int^\infty_0 m_h^1(\tau+s)\varphi_1(\tau)d\tau>0\bigg\}, $ |
$ \displaystyle \hat{X }_2=\bigg\{\psi_1\in L^1_+(0, \infty)\bigg|\exists s\geq0:\ \int^\infty_0 \beta_v^1(a+s)\psi_1(a)da>0\bigg\}, $ |
and define
$ \displaystyle X_0=\mathbb{R}_+\times \prod^n_{j=1}\mathbb{R}_+\times \mathbb{R}_+\times \hat{X }_1\times \hat{X }_2\times \prod^n_{i=2}(L^1(0,\infty)\times L^1(0,\infty)), $ |
$ \Omega_0=\Omega\cap X_0.$ |
Note that
Now let us recall two important definitions.
Definition 5.1. Strain one is called uniformly weakly persistence if there exists some
$ \displaystyle \limsup\limits_{t\rightarrow\infty}\int^\infty_0E_h^1(\tau, t)d\tau > \gamma \text{whenever}\int^\infty_0 \varphi_1(\tau)d\tau > 0, $ |
$ \displaystyle \limsup\limits_{t\rightarrow\infty}\int^\infty_0I_h^1(a,t)da > \gamma \text{whenever} \int^\infty_0\psi_1(a)da> 0, $ |
and
$ \displaystyle \limsup\limits_{t\rightarrow\infty}I_v^1(t) > \gamma \text{whenever} I_{v_0}^1> 0, $ |
for all solutions of system (2).
One of the important implications of uniform weak persistence of the disease is that the disease-free equilibrium is unstable.
Definition 5.2. Strain one is uniformly strongly persistence if there exists some
$ \displaystyle \liminf\limits_{t\rightarrow\infty}\int^\infty_0E_h^1(\tau, t)d\tau > \gamma \text{whenever}\int^\infty_0\varphi_1(\tau)d\tau> 0, $ |
$ \displaystyle \liminf\limits_{t\rightarrow\infty}\int^\infty_0I_h^1(a,t)da > \gamma \text{whenever} \int^\infty_0\psi_1(a)da > 0, $ |
and
$ \displaystyle \liminf\limits_{t\rightarrow\infty}I_v^1(t) > \gamma \text{whenever} I_{v_0}^1 > 0, $ |
for all solutions of model (2).
It is evident from the definitions that, if the disease is uniformly strongly persistent, it is also uniformly weakly persistent.
Now we are able to state the main results in this section.
Theorem 5.3. Assume
$ \displaystyle\limsup\limits_{t\rightarrow +\infty}I_v^i(t)=0,\ \limsup\limits_{t\rightarrow +\infty}\int^\infty_0 E_h^i(\tau, t)d\tau=0 \ \;and\;\ \limsup\limits_{t\rightarrow +\infty}\int^\infty_0I_h^i(a, t)da=0, $ |
for
$ \displaystyle \limsup\limits_{t\rightarrow+\infty}\beta_h^1I_v^1(t)\geq\gamma, \limsup\limits_{t\rightarrow+\infty}\int^\infty_0 m_h^1(\tau)E_h^1(\tau, t)d\tau\geq\gamma, \limsup\limits_{t\rightarrow+\infty}\int^\infty_0 \beta_v^1(a)I_h^1(a, t)da\geq\gamma. $ } |
Proof. We argue by contradiction. Assume that strain
$ \displaystyle \limsup\limits_{t\rightarrow+\infty}\beta_h^1I_v^1(t) < \varepsilon, \limsup\limits_{t\rightarrow+\infty}\int^\infty_0 m_h^1(\tau)E_h^1(\tau, t)d\tau < \varepsilon, \limsup\limits_{t\rightarrow+\infty}\int^\infty_0 \beta_v^1(a)I_h^1(a, t)da<\varepsilon. $ |
Following that there exist
$ \displaystyle \beta_h^jI_v^j(t)<\varepsilon,\ \int^\infty_0 m_h^j(\tau)E_h^j(\tau, t)d\tau<\varepsilon,\ \int^\infty_0 \beta_v^j(a)I_h^j(a, t)da<\varepsilon,\ j=1,\cdots,n. $ |
We may assume that the above inequality holds for all
$ \displaystyle S_v'(t) \geq\Lambda_v-n\varepsilon S_v-\mu_v S_v, S_h'(t) \geq\Lambda_h-n\varepsilon S_h-\mu_h S_h. $ |
Exploiting the comparison principle, we have
$ \displaystyle \limsup\limits_{t\rightarrow+\infty}S_v(t)\geq \liminf\limits_{t\rightarrow+\infty}S_v(t)\geq\frac{\Lambda_v}{n\varepsilon+\mu_v},\ \limsup\limits_{t\rightarrow+\infty}S_h(t)\geq \liminf\limits_{t\rightarrow+\infty}S_h(t)\geq\frac{\Lambda_h}{n\varepsilon+\mu_h}. $ |
Since
$ \left\{ B1E(t)=E1h(0,t)=β1hShI1v(t)≥β1hΛhnε+μhI1v(t),dI1v(t)dt≥Λvnε+μv∫∞0β1v(a)I1h(a,t)da−(μv+α1v)I1v(t).\right. $ | (44) |
By using the equations in (7), we can easily obtain the following inequalities on
$ \left\{ B1E(t)≥β1hΛhnε+μhI1v(t),B1I(t)=∫∞0m1h(τ)E1h(τ,t)dτ≥∫t0m1h(τ)B1E(t−τ)π11(τ)dτ,dI1v(t)dt≥Λvnε+μv∫t0β1v(a)B1I(t−a)π12(a)da−(μv+α1v)I1v(t).\right. $ | (45) |
Let us take the Laplace transform of both sides of inequalities (45). Since all functions above are bounded, the Laplace transforms of the functions exist for
$ \displaystyle \hat{K}_1(\lambda)=\int^\infty_0m_h^1(\tau)\pi^1_1(\tau)e^{-\lambda\tau}d\tau, \displaystyle \hat{K}_2(\lambda)=\int^\infty_0\beta_v^1(a)\pi^1_2(a)e^{-\lambda a}da. $ | (46) |
Using the convolution property of the Laplace transform, we obtain the following inequalities for
$ \left\{ ˆB1E(λ)≥β1hΛhnε+μhˆI1v(λ),ˆB1I(λ)≥ˆK1(λ)ˆB1E(λ),λˆI1v(λ)−I1v(0)≥Λvnε+μvˆK2(λ)ˆB1I(λ)−(μv+α1v)ˆI1v(λ).\right. $ | (47) |
Eliminating
$ ˆB1E(λ)≥β1hΛvΛhˆK1(λ)ˆK2(λ)(nε+μv)(nε+μh)(λ+μv+α1v)ˆB1E(λ)+β1hΛh(nε+μh)(λ+μv+α1v)I1v(0). $ | (48) |
This is impossible since
$ \displaystyle \frac{\beta_h^1\Lambda_v\Lambda_h\hat{K}_1(0)\hat{K}_2(0)} {\mu_v\mu_h(\mu_v+\alpha_v^1)}:=\mathcal R^1_0>1, $ |
we can choose
$ \displaystyle \frac{\beta_h^1\Lambda_v\Lambda_h\hat{K}_1(\lambda)\hat{K}_2(\lambda)} {(n\varepsilon+\mu_v)(n\varepsilon+\mu_h)(\lambda+\mu_v+\alpha_v^1)}>1. $ |
The contradiction implies that there exists
$ \displaystyle \limsup\limits_{t\rightarrow+\infty}\beta_h^1I_v^1(t)\geq\gamma, \limsup\limits_{t\rightarrow+\infty}\int^\infty_0 m_h^1(\tau)E_h^1(\tau, t)d\tau\geq\gamma, \limsup\limits_{t\rightarrow+\infty}\int^\infty_0 \beta_v^1(a)I_h^1(a, t)da\geq\gamma. $ |
In addition, the equation for
$ \displaystyle \frac{dI_v^1}{dt}\geq\frac{\Lambda_v\gamma}{n\gamma+\mu_v}-(\mu_v+\alpha_v^1)I_v^1,$ |
which implies a lower bound for
Next, we claim that system (2) has a global compact attractor
$ Ψ(t;Sv0,I1v0,⋯,Inv0,Sh0,φ1(⋅),ψ1(⋅),⋯,φn(⋅),ψn(⋅))=(Sv(t),I1v(t),⋯,Inv(t),Sh(t),E1h(τ,t),I1h(a,t),⋯,Enh(τ,t),Inh(a,t)). $ |
Definition 5.4. A set
Theorem 5.5. Under the hypothesis of Theorem 5.3, there exists
$ \displaystyle \Psi(t, x^0)\subseteq\mathfrak{T} \text{for every } x^0\in\mathfrak{T},\ \forall t\geq0. $ |
Proof. We split the solution semiflow into two components. For an initial condition
$ ˆΨ(t;Sv0,I1v0,⋯,Inv0,Sh0,φ1(⋅),ψ1(⋅),⋯,φn(⋅),ψn(⋅))=(0,0,⋯,0,0,ˆE1h(τ,t),ˆI1h(a,t),⋯,ˆEnh(τ,t),ˆInh(a,t)), $ | (49) |
$ ˜Ψ(t;Sv0,I1v0,⋯,Inv0,Sh0,φ1(⋅),ψ1(⋅),⋯,φn(⋅),ψn(⋅))=(Sv(t),I1v(t),⋯,Inv(t),Sh(t),˜E1h(τ,t),˜I1h(a,t),⋯,˜Enh(τ,t),˜Inh(a,t)), $ | (50) |
and
$ \left\{ ∂ˆEjh∂t+∂ˆEjh∂τ=−(μh+mjh(τ))ˆEjh(τ,t),ˆEjh(0,t)=0,ˆEjh(τ,0)=φj(τ),\right. $ | (51) |
$ \left\{ ∂ˆIjh∂t+∂ˆIjh∂a=−(μh+αjh(a)+rjh(a))ˆIjh(a,t),ˆIjh(0,t)=0,ˆIjh(a,0)=ψj(a),\right. $ | (52) |
and
$ \left\{ ∂˜Ejh∂t+∂˜Ejh∂τ=−(μh+mjh(τ))˜Ejh(τ,t),˜Ejh(0,t)=βjhShIjv,˜Ejh(τ,0)=0,\right. $ | (53) |
$ \left\{ ∂˜Ijh∂t+∂˜Ijh∂a=−(μh+αjh(a)+rjh(a))˜Ijh(a,t),˜Ijh(0,t)=∫∞0mjh(τ)˜Ejh(τ,t)dτ,˜Ijh(a,0)=0.\right. $ | (54) |
We can easily see that system (51) and (52) are decoupled from the remaining equations. Using the formula (7) to integrate along the characteristic lines, we obtain
$
\begin{array}{ll} \displaystyle \hat{E}_h^j(\tau, t)=\left\{\begin{array}{ll} \displaystyle 0,\mbox{ } & t>\tau,\\[2ex] \displaystyle \varphi_j(\tau-t)\frac{\pi^j_1(\tau)}{\pi^j_1(\tau-t)},\mbox{ } & t<\tau, \end{array}\right. \end{array} $ |
(55) |
$
\begin{array}{ll} \displaystyle \hat{I}_h^j(a, t)=\left\{\begin{array}{ll} \displaystyle 0,\mbox{ } & t>a,\\[2ex] \displaystyle \psi_j(a-t)\frac{\pi^j_2(a)}{\pi^j_2(a-t)},\mbox{ } & t<a. \end{array}\right.\\[2ex] \end{array} $ |
(56) |
Integrating
$ \displaystyle \int^\infty_t \varphi_j(\tau-t)\frac{\pi^j_1(\tau)}{\pi^j_1(\tau-t)}d\tau=\int^\infty_0 \varphi_j(\tau)\frac{\pi^j_1(t+\tau)}{\pi^j_1(\tau)}d\tau\leq e^{-\mu_h t}\int^\infty_0 \varphi_j(\tau)d\tau\rightarrow 0 $ |
as
$ \displaystyle \int^\infty_t \psi_j(a-t)\frac{\pi^j_2(a)}{\pi^j_2(a-t)}da=\int^\infty_0 \psi_j(a)\frac{\pi^j_2(t+a)}{\pi^j_2(a)}da\leq e^{-\mu_h t}\int^\infty_0 \psi_j(a)da \rightarrow 0 $ |
as
In the following we need to show
$ ˜Ψ(t,x0)=(Sv(t),I1v(t),⋯,Inv(t),Sh(t),˜E1h(τ,t),˜I1h(a,t),⋯,˜Enh(τ,t),˜Inh(a,t)) $ |
is a compact family of functions for that fixed
$ \{\tilde{\Psi}(t, x^0)|x^0\in \Omega_0, t-\text{fixed}\}\subseteq \Omega_0, $ |
and, therefore, it is bounded. Thus, we have established the boundedness of the set. To show that
$
\begin{array}{ll} \displaystyle \tilde{E}_h^j(\tau, t)=\left\{\begin{array}{ll} \displaystyle \tilde{B}_E^j(t-\tau)\pi^j_1(\tau),\mbox{ } & t>\tau,\\[2ex] \displaystyle 0,\mbox{ } & t<\tau,\\[2ex] \end{array}\right.\\[2ex] \displaystyle \tilde{I}_h^j(a, t)=\left\{\begin{array}{ll} \displaystyle \tilde{B}_I^j(t-a)\pi^j_2(a),\mbox{ } & t>a,\\[2ex] \displaystyle 0,\mbox{ } & t<a, \end{array}\right. \end{array} $ |
(57) |
where
$ ˜BjE(t)=βjhSh(t)Ijv(t),˜BjI(t)=∫∞0mjh(τ)˜Ejh(τ,t)dτ=∫t0mjh(τ)˜BjE(t−τ)πj1(τ)dτ. $ | (58) |
$ ˜BjE(t)≤k1. $ |
Therefore, we obtain
$ ˜BjI(t)=∫t0mjh(τ)˜BjE(t−τ)πj1(τ)dτ≤k2∫t0˜BjE(t−τ)dτ=k2∫t0˜BjE(τ)dτ≤k1k2t. $ |
Next, we differentiate (57) with respect to
$
\begin{array}{ll} \displaystyle \bigg|\frac{\partial\tilde{E}_h^j(\tau, t)}{\partial\tau}\bigg|\leq\left\{\begin{array}{ll} |(\tilde{B}_E^j(t-\tau))'|\pi^j_1(\tau)+\tilde{B}_E^j(t-\tau)|(\pi^j_1(\tau))'|,\mbox{} & t>\tau,\\[2ex] \displaystyle 0,\mbox{ } & t<\tau, \end{array}\right.\\[2ex] \displaystyle \bigg|\frac{\partial\tilde{I}_h^j(a, t)}{\partial a}\bigg|\leq\left\{\begin{array}{ll} |(\tilde{B}_I^j(t-a))'|\pi^j_2(a)+\tilde{B}_I^j(t-a)|(\pi^j_2(a))'|,\mbox{} & t>a,\\[2ex] \displaystyle 0,\mbox{ } & t<a. \end{array}\right.\\[2ex] \end{array} $ |
We see that
$ (˜BjE(t))′=βjh(S′h(t)Ijv(t)+Sh(t)(Ijv(t))′),(˜BjI(t))′=mjh(t)˜BjE(0)πj1(t)+∫t0mjh(τ)(˜BjE(t−τ))′πj1(τ)dτ. $ | (59) |
Taking an absolute value and bounding all terms, we can rewrite the above equality as the following inequality:
$ |(˜BjE(t))′|≤k3,|(˜BjI(t))′|≤k4. $ |
Putting all these bounds together, we have
$ ∥∂τ˜Ejh∥≤k3∫∞0πj1(τ)dτ+k1(μh+ˉmh)∫∞0πj1(τ)dτ<b1,∥∂a˜Ijh∥≤k4∫∞0πj2(a)da+k1k2(μh+ˉαh+ˉrh)t∫∞0πj2(a)da<b2, $ |
where
$ ∫∞0|˜Ejh(τ+h,t)−˜Ejh(τ,t)|dτ≤∥∂τ˜Ejh∥|h|≤b1|h|,∫∞0|˜Ijh(a+h,t)−˜Ijh(a,t)|da≤∥∂a˜Ijh∥|h|≤b2|h|. $ |
Thus, the integral can be made arbitrary small uniformly in the family of functions. That establishes the second condition of the Frechet-Kolmogorov Theorem. We conclude that the family is asymptotically smooth.
(3) means that the semigroup
Now we have all components to establish the uniform strong persistence. The next proposition states the uniform strong persistence of
Theorem 5.6. Under the hypothesis of Theorem 5.3 strain one is uniformly strongly persistent for all initial conditions that belong to
$ \displaystyle \liminf\limits_{t\rightarrow+\infty}\beta_h^1I_v^1(t)\geq\gamma, \liminf\limits_{t\rightarrow+\infty}\int^\infty_0 m_h^1(\tau)E_h^1(\tau, t)d\tau\geq\gamma, \liminf\limits_{t\rightarrow+\infty}\int^\infty_0 \beta_v^1(a)I_h^1(a, t)da\geq\gamma. $ } |
Proof. We apply Theorem 2.6 in [19]. We consider the solution semiflow
$ \left. ρ1(Ψ(t,x0))=β1hI1v(t),ρ2(Ψ(t,x0))=∫∞0m1h(τ)˜E1h(τ,t)dτ,ρ3(Ψ(t,x0))=∫∞0β1v(a)˜I1h(a,t)da.\right. $ |
Theorem 5.3 implies that the semiflow is uniformly weakly
$\displaystyle \beta_h^1I_v^1(t)= \beta_h^1I_v^1(s)e^{-(\mu_v+\alpha_v^1)(t-s)},$ |
$ ∫∞0m1h(τ)˜E1h(τ,t)dτ=˜B1I(t)=∫t0m1h(τ)˜B1E(t−τ)π11(τ)dτ≥k1∫t0˜B1E(t−τ)dτ=k1∫t0˜B1E(τ)dτ=k1∫t0β1hSh(τ)I1v(τ)dτ≥k2∫t0I1v(τ)dτ $ |
$ =k2∫t0I1v(s)e−(μv+α1v)(τ−s)dτ=k2I1v(s)μv+α1ve(μv+α1v)s(1−e−(μv+α1v)t),∫∞0β1v(a)˜I1h(a,t)da=∫t0β1v(a)˜B1I(t−a)π12(a)da≥k3∫t0˜B1I(t−a)da=k3∫t0˜B1I(a)da≥k2k3I1v(s)μv+α1ve(μv+α1v)s∫t0(1−e−(μv+α1v)a)da, $ |
for any
$\beta_h^1I_v^1(t)>0, \int^\infty_0 m_h^1(\tau)\tilde{E}_h^1(\tau, t)d\tau>0, \int^\infty_0\beta_v^1(a)\tilde{I}_h^1(a, t)da>0$ |
for all
$ \displaystyle \liminf\limits_{t \rightarrow +\infty}\beta_h^1I_v^1(t)\geq\gamma, \liminf\limits_{t \rightarrow +\infty}\int^\infty_0 m_h^1(\tau)E_h^1(\tau, t)d\tau\geq\gamma, \liminf\limits_{t \rightarrow +\infty}\int^\infty_0 \beta_v^1(a)I_h^1(a, t)da\geq\gamma. $ |
According to Theorem 5.6, we obtain that for all initial conditions that belong to
Theorem 5.7. Under the hypothesis of Theorem 5.3,
$ \vartheta\leq S_v(t)\leq M, \vartheta\leq S_h(t)\leq M,$ |
and
$ \displaystyle\vartheta\leq \beta_h^1I_v^1(t)\leq M,\ \displaystyle\vartheta\leq \int^\infty_0 m_h^1(\tau)E_h^1(\tau, t)d\tau\leq M,\ \displaystyle\vartheta\leq \int^\infty_0 \beta_v^1(a)I_h^1(a, t)da\leq M, $ |
for each orbit
In this section we mainly state the main result of the paper.
Theorem 6.1. Assume
Proof. From Theorem 4.1 we know that the endemic equilibrium
$ \displaystyle \varepsilon_1\leq\frac{I_v^1}{I_v^{1^*}}\leq M_1, \varepsilon_1\leq \frac{E_h^1(\tau, t)}{E_h^{1^*}(\tau)}\leq M_1, \varepsilon_1\leq \frac{I_h^1(a, t)}{I_h^{1^*}(a)}\leq M_1 $ |
for any solution in
After extensive computation, differentiating
$ dU1(t)dt=1S1∗vq1(0)∫∞0m1h(τ)π11(τ)dτ(1−S1∗vSv)[S1∗v∫∞0β1v(a)I1∗h(a)da+μvS1∗v−Sv∫∞0β1v(a)I1h(a,t)da−μvSv−n∑i=2Sv∫∞0βiv(a)Iih(a,t)da]=−μv(Sv−S1∗v)2S1∗vSvq1(0)∫∞0m1h(τ)π11(τ)dτ+1q1(0)∫∞0m1h(τ)π11(τ)dτ∫∞0β1v(a)I1∗h(a)(1−S1∗vSv−SvI1h(a,t)S1∗vI1∗h(a)+I1h(a,t)I1∗h(a))da−n∑i=2Sv∫∞0βiv(a)Iih(a,t)da−S1∗v∫∞0βiv(a)Iih(a,t)daS1∗vq1(0)∫∞0m1h(τ)π11(τ)dτ; $ | (60) |
$ dU12(t)dt=(1−I1∗vI1v)(Sv∫∞0β1v(a)I1h(a,t)da−S1∗v∫∞0β1v(a)I1∗h(a)daI1∗vI1v)S1∗vq1(0)∫∞0m1h(τ)π11(τ)dτ=(1−I1∗vI1v)S1∗v∫∞0β1v(a)I1∗h(a)(SvI1h(a,t)S1∗vI1∗h(a)−I1vI1∗v)daS1∗vq1(0)∫∞0m1h(τ)π11(τ)dτ=∫∞0β1v(a)I1∗h(a)(SvI1h(a,t)S1∗vI1∗h(a)−I1vI1∗v−SvI1h(a,t)I1∗vS1∗vI1∗h(a)I1v+1)daq1(0)∫∞0m1h(τ)π11(τ)dτ; $ | (61) |
$ dUi2(t)dt=Sv∫∞0βiv(a)Iih(a,t)da−(μv+αiv)IivS1∗vq1(0)∫∞0m1h(τ)π11(τ)dτ; $ | (62) |
$ dU3(t)dt=(1−S1∗hSh)(E1∗h(0)+μhS1∗h−E1h(0,t)−μhSh−n∑i=2βihShIiv)=−μh(Sh−S1∗h)2Sh+(E1∗h(0)−E1h(0,t)−S1∗hShE1∗h(0)+S1∗hShE1h(0,t))−n∑i=2(Eih(0,t)−βihS1∗hIiv), $ | (63) |
and
$ dU14(t)dt=1R10∫∞0p1(τ)E1∗h(τ)f′(E1h(τ,t)E1∗h(τ))1E1∗h(τ)∂E1h(τ,t)∂tdτ=−1R10∫∞0p1(τ)E1∗h(τ)f′(E1h(τ,t)E1∗h(τ))1E1∗h(τ)(∂E1h(τ,t)∂τ+(μh+m1h(τ))E1h(τ,t))dτ=−1R10∫∞0p1(τ)E1∗h(τ)df(E1h(τ,t)E1∗h(τ))=−1R10[p1(τ)E1∗h(τ)f(E1h(τ,t)E1∗h(τ))|∞0−∫∞0f(E1h(τ,t)E1∗h(τ))d(p1(τ)E1∗h(τ))]=1R10[p1(0)E1∗h(0)f(E1h(0,t)E1∗h(0))−Δ1q1(0)∫∞0m1h(τ)E1∗h(τ)f(E1h(τ,t)E1∗h(τ))dτ]=E1∗h(0)f(E1h(0,t)E1∗h(0))−∫∞0m1h(τ)E1∗h(τ)f(E1h(τ,t)E1∗h(τ))dτ∫∞0m1h(τ)π11(τ)dτ=E1h(0,t)−E1∗h(0)−E1∗h(0)lnE1h(0,t)E1∗h(0)−∫∞0m1h(τ)E1∗h(τ)f(E1h(τ,t)E1∗h(τ))dτ∫∞0m1h(τ)π11(τ)dτ. $ | (64) |
The above equality follows from (24) and the fact
$ p′1(τ)E1∗h(τ)+p1(τ)(E1∗h(τ))′=[−Δ1q1(0)m1h(τ)+(μh+m1h(τ))p1(τ)]E1∗h(τ)−p1(τ)(μh+m1h(τ))E1∗h(τ)=−Δ1q1(0)m1h(τ)E1∗h(τ). $ |
We also have
$ q′1(a)I1∗h(a)+q1(a)(I1∗h(a))′=[−β1v(a)+(μh+α1h(a)+r1h(a))q1(a)]I1∗h(a)−q1(a)(μh+α1h(a)+r1h(a))I1∗h(a)=−β1v(a)I1∗h(a). $ |
Similar to the differentiation of
$ dU15(t)dt=1q1(0)∫∞0m1h(τ)π11(τ)dτ∫∞0q1(a)I1∗h(a)f′(I1h(a,t)I1∗h(a))1I1∗h(a)∂I1h(a,t)∂tda=1q1(0)∫∞0m1h(τ)π11(τ)dτ∫∞0q1(a)I1∗h(a)df(I1h(a,t)I1∗h(a))=q1(0)I1∗h(0)f(I1h(0,t)I1∗h(0))−∫∞0β1v(a)I1∗h(a)f(I1h(a,t)I1∗h(a))daq1(0)∫∞0m1h(τ)π11(τ)dτ=∫∞0m1h(τ)E1∗h(τ)(I1h(0,t)I1∗h(0)−1−lnI1h(0,t)I1∗h(0))dτ∫∞0m1h(τ)π11(τ)dτ−∫∞0β1v(a)I1∗h(a)f(I1h(a,t)I1∗h(a))daq1(0)∫∞0m1h(τ)π11(τ)dτ. $ | (65) |
Noting that (43), we differentiate the last two terms with respect to
$ dUi4(t)dt=1Δiq1(0)∫∞0m1h(τ)π11(τ)dτ∫∞0pi(τ)∂Eih(τ,t)∂tdτ=−1Δiq1(0)∫∞0m1h(τ)π11(τ)dτ∫∞0pi(τ)[∂Eih(τ,t)∂τ+(μh+mih(τ))Eih(τ,t)]dτ=−∫∞0pi(τ)dEih(τ,t)+∫∞0(μh+mih(τ))pi(τ)Eih(τ,t)dτΔiq1(0)∫∞0m1h(τ)π11(τ)dτ=−pi(τ)Eih(τ,t)|∞0−∫∞0Eih(τ,t)dpi(τ)+∫∞0(μh+mih(τ))pi(τ)Eih(τ,t)dτΔiq1(0)∫∞0m1h(τ)π11(τ)dτ=pi(0)Eih(0,t)−Δiqi(0)∫∞0mih(τ)Eih(τ,t)dτΔiq1(0)∫∞0m1h(τ)π11(τ)dτ=Ri0Eih(0,t)Δiq1(0)∫∞0m1h(τ)π11(τ)dτ−qi(0)Iih(0,t)q1(0)∫∞0m1h(τ)π11(τ)dτ=bib1Eih(0,t)−qi(0)Iih(0,t)q1(0)∫∞0m1h(τ)π11(τ)dτ. $ | (66) |
Similarly, we have
$ dUi5(t)dt=−∫∞0qi(a)[∂Iih(a,t)∂a+(μh+αih(a)+rih(a))Iih(a,t)]daq1(0)∫∞0m1h(τ)π11(τ)dτ=qi(0)Iih(0,t)q1(0)∫∞0m1h(τ)π11(τ)dτ−∫∞0βiv(a)Iih(a,t)daq1(0)∫∞0m1h(τ)π11(τ)dτ. $ | (67) |
Adding all five components of the Lyapunov function, we have
$ \displaystyle U'(t)=U^1+U^2, $ |
where
$ U1(t)=−μv(Sv−S1∗v)2S1∗vSvq1(0)∫∞0m1h(τ)π11(τ)dτ+∫∞0β1v(a)I1∗h(a)(1−S1∗vSv−SvI1h(a,t)S1∗vI1∗h(a)+I1h(a,t)I1∗h(a))daq1(0)∫∞0m1h(τ)π11(τ)dτ+∫∞0β1v(a)I1∗h(a)(SvI1h(a,t)S1∗vI1∗h(a)−I1vI1∗v−SvI1h(a,t)I1∗vS1∗vI1∗h(a)I1v+1)daq1(0)∫∞0m1h(τ)π11(τ)dτ−μh(Sh−S1∗h)2Sh+(E1∗h(0)−E1h(0,t)−S1∗hShE1∗h(0)+S1∗hShE1h(0,t)) $ |
$ +E1h(0,t)−E1∗h(0)−E1∗h(0)lnE1h(0,t)E1∗h(0)−∫∞0m1h(τ)E1∗h(τ)f(E1h(τ,t)E1∗h(τ))dτ∫∞0m1h(τ)π11(τ)dτ+∫∞0m1h(τ)E1∗h(τ)(I1h(0,t)I1∗h(0)−1−lnI1h(0,t)I1∗h(0))dτ∫∞0m1h(τ)π11(τ)dτ−∫∞0β1v(a)I1∗h(a)f(I1h(a,t)I1∗h(a))daq1(0)∫∞0m1h(τ)π11(τ)dτ, $ | (68) |
and
$ U2(t)=−n∑i=2Sv∫∞0βiv(a)Iih(a,t)da−S1∗v∫∞0βiv(a)Iih(a,t)daS1∗vq1(0)∫∞0m1h(τ)π11(τ)dτ+n∑i=2Sv∫∞0βiv(a)Iih(a,t)da−(μv+αiv)IivS1∗vq1(0)∫∞0m1h(τ)π11(τ)dτ−n∑i=2(Eih(0,t)−βihS1∗hIiv)+n∑i=2(bib1Eih(0,t)−qi(0)Iih(0,t)q1(0)∫∞0m1h(τ)π11(τ)dτ)+n∑i=2(qi(0)Iih(0,t)q1(0)∫∞0m1h(τ)π11(τ)dτ−∫∞0βiv(a)Iih(a,t)daq1(0)∫∞0m1h(τ)π11(τ)dτ). $ | (69) |
Canceling terms, (68) can be simplified as
$ U1(t)=−μv(Sv−S1∗v)2S1∗vSvq1(0)∫∞0m1h(τ)π11(τ)dτ−μh(Sh−S1∗h)2Sh+∫∞0β1v(a)I1∗h(a)(3−S1∗vSv−I1vI1∗v−SvI1h(a,t)I1∗vS1∗vI1∗h(a)I1v+lnI1h(a,t)I1∗h(a))daq1(0)∫∞0m1h(τ)π11(τ)dτ+E1∗h(0)(−S1∗hSh+S1∗hE1h(0,t)ShE1∗h(0)−lnE1h(0,t)E1∗h(0))+∫∞0m1h(τ)E1∗h(τ)(I1h(0,t)I1∗h(0)−E1h(τ,t)E1∗h(τ)+lnE1h(τ,t)E1∗h(τ)I1∗h(0)I1h(0,t))dτ∫∞0m1h(τ)π11(τ)dτ. $ | (70) |
Direct computation yields that
$ ∫∞0m1h(τ)E1∗h(τ)(I1h(0,t)I1∗h(0)−E1h(τ,t)E1∗h(τ))dτ=I1h(0,t)I1∗h(0)∫∞0m1h(τ)E1∗h(τ)dτ−∫∞0m1h(τ)E1h(τ,t)dτ=I1h(0,t)I1∗h(0)I1∗h(0)−I1h(0,t)=0,∫∞0m1h(τ)E1∗h(τ)(E1h(τ,t)E1∗h(τ)I1∗h(0)I1h(0,t)−1)=I1∗h(0)I1h(0,t)∫∞0m1h(τ)E1h(τ,t)dτ−∫∞0m1h(τ)E1∗h(τ)dτ=I1∗h(0)I1h(0,t)I1h(0,t)−I1∗h(0)=0. $ | (71) |
By using (71), (70) can be simplified as
$ U1(t)=−μv(Sv−S1∗v)2S1∗vSvq1(0)∫∞0m1h(τ)π11(τ)dτ−μh(Sh−S1∗h)2Sh−∫∞0β1v(a)I1∗h(a)[f(S1∗vSv)+f(I1vI1∗v)+f(SvI1h(a,t)I1∗vS1∗vI1∗h(a)I1v)]daq1(0)∫∞0m1h(τ)π11(τ)dτ−1∫∞0m1h(τ)π11(τ)dτ∫∞0m1h(τ)E1∗h(τ)f(E1h(τ,t)I1∗h(0)E1∗h(τ)I1h(0,t))dτ+E1∗h(0)[−f(S1∗hSh)+f(S1∗hE1h(0,t)ShE1∗h(0))]. $ | (72) |
Noting that
$ \displaystyle \frac{S_h^{1^*}E_h^1(0,t)}{S_hE_h^{1^*}(0)}=\frac{S_h^{1^*}\beta_h^1 S_h I_v^1}{S_h\beta_h^1 S_h^{1^*} I_v^{1^*}}=\frac{I_v^1}{I_v^{1^*}}. $ | (73) |
Furthermore, from (25) and (42) we have
$ ∫∞0β1v(a)I1∗h(a)f(I1vI1∗v)daq1(0)∫∞0m1h(τ)π11(τ)dτ=∫∞0β1v(a)I1∗h(a)daq1(0)∫∞0m1h(τ)π11(τ)dτf(I1vI1∗v)=I1∗h(0)∫∞0m1h(τ)π11(τ)dτf(I1vI1∗v)=E1∗h(0)f(I1vI1∗v). $ | (74) |
Finally, simplifying (72) with (73) and (74), we obtain
$ U1(t)=−μv(Sv−S1∗v)2S1∗vSvq1(0)∫∞0m1h(τ)π11(τ)dτ−μh(Sh−S1∗h)2Sh−∫∞0β1v(a)I1∗h(a)[f(S1∗vSv)+f(SvI1h(a,t)I1∗vS1∗vI1∗h(a)I1v)]daq1(0)∫∞0m1h(τ)π11(τ)dτ−∫∞0m1h(τ)E1∗h(τ)f(E1h(τ,t)I1∗h(0)E1∗h(τ)I1h(0,t))dτ∫∞0m1h(τ)π11(τ)dτ−E1∗h(0)f(S1∗hSh). $ | (75) |
Canceling terms, (69) can be simplified as
$ U2(t)=n∑i=2[(bib1−1)Eih(0,t)+(βihS1∗h−μv+αivS1∗vq1(0)∫∞0m1h(τ)π11(τ)dτ)Iiv]. $ | (76) |
Simplifying (76) with (25), we get
$ U2(t)=n∑i=2[(bib1−1)Eih(0,t)+βihΛh(μv+Λhb1)μh(μvR10+Λhb1)(1−R10biRi0b1)Iiv]. $ | (77) |
Hence, by using (75) and (77) we obtain
$ U′(t)=−μv(Sv−S1∗v)2S1∗vSvq1(0)∫∞0m1h(τ)π11(τ)dτ−μh(Sh−S1∗h)2Sh−∫∞0β1v(a)I1∗h(a)[f(S1∗vSv)+f(SvI1h(a,t)I1∗vS1∗vI1∗h(a)I1v)]daq1(0)∫∞0m1h(τ)π11(τ)dτ−∫∞0m1h(τ)E1∗h(τ)f(E1h(τ,t)I1∗h(0)E1∗h(τ)I1h(0,t))dτ∫∞0m1h(τ)π11(τ)dτ−E1∗h(0)f(S1∗hSh)+n∑i=2[(bib1−1)Eih(0,t)+βihΛh(μv+Λhb1)μh(μvR10+Λhb1)(1−R10biRi0b1)Iiv]. $ | (78) |
Since
$ \displaystyle \Theta_2= \bigg\{(S_v, I_v^1,\cdots,I_v^n, S_h, E_h^1, I_h^1,\cdots,E_h^n, I_h^n)\in \Omega_0\bigg|U'(t)=0\bigg\}. $ |
We want to show that the largest invariant set in
$ \displaystyle \frac{I_h^1(a, t)I_v^{1^*}} {I_h^{1^*}(a)I_v^1}=1, \frac{E_h^1(\tau, t)I_h^{1^*}(0)}{E_h^{1^*}(\tau)I_h^1(0, t)}=1. $ | (79) |
Thus, we obtain
$ \displaystyle \frac{I_h^1(a, t)} {I_h^{1^*}(a)}=\frac{I_v^1(t)} {I_v^{1^*}}. $ | (80) |
It is obvious that the left term
$ \displaystyle I_v^1=I_v^{1^*}g(t). $ | (81) |
It follows from (2) we can also obtain
$ I1′v(t)=Sv∫∞0β1v(a)I1h(a,t)da−(μv+α1v)I1v,=S1∗v∫∞0β1v(a)I1∗h(a)g(t)da−(μv+α1v)I1v,=g(t)S1∗v∫∞0β1v(a)I1∗h(a)da−(μv+α1v)I1v,=g(t)(μv+α1v)I1∗v−(μv+α1v)I1v,=(μv+α1v)(I1∗vg(t)−I1v)=0. $ | (82) |
Therefore, we can get
$I_v^1=I_v^{1^*}.$ |
Subsequently, it follows from (80) we have
$I_h^1(a,t)=I_h^{1^*}(a).$ |
Specially, when
$ E_h^1(\tau, t)=E_h^{1^*}(\tau). $ |
Since
In this paper, we formulate a multi-strain partial differential equation (PDE) model describing the transmission dynamics of a vector-borne disease that incorporates both incubation age of the exposed hosts and infection age of the infectious hosts, respectively. The formulas for the reproduction number
The main purpose in this article is to extend the competitive exclusion result established by Bremermann and Thieme in [2], who using a multiple-strain ODE model derives that if multiple strains circulate in the population only the strain with the largest reproduction number persists, the strains with suboptimal reproduction numbers are eliminated. The proof of the competitive exclusion principle is based on the proof of the global stability of the single-strain equilibrium
$ \displaystyle\frac{\mathcal R^i_0}{\mathcal R^1_0}<\displaystyle\frac{b_i}{b_1}<1, i\neq1. $ | (83) |
Our results do not include the case of
$ \max\{\mathcal R^1_0,\cdots,\mathcal R^n_0\}=\mathcal R^1_0=\mathcal R^2_0=\cdots=\mathcal R^m_0>1, m\leq n, m\geq 2. $ |
According to Proposition 3.3 in [16], where the authors proved and simulated by data that if there is no mutation between two strains and if the basic reproduction numbers corresponding to the two strains are the same, then for the two strain epidemic model there exist many coexistence equilibria, we guess that the coexistence of multi-strains may occur and it is impossible for competitive exclusion in this case.
From the expression (6) of the basic reproduction number
${r_i}<{r_1},$ |
where
$r_j=\frac{\beta_h^j}{\mu_v+\alpha^j_v},~\text{for} ~~j=1,2, \cdots, n.$ |
$ \mathcal R^i_0<\mathcal R^1_0, {r_i}<{r_1}, {b_i}<{b_1}, i\neq1. $ |
Recall that
Y. Dang is supported by NSF of Henan Province 142300410350, Z. Qiu's research is supported by NSFC grants No. 11671206 and No. 11271190 and X. Li is supported by NSF of China grant 11271314 and Plan For Scientific Innovation Talent of Henan Province 144200510021. We are very grateful to two anonymous referees for their careful reading, valuable comments and helpful suggestions, which help us to improve the presentation of this work significantly.
[1] |
Obeso J, Rodriguez-Oroz M, Goetz C, et al. (2010) Missing pieces in the Parkinson's disease puzzle. Nat Med 16: 653–661. doi: 10.1038/nm.2165
![]() |
[2] | Musgrove R, Helwig M, Bae E, et al. (2019) Oxidative stress in vagal neurons promotes parkinsonian pathology and intercellular α-synuclein transfer. J Clin Invest 130: 3738–3753. |
[3] |
Lill C (2016) Genetics of Parkinson's disease. Mol Cell Probes 30: 386–396. doi: 10.1016/j.mcp.2016.11.001
![]() |
[4] |
Reale M, Iarlori C, Thomas A, et al. (2009) Peripheral cytokines profile in Parkinson's disease. Brain Behav Immun 23: 55–63. doi: 10.1016/j.bbi.2008.07.003
![]() |
[5] |
Dias V, Junn E, Mouradian M (2013) The role of oxidative stress in Parkinson's disease. J Parkinsons Dis 3: 461–491. doi: 10.3233/JPD-130230
![]() |
[6] |
Taylor J, Main B, Crack P (2013) Neuroinflammation and oxidative stress: co-conspirators in the pathology of Parkinson's disease. Neurochem Int 62: 803–819. doi: 10.1016/j.neuint.2012.12.016
![]() |
[7] | Kalia L, Lang A (2015) Parkinson's disease. Lancet 386 :896–912. |
[8] | Valdes P, Schneider B (2016) Gene therapy: A promising approach for neuroprotection in Parkinson's disease? Front Neuroanat 10: 123. |
[9] |
Ferrer I, Lopez-Gonzalez I, Carmona M, et al. (2012) Neurochemistry and the non-motor aspects of PD. Neurobiol Dis 46: 508–526. doi: 10.1016/j.nbd.2011.10.019
![]() |
[10] |
Scherzer C, Grass J, Liao Z, et al. (2008) GATA transcription factors directly regulate the Parkinson's disease-linked gene α-synuclein. Proc Natl Acad Sci USA 105: 10907–10912. doi: 10.1073/pnas.0802437105
![]() |
[11] |
Miller D, O'Callaghan J (2015) Biomarkers of Parkinson's disease: Present and future. Metabolism 64: S40–S46. doi: 10.1016/j.metabol.2014.10.030
![]() |
[12] |
Harraz M, Dawson T, Dawson V (2011) MicroRNAs in Parkinson's disease. J Chem Neuroanat 42: 127–130. doi: 10.1016/j.jchemneu.2011.01.005
![]() |
[13] | Gasser T (2009) Genomic and proteomic biomarkers for Parkinson disease. Neurology 72: 27–31. |
[14] |
Haque M, Thomas K, D'Souza C, et al. (2008) Cytoplasmic Pink1 activity protects neurons from dopaminergic neurotoxin MPTP. Proc Natl Acad Sci USA 105: 1716–1721. doi: 10.1073/pnas.0705363105
![]() |
[15] |
Valente E, Bentivoglio A, Dixon P, et al. (2001) Localization of a novel locus for autosomal recessive early-onset parkinsonism, PARK6, on human chromosome 1p35–p36. Am J Hum Genet 68: 895–900. doi: 10.1086/319522
![]() |
[16] |
Kitada T, Asakawa S, Hattori N, et al. (1998) Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 392: 605–608. doi: 10.1038/33416
![]() |
[17] | McKeith I (2004) Dementia with Lewy bodies. Dialogues Clin Neurosci 3: 333–341. |
[18] | Farrer M (2006) Genetics of Parkinson disease: paradigm shifts and future prospects. Nat Rev Genet 7: 306–318. |
[19] |
Funayama M, Hasegawa K, Kowa H, et al. (2002) A new locus for Parkinson's disease (PARK8) maps to chromosome 12p11.2–q13.1. Ann Neurol 51: 296–301. doi: 10.1002/ana.10113
![]() |
[20] |
Mencacci N, Isaias I, Reich M, et al. (2014) Parkinson's disease in GTP cyclohydrolase 1 mutation carriers. Brain 137: 2480–2492. doi: 10.1093/brain/awu179
![]() |
[21] |
Olgiati S, Quadri M, Fang M, et al. (2016) DNAJC6 mutations associated with early-onset Parkinson's disease. Ann Neurol 79: 244–256. doi: 10.1002/ana.24553
![]() |
[22] |
Jiang F, Wu Q, Sun S, et al. (2019) Identification of potential diagnostic biomarkers for Parkinson's disease. FEBS Open Bio 9: 1460–1468. doi: 10.1002/2211-5463.12687
![]() |
[23] |
Wang Q, Zhang Y, Wang M, et al. (2019) The landscape of multiscale transcriptomic networks and key regulators in Parkinson's disease. Nat Commun 10: 5234. doi: 10.1038/s41467-019-13144-y
![]() |
[24] |
Chi J, Xie Q, Jia J, et al. (2018) Integrated analysis and identification of novel biomarkers in Parkinson's disease. Front Aging Neurosci 10: 178. doi: 10.3389/fnagi.2018.00178
![]() |
[25] |
Kong P, Lei P, Zhang S, et al. (2018) Integrated microarray analysis provided a new insight of the pathogenesis of Parkinson's disease. Neurosci Lett 662: 51–58. doi: 10.1016/j.neulet.2017.09.051
![]() |
[26] |
Wang C, Chen L, Yang Y, et al. (2019) Identification of potential blood biomarkers for Parkinson's disease by gene expression and DNA methylation data integration analysis. Clin Epigenetics 11: 24. doi: 10.1186/s13148-019-0621-5
![]() |
[27] |
George G, Singh S, Lokappa S, et al. (2019). Gene co-expression network analysis for identifying genetic markers in Parkinson's disease-a three-way comparative approach. Genomics 111: 819–830. doi: 10.1016/j.ygeno.2018.05.005
![]() |
[28] |
Kim J, Inoue K, Ishii J, et al. (2007) A MicroRNA feedback circuit in midbrain dopamine neurons. Science 317: 1220–1224. doi: 10.1126/science.1140481
![]() |
[29] |
Wang G, van der Walt J, Mayhew G, et al. (2008) Variation in the miRNA-433 binding site of FGF20 confers risk for Parkinson disease by overexpression of alpha-synuclein. Am J Hum Genet 82: 283–289. doi: 10.1016/j.ajhg.2007.09.021
![]() |
[30] |
Mouradian M (2012) MicroRNAs in Parkinson's disease. Neurobiol Dis 46: 279–284. doi: 10.1016/j.nbd.2011.12.046
![]() |
[31] |
Junn E, Lee K, Jeong B, et al. (2009) Mouradian Repression of alpha-synuclein expression and toxicity by microRNA-7. Proc Natl Acad Sci USA 106: 13052–13057. doi: 10.1073/pnas.0906277106
![]() |
[32] |
Doxakis E (2010) Post-transcriptional regulation of alpha-synuclein expression by mir-7 and mir-153. Biol Chem 285: 12726–12734. doi: 10.1074/jbc.M109.086827
![]() |
[33] |
van der Walt J, Noureddine M, Kittappa R, et al. (2004) Fibroblast growth factor 20 polymorphisms and haplotypes strongly influence risk of Parkinson disease. Am J Hum Genet 74: 1121–1127. doi: 10.1086/421052
![]() |
[34] |
Schulz J, Takousis P, Wohlers I, et al. (2019) Meta‐analyses identify differentially expressed microRNAs in Parkinson's disease. Ann Neurol 85: 835–851. doi: 10.1002/ana.25490
![]() |
[35] |
Uwatoko H, Hama Y, Iwata I, et al. (2019) Identification of plasma microRNA expression changes in multiple system atrophy and Parkinson's disease. Mol Brain 12: 49. doi: 10.1186/s13041-019-0471-2
![]() |
[36] |
Chen L, Yang J, Lü J, et al. (2018) Identification of aberrant circulating miRNAs in Parkinson's disease plasma samples. Brain Behav 8: e00941. doi: 10.1002/brb3.941
![]() |
[37] | Goh S, Chao Y, Dheen S, et al. (2019) Role of MicroRNAs in Parkinson's Disease. Int J Mol Sci 20: pii: E5649. |
[38] | Peeraully T, Tan E (2012) Genetic variants in sporadic Parkinson's disease: East vs West. Parkinsonism Relat Disord 18: S63–S65. |
[39] |
Chikina M, Gerald C, Li X, et al. (2015) Low-variance RNAs identify Parkinson's disease molecular signature in blood. Mov Disord 30: 813–821. doi: 10.1002/mds.26205
![]() |
[40] |
Qian Y, Yang X, Xu S, et al. (2018) Detection of microbial 16S rRNA gene in the blood of patients with Parkinson's disease. Front Aging Neurosci 10: 156. doi: 10.3389/fnagi.2018.00156
![]() |
[41] |
Li Y, Wong G, Humphrey J, et al. (2019) Prioritizing Parkinson's disease genes using population-scale transcriptomic data. Nat Commun 10: 994. doi: 10.1038/s41467-019-08912-9
![]() |
[42] |
Chang D, Nalls M, Hallgrímsdóttir I, et al. (2017) A meta-analysis of genome-wide association studies identifies 17 new Parkinson's disease risk loci. Nat Genet 49: 1511–1516. doi: 10.1038/ng.3955
![]() |
[43] |
Garnier S, Truong V, Brocheton J, et al. (2013) Genome-wide haplotype analysis of cis expression quantitative trait loci in monocytes. PLoS Genet 9: e1003240. doi: 10.1371/journal.pgen.1003240
![]() |
[44] |
Sekiyama K, Takamatsu Y, Waragai M, et al. (2014) Role of genomics in translational research for Parkinson's disease. Biochem Biophys Res Commun 452: 226–235. doi: 10.1016/j.bbrc.2014.06.028
![]() |
[45] | Servant N, Roméjon J, Gestraud P, et al. (2014) Bioinformatics for precision medicine in oncology: principles and application to the SHIVA clinical trial. Front Genet 5: 152. |
[46] |
Dong N, Zhang X, Liu Q (2017) Identification of therapeutic targets for Parkinson's disease via bioinformatics analysis. Mol Med Rep 15: 731–735. doi: 10.3892/mmr.2016.6044
![]() |
[47] | Al-Ouran R, Wan Y, Mangleburg C, et al. (2019) A portal to visualize transcriptome profiles in mouse models of neurological disorders. Genes (Basel)10: pii: E759. |
[48] |
Fu L, Fu K (2015) Analysis of Parkinson's disease pathophysiology using an integrated genomics-bioinformatics approach. Pathophysiology 22: 15–29. doi: 10.1016/j.pathophys.2014.10.002
![]() |
[49] |
Mariani E, Frabetti F, Tarozzi A, et al. (2016) Meta-Analysis of Parkinson's Disease transcriptome data using TRAM software: Whole substantia nigra tissue and single dopamine neuron differential gene expression. PLoS One 11: e0161567. doi: 10.1371/journal.pone.0161567
![]() |
[50] |
Glaab E (2018) Computational systems biology approaches for Parkinson's disease. Cell Tissue Res 373: 91–109. doi: 10.1007/s00441-017-2734-5
![]() |
[51] |
Lottaz C, Toedling J, Spang R (2007) Annotation-based distance measures for patient subgroup discovery in clinical microarray studies. Bioinformatics 23: 2256–2264. doi: 10.1093/bioinformatics/btm322
![]() |
[52] |
Hu Y, Pan Z, Hu Y, et al. (2017) Network and pathway-based analyses of genes associated with Parkinson's disease. Mol Neurobiol 54: 4452–4465. doi: 10.1007/s12035-016-9998-8
![]() |
[53] |
Cheng HC, Ulane C, Burke R (2010) Clinical progression in Parkinson disease and the neurobiology of axons. Ann Neurol 67: 715–725. doi: 10.1002/ana.21995
![]() |
[54] |
Palfi S, Gurruchaga J, Ralph G, et al. (2014) Long-term safety and tolerability of ProSavin, a lentiviral vector-based gene therapy for Parkinson's disease: A dose escalation, open-label, phase 1/2 trial. Lancet 383: 1138–1146. doi: 10.1016/S0140-6736(13)61939-X
![]() |
[55] |
Diao H, Li X, Hu S, et al. (2012) Gene expression profiling combined with bioinformatics analysis identify biomarkers for Parkinson disease. PLoS One 7: e52319. doi: 10.1371/journal.pone.0052319
![]() |
[56] | Xu C, Chen J, Xu X, et al. (2018) Potential therapeutic drugs for Parkinson's disease based on data mining and bioinformatics analysis. Parkinsons Dis 2018: 3464578. |
[57] | Airavaara M, Voutilainen MH, Wang Y, et al. (2012) Neurorestoration. Parkinsonism Relat Disord 18: S143–146. |
[58] |
Francardo V, Schmitz Y, Sulzer D, et al. (2017) Neuroprotection and neurorestoration as experimental therapeutics for Parkinson's disease. Exp Neurol 298: 137–147. doi: 10.1016/j.expneurol.2017.10.001
![]() |
[59] | Nayak L, Henchcliffe C (2008) Rasagiline in treatment of Parkinson's disease. Neuropsychiatr Dis Treat 4: 23–32. |
[60] |
Marsili L, Marconi R, Colosimo C (2017) Treatment strategies in early Parkinson's disease. Int Rev Neurobiol 132: 345–360. doi: 10.1016/bs.irn.2017.01.002
![]() |
[61] |
Magyar K, Stocchi F, Fossati C, et al. (2015) Rasagiline for the treatment of Parkinson's disease: an update. Expert Opin Pharmacother 16: 2231–2241. doi: 10.1517/14656566.2015.1086748
![]() |
[62] |
McCormack P (2014) Rasagiline: A review of its use in the treatment of idiopathic Parkinson's disease. CNS Drugs 28: 1083–1097. doi: 10.1007/s40263-014-0206-y
![]() |
[63] |
Alborghetti M, Nicoletti F (2019) Different generations of Type-B monoamine oxidase inhibitors in Parkinson's disease: From bench to bedside. Curr Neuropharmacol 17: 861–873. doi: 10.2174/1570159X16666180830100754
![]() |
[64] |
Bette S, Shpiner D, Singer C, et al. (2018) Safinamide in the management of patients with Parkinson's disease not stabilized on levodopa: A review of the current clinical evidence. Ther Clin Risk Manag 14: 1737–1745. doi: 10.2147/TCRM.S139545
![]() |
[65] |
Leegwater-Kim J, Waters C (2006) Tolcapone in the management of Parkinson's disease. Expert Opin Pharmacother 7: 2263–2270. doi: 10.1517/14656566.7.16.2263
![]() |
[66] | Jiang D, Wang H, Wang Y, et al. (2019) Rasagiline combined with levodopa therapy versus levodopa monotherapy for patients with Parkinson's disease: A systematic review. Neurol Sci, 1–9. |
[67] |
Avila A, Caballol N, Martín-Baranera M, et al. (2019) Rasagiline and safinamide as a dopamine-sparing therapy for Parkinson's disease. Acta Neurol Scand 140: 23–31. doi: 10.1111/ane.13096
![]() |
1. | Cuicui Jiang, Wendi Wang, Jiangtao Yang, Threshold conditions for stochastic coexistence of a competition model with Gompertz growth, 2022, 131, 08939659, 108066, 10.1016/j.aml.2022.108066 | |
2. | Xiaoguang Li, Xuan Zou, Liming Cai, Yuming Chen, Global dynamics of a vector-borne disease model with direct transmission and differential susceptibility, 2023, 69, 1598-5865, 381, 10.1007/s12190-022-01745-8 | |
3. | Wendi Wang, Competitive exclusion of two viral strains of COVID-19, 2022, 7, 24680427, 637, 10.1016/j.idm.2022.10.001 | |
4. | Yue Wu, Shenglong Chen, Ge Zhang, Zhiming Li, Dynamic analysis of a stochastic vector-borne model with direct transmission and media coverage, 2024, 9, 2473-6988, 9128, 10.3934/math.2024444 | |
5. | Xiaoguang Li, Liming Cai, Wandi Ding, Modeling the transmission dynamics of a two-strain dengue disease with infection age, 2025, 18, 1793-5245, 10.1142/S1793524524500049 |