Citation: Mercedes Fernandez, Juliana Acosta, Kevin Douglass, Nikita Doshi, Jaime L. Tartar. Speaking Two Languages Enhances an Auditory but Not a Visual Neural Marker of Cognitive Inhibition[J]. AIMS Neuroscience, 2014, 1(2): 145-157. doi: 10.3934/Neuroscience.2014.2.145
[1] | Kandhasamy Tamilvanan, Jung Rye Lee, Choonkil Park . Ulam stability of a functional equation deriving from quadratic and additive mappings in random normed spaces. AIMS Mathematics, 2021, 6(1): 908-924. doi: 10.3934/math.2021054 |
[2] | Sizhao Li, Xinyu Han, Dapeng Lang, Songsong Dai . On the stability of two functional equations for $ (S, N) $-implications. AIMS Mathematics, 2021, 6(2): 1822-1832. doi: 10.3934/math.2021110 |
[3] | Murali Ramdoss, Divyakumari Pachaiyappan, Inho Hwang, Choonkil Park . Stability of an n-variable mixed type functional equation in probabilistic modular spaces. AIMS Mathematics, 2020, 5(6): 5903-5915. doi: 10.3934/math.2020378 |
[4] | K. Tamilvanan, Jung Rye Lee, Choonkil Park . Hyers-Ulam stability of a finite variable mixed type quadratic-additive functional equation in quasi-Banach spaces. AIMS Mathematics, 2020, 5(6): 5993-6005. doi: 10.3934/math.2020383 |
[5] | Zhihua Wang, Choonkil Park, Dong Yun Shin . Additive $ \rho $-functional inequalities in non-Archimedean 2-normed spaces. AIMS Mathematics, 2021, 6(2): 1905-1919. doi: 10.3934/math.2021116 |
[6] | Lingxiao Lu, Jianrong Wu . Hyers-Ulam-Rassias stability of cubic functional equations in fuzzy normed spaces. AIMS Mathematics, 2022, 7(5): 8574-8587. doi: 10.3934/math.2022478 |
[7] | Abasalt Bodaghi, Choonkil Park, Sungsik Yun . Almost multi-quadratic mappings in non-Archimedean spaces. AIMS Mathematics, 2020, 5(5): 5230-5239. doi: 10.3934/math.2020336 |
[8] | Nazek Alessa, K. Tamilvanan, G. Balasubramanian, K. Loganathan . Stability results of the functional equation deriving from quadratic function in random normed spaces. AIMS Mathematics, 2021, 6(3): 2385-2397. doi: 10.3934/math.2021145 |
[9] | Zhihua Wang . Stability of a mixed type additive-quadratic functional equation with a parameter in matrix intuitionistic fuzzy normed spaces. AIMS Mathematics, 2023, 8(11): 25422-25442. doi: 10.3934/math.20231297 |
[10] | Debao Yan . Quantitative analysis and stability results in $ \beta $-normed space for sequential differential equations with variable coefficients involving two fractional derivatives. AIMS Mathematics, 2024, 9(12): 35626-35644. doi: 10.3934/math.20241690 |
The stability problem of functional equations originated from a question of Ulam [43] concerning the stability of group homomorphisms and it was affirmatively answered for Banach spaces by Hyers [17]. Hyers' theorem was generalized by Aoki [1] for approximate additive mappings and by Rassias [37] for approximate linear mappings by considering an unbounded Cauchy difference. Furthermore, a generalization of the Rassias' theorem was obtained by Găvruţă [12] by replacing the unbounded Cauchy difference by a general control function. The stability problems of several functional equations have been extensively investigated by a number of authors and there are many interesting results concerning this problem (see [2,3,4,8,18,20,21,38,41] and references therein). The stability problems in non-Archimedean Banach spaces were studied in [13,14,28,30,31,32].
The functional equation
$ f(x+y)+f(x−y)=2f(x)+2f(y) $ | (1.1) |
is called quadratic functional equation. In particular, every solution of the quadratic functional equation is said to be a quadratic mapping. The Hyers-Ulam stability problem for the quadratic functional Eq (1.1) was proved by Skof [42] for mappings from a normed space to a Banach space. Cholewa [5] noticed that Skof's theorem remains true if the domain is replaced by an Abelian group. In $ 1992 $, Czerwik [7] gave a generalization of the Skof–Cholewa's result. Later, Lee et al. [26] proved Hyers-Ulam-Rassias stability of quadratic functional Eq (1.1) in fuzzy Banach spaces.
In 2008, Ravi et al. [39] introduced the following quadratic functional equation
$ f(x+y)+f(x−y)=2f(x+y)+2f(x−y)+4f(x)−2f(y) $ | (1.2) |
and solved the generalized Hyers-Ulam stability of this Eq (1.2). Jun and Kim [19] considered the following functional equation
$ f(2x+y)+f(2x−y)=2f(x+y)+2f(x−y)+12f(x) $ | (1.3) |
and they established the general solution and the generalized Hyers-Ulam stability of the functional Eq (1.3) in Banach spaces. The functional Eq (1.3) and its pexiderized version
$ f1(2x+y)+f2(2x−y)=f3(x+y)+f4(x−y)+f5(x) $ |
were studied by Sahoo [40] on commutative groups using an elementary method quite different from Jun and Kim [19]. The function $ f(x) = cx^{3} $ satisfies the functional Eq (1.3), which is thus called a cubic functional equation and every solution of the cubic functional equation is said to be a cubic function.
In 2010, Wang and Liu [44] considered the following mixed type functional equation
$ 2f(2x+y)+2f(2x−y)=4f(x+y)+4f(x−y)+4f(2x)+f(2y)−8f(x)−8f(y). $ | (1.4) |
It is easy to show that the function $ f(x) = ax^{2}+bx^{3} $ is a solution of the functional Eq (1.4), where $ a, b $ are arbitrary constants. They established the general solution of the functional Eq (1.4), and then proved the generalized Hyers-Ulam stability of the Eq (1.4) in quasi-$ \beta $-normed spaces.
In 2011, Park [34] investigated the approximate additive mappings, approximate Jensen mappings and approximate quadratic mappings in $ 2 $-Banach spaces. This is the first result for the stability problem of functional equations in $ 2 $-Banach spaces. Later, the stability problems of additive functional inequalities, approximate multi-Jensen and multi-quadratic mappings in $ 2 $-Banach spaces were also studied [6,36], respectively. In 2012, Xu and Rassias [48] determined the generalized Hyers-Ulam stability of the mixed additive-cubic functional equation in $ n $-Banach spaces. In 2013, Xu [47] investigated approximate multi-Jensen, multi-Euler-Lagrange additive and quadratic mappings in $ n $-Banach spaces.
Kim and Park [24] proved the generalized Hyers-Ulam stability of additive functional inequalities in non-Archimedean $ 2 $-normed spaces. Park et al. [35] proved the generalized Hyers-Ulam stability of the system of additive-cubic-quartic functional equations with constant coefficients in non-Archimedean $ 2 $-normed spaces. In 2015, Yang et al. [49] proved the generalized Hyers-Ulam stability of the Cauchy functional equation and the Jensen functional equation in non-Archimedean $ (n, \beta) $-normed spaces and that of the Pexiderized Cauchy functional equation in $ (n, \beta) $-normed spaces.
The main purpose of this paper is to establish the generalized Hyers-Ulam stability of the mixed type quadratic-cubic functional Eq (1.4) in non-Archimedean $ (n, \beta) $-normed spaces.
Throughout this paper, let $ {\mathbb{N}} $ denote the set of positive integers and $ i, j, m, n\in {\mathbb{N}} $, and let $ n\geq 2 $ be fixed.
The concept of $ 2 $-normed spaces was initially developed by Gähler [9,10] in the middle of the 1960s. Then the concept of $ 2 $-Banach spaces was introduced by Gähler [11] and White [45,46]. A systematic development of linear $ n $-normed spaces is due to Kim and Cho [25], Malceski [27], Misiak [29] and Gunawan and Mashadi [15]. Following [48,49], we recall some basic facts concerning $ (n, \beta) $-normed space and some preliminary results.
Definition 2.1. (cf. [49]) Let $ n\in {\mathbb{N}} $, and let $ X $ be a real linear space with $ \dim X\geq n $ and $ 0 < \beta \leq 1 $, let $ \|\cdot, \ldots, \cdot\|_{\beta}: X^{n}\to {\mathbb{R}} $ be a function satisfying the following properties:
(N1) $ \|x_{1}, x_{2}, \ldots, x_{n}\|_{\beta} = 0 $ if and only if $ x_{1}, x_{2}, \ldots, x_{n} $ are linearly dependent;
(N2) $ \|x_{1}, x_{2}, \ldots, x_{n}\|_{\beta} $ is invariant under permutation of $ x_{1}, x_{2}, \ldots, x_{n} $;
(N3) $ \|\alpha x_{1}, x_{2}, \ldots, x_{n}\|_{\beta} = |\alpha|^{\beta}\|x_{1}, x_{2}, \ldots, x_{n}\|_{\beta} $;
(N4) $ \|x+y, x_{2}, \ldots, x_{n}\|_{\beta}\leq \|x, x_{2}, \ldots, x_{n}\|_{\beta}+\|y, x_{2}, \ldots, x_{n}\|_{\beta} $ for all $ x, y, x_{1}, x_{2}, \ldots, x_{n}\in X $ and $ \alpha\in {\mathbb{R}} $.
Then the function $ \|\cdot, \ldots, \cdot\|_{\beta} $ is called an $ (n, \beta) $-norm on $ X $ and the pair $ (X, \|\cdot, \ldots, \cdot\|_{\beta}) $ is called a linear $ (n, \beta) $-normed space or an $ (n, \beta) $-normed space.
Note that the concept of an $ (n, \beta) $-normed space is a generalization of an $ n $-normed space $ (\beta = 1) $ and of a $ \beta $-normed space $ (n = 1) $. For some examples of $ n $-normed space, we can refer to [48,49].
Definition 2.2. (cf. [49]) A sequence $ \{x_{k}\} $ in an $ (n, \beta) $-normed space $ X $ is called a convergent sequence if there exists $ x\in X $ such that
$ limk→∞‖xk−x,y2,…,yn‖β=0 $ |
for all $ y_{2}, \ldots, y_{n}\in X $. In this case, we call that $ \{x_{k}\} $ converges to $ x $ or that $ x $ is the limit of $ \{x_{k}\} $, write $ x_{k}\to x $ as $ k\to \infty $ or $ \lim\limits_{k\to \infty}x_{k} = x $.
Definition 2.3. (cf. [49]) A sequence $ \{x_{k}\} $ in an $ (n, \beta) $-normed space $ X $ is called a Cauchy sequence if
$ limk,m→∞‖xk−xm,y2,…,yn‖β=0 $ |
for all $ y_{2}, \ldots, y_{n}\in X $. A linear $ (n, \beta) $-normed space in which every Cauchy sequence is convergent is called a complete $ (n, \beta) $-normed space.
Remark 2.1. (cf. [49]) Let $ (X, \|\cdot, \ldots, \cdot\|_{\beta}) $ be a linear $ (n, \beta) $-normed space, $ 0 < \beta\leq 1 $. One can show that conditions $ {\rm{(N2)}} $ and $ {\rm{(N4)}} $ in Definition 2.1 imply that
$ |‖x,y2,…,yn‖β−‖y,y2,…,yn‖β|≤‖x−y,y2,…,yn‖β $ |
for all $ x, y, y_{2}, \ldots, y_{n}\in X $.
Lemma 2.1. (cf. [49]). Let $ (X, \|\cdot, \ldots, \cdot\|_{\beta}) $ be a linear $ (n, \beta) $-normed space, $ n\geq 2 $, $ 0 < \beta\leq 1 $. If $ x\in X $ and $ \|x, y_{2}, \ldots, y_{n}\|_{\beta} = 0 $ for all $ y_{2}, \ldots, y_{n}\in X $, then $ x = 0 $.
Lemma 2.2. (cf. [48,49]). Let $ (X, \|\cdot, \ldots, \cdot\|_{\beta}) $ be a linear $ (n, \beta) $-normed space, $ n\geq 2 $, $ 0 < \beta\leq 1 $. For a convergent sequence $ \{x_{k}\} $ in a linear $ (n, \beta) $-normed space $ X $,
$ limk→∞‖xk,y2,…,yn‖β=‖limk→∞xk,y2,…,yn‖β $ |
for all $ y_{2}, \ldots, y_{n}\in X $.
In 1897, Hensel [16] has introduced a normed space which does not have the Archimedean property. It turned out that non-Archimedean spaces have many nice applications [22,23,33].
Definition 2.4. (cf. [30]) By a non-Archimedean field we mean a field $ {\mathbb{K}} $ equipped with a function (valuation) $ |\cdot|:{\mathbb{K}}\to [0, \infty) $ such that for $ r, s \in {\mathbb{K}} $, the following conditions hold:
(1) $ |r| = 0 $ if and only if $ r = 0 $;
(2) $ |rs| = |r||s| $;
(3) $ |r+s|\leq \max\{|r|, |s|\} $.
Clearly $ |1| = |-1| = 1 $ and $ |n|\leq 1 $ for all $ n\in {\mathbb{N}} $. By the trivial valuation we mean the function $ |\cdot| $ taking everything but $ 0 $ into $ 1 $ and $ |0| = 0 $ (i.e., the function $ |\cdot| $ is called the trivial valuation if $ |r| = 1, \forall r\in {\mathbb{K}}, r\neq 0 $, and $ |0| = 0 $).
Definition 2.5. (cf. [30]) Let $ X $ be a vector space over a scalar field $ {\mathbb{K}} $ with a non-Archimedean non-trivial valuation $ |\cdot| $. A function $ \|\cdot\|:X\to {\mathbb{R}} $ is called a non-Archimedean norm (valuation) if it satisfies the following conditions:
(ⅰ) $ \|x\| = 0 $ if and only if $ x = 0 $;
(ⅱ) For any $ r\in {\mathbb{K}} $ and $ x\in X $, $ \|rx\| = |r|\|x\| $;
(ⅲ) For all $ x, y\in X $, $ \|x+y\|\leq \max \{\|x\|, \|y\|\} $ (the strong triangle inequality).
Then $ (X, \|\cdot\|) $ is called a non-Archimedean normed space.
Now, we give the definition of a non-Archimedean $ (n, \beta) $-normed space which has been introduced in [49].
Definition 2.6. (cf. [49]) Let $ X $ be a real vector space with $ \dim X\geq n $ over a scalar field $ {\mathbb{K}} $ with a non-Archimedean non-trivial valuation $ |\cdot| $, where $ n $ is a positive integer and $ \beta $ is a constant with $ 0 < \beta\leq 1 $. A real-valued function $ \|\cdot, \ldots, \cdot\|_{\beta}: X^{n}\to {\mathbb{R}} $ is called a non-Archimedean $ (n, \beta) $-norm on $ X $ if the following conditions hold:
$ \rm{(N1^{\prime})} $ $ \|x_{1}, x_{2}, \ldots, x_{n}\|_{\beta} = 0 $ if and only if $ x_{1}, x_{2}, \ldots, x_{n} $ are linearly dependent;
$ \rm{(N2^{\prime})} $ $ \|x_{1}, x_{2}, \ldots, x_{n}\|_{\beta} $ is invariant under permutation of $ x_{1}, x_{2}, \ldots, x_{n} $;
$ \rm{(N3^{\prime})} $ $ \|\alpha x_{1}, x_{2}, \ldots, x_{n}\|_{\beta} = |\alpha|^{\beta}\|x_{1}, x_{2}, \ldots, x_{n}\|_{\beta} $;
$ \rm{(N4^{\prime})} $ $ \|x+y, x_{2}, \ldots, x_{n}\|_{\beta}\leq \max\{\|x, x_{2}, \ldots, x_{n}\|_{\beta}, \|y, x_{2}, \ldots, x_{n}\|_{\beta}\} $ for all $ x, y, x_{1}, x_{2}, \ldots, x_{n}\in X $ and $ \alpha\in {\mathbb{K}} $. Then $ (X, \|\cdot, \ldots, \cdot\|_{\beta}) $ is called a non-Archimedean $ (n, \beta) $-normed space.
It follows from the preceding definition that the non-Archimedean $ (n, \beta) $-normed space is a non-Archimedean $ n $-normed space if $ \beta = 1 $, and a non-Archimedean $ \beta $-normed space if $ n = 1 $, respectively.
Remark 2.2. (cf. [49]) A sequence $ \{x_{k}\} $ in a non-Archimedean $ (n, \beta) $-normed space $ X $ is a Cauchy sequence if and only if $ \{x_{k+1}-x_{k}\} $ converges to zero.
In this section, we will assume that $ X $ is an $ n $-normed space vector space and $ Y $ is a complete non-Archimedean $ (n, \beta) $-normed space, where $ n\geq 2 $ and $ 0 < \beta \leq 1 $. We prove the generalized Hyers-Ulam stability of the mixed type quadratic-cubic functional Eq (1.4) in non-Archimedean $ (n, \beta) $-normed spaces. For the sake of convenience, given mapping $ f:X\to Y $, we define the difference operator $ D_{f}(x, y):X\to Y $ of the functional Eq (1.4) by
$ Df(x,y)=2f(2x+y)+2f(2x−y)−4f(x+y)−4f(x−y)−4f(2x)−f(2y)+8f(x)+8f(y) $ |
for all $ x, y\in X $.
Before proceeding to the proof of the main results, we first introduce the following lemmas which will be used in this paper.
Lemma 3.1. (cf. [44]). Let $ V $ and $ W $ be real vector spaces. If an even mapping $ f:V\to W $ satisfies (1.4), then $ f $ is quadratic.
Lemma 3.2. (cf. [44]). Let $ V $ and $ W $ be real vector spaces. If an odd mapping $ f:V\to W $ satisfies (1.4), then $ f $ is cubic.
Theorem 3.1. Let $ \varphi:X^{n+1}\to [0, \infty) $ be a function such that
$ limm→∞φ(2mx,2my,u2,…,un)|4|mβ=0 $ | (3.1) |
for all $ x, y, u_{2}, \ldots, u_{n}\in X $. The limit
$ limm→∞max{|4|−jβφ(0,2jx,u2,…,un):0≤j<m} $ | (3.2) |
denoted by $ \tilde{\varphi}_{Q}(x, u_{2}, \ldots, u_{n}) $, exists for all $ x, u_{2}, \ldots, u_{n}\in X $. Suppose that $ f: X\to Y $ is an even function satisfying $ f(0) = 0 $ and
$ ‖Df(x,y),u2,…,un‖β≤φ(x,y,u2,…,un) $ | (3.3) |
for all $ x, y, u_{2}, \ldots, u_{n}\in X $. Then there exists a quadratic function $ Q:X\to Y $ such that
$ ‖f(x)−Q(x),u2,…,un‖β≤1|4|β˜φQ(x,u2,…,un) $ | (3.4) |
for all $ x, u_{2}, \ldots, u_{n}\in X $, and if, in addition,
$ limi→∞limm→∞max{|4|−jβφ(0,2jx,u2,…,un):i≤j<m+i}=0 $ |
then $ Q $ is the unique quadratic function satisfying (3.4).
Proof. Putting $ x = 0 $ in (3.3), and by the evenness of $ f $, we get
$ ‖f(2y)−4f(y),u2,…,un‖β≤φ(0,y,u2,…,un) $ | (3.5) |
for all $ y, u_{2}, \ldots, u_{n}\in X $. If we replace $ y $ by $ x $ in (3.5) and divide both sides of (3.5) by $ |4|^{\beta} $, then we have
$ ‖f(2x)4−f(x),u2,…,un‖β≤|4|−βφ(0,x,u2,…,un) $ | (3.6) |
for all $ x, u_{2}, \ldots, u_{n}\in X $. Replacing $ x $ by $ 2^{m}x $ in (3.6) and dividing both sides of (3.6) by $ |4|^{m\beta} $, we obtain
$ ‖f(2m+1x)4m+1−f(2mx)4m,u2,…,un‖β≤|4|−mβ|4|−βφ(0,2mx,u2,…,un) $ | (3.7) |
for all $ x, u_{2}, \ldots, u_{n}\in X $ and $ m\in {\mathbb{N}} $. Taking the limit as $ m\to \infty $ and using (3.1), we have
$ limm→∞‖f(2m+1x)4m+1−f(2mx)4m,u2,…,un‖β=0 $ | (3.8) |
for all $ x, u_{2}, \ldots, u_{n}\in X $. By Remark 2, we know that the sequence $ \{\frac{f(2^{m}x)}{4^{m}}\} $ is Cauchy. Since $ Y $ is a complete space, we conclude that $ \{\frac{f(2^{m}x)}{4^{m}}\} $ is convergent. So we can define the function $ Q: X\to Y $ by
$ Q(x)=limm→∞f(2mx)4m $ |
for all $ x\in X $. It follows from (3.1) and (3.3) that
$ ‖DQ(x,y),u2,…,un‖β=limm→∞1|4|mβ‖Df(2mx,2my),u2,…,un‖β≤limm→∞φ(2mx,2my,u2,…,un)|4|mβ=0 $ |
for all $ x, y, u_{2}, \ldots, u_{n}\in X $. By Lemma 2.1, we get $ D_{Q}(x, y) = 0 $ for all $ x, y\in X $. Therefore the function $ Q:X\to Y $ satisfies (1.4). Since $ f $ is an even function, $ Q $ is an even function. By Lemma 3.1 (see also [44, Corollary 2.2]), $ Q $ is quadratic. Then $ Q $ satisfies
$ Q(2x+y)+Q(2x−y)=2Q(x+y)+2Q(x−y)+4Q(x)−2Q(y) $ | (3.9) |
for all $ x, y\in X $. Letting $ x = 0 $ in (3.9), and by the evenness of $ Q $, we get $ Q(2x) = 4Q(x) $, so $ Q(2^{m}x) = 4^{m}Q(x) $.
Replacing $ x $ by $ 2x $ in (3.6) and dividing both sides by $ |4|^{\beta} $, we obtain
$ ‖f(22x)42−f(2x)4,u2,…,un‖β≤|4|−2βφ(0,2x,u2,…,un) $ | (3.10) |
for all $ x, u_{2}, \ldots, u_{n}\in X $. It follows from (3.6) and (3.10) that
$ ‖f(x)−f(22x)42,u2,…,un‖β≤max{|4|−βφ(0,x,u2,…,un),|4|−2βφ(0,2x,u2,…,un)} $ |
for all $ x, u_{2}, \ldots, u_{n}\in X $.
By induction on $ m $, we get
$ ‖f(x)−f(2mx)4m,u2,…,un‖β≤max{φ(0,2ix,u2,…,un)|4|(i+1)β:0≤i<m} $ | (3.11) |
for all $ x, u_{2}, \ldots, u_{n}\in X $. Replacing $ x $ by $ 2x $ in (3.11) and dividing both sides by $ |4|^{\beta} $, we get
$ ‖f(2x)4−f(2m+1x)4m+1,u2,…,un‖β≤max{φ(0,2i+1x,u2,…,un)|4|(i+2)β:0≤i<m} $ | (3.12) |
for all $ x, u_{2}, \ldots, u_{n}\in X $. By (3.6) and (3.12), we obtain
$ ‖f(x)−f(2m+1x)4m+1,u2,…,un‖β≤max{φ(0,x,u2,…,un)|4|β,φ(0,2i+1x,u2,…,un)|4|(i+2)β:0≤i<m}=max{φ(0,2ix,u2,…,un)|4|(i+1)β:0≤i<m+1} $ |
for all $ x, u_{2}, \ldots, u_{n}\in X $ and $ m\in {\mathbb{N}} $. This completes the proof of (3.11). By taking the limit as $ m\to \infty $ in (3.11) and using (3.2), one obtains (3.4).
Now we proceed to prove the uniqueness property of $ Q $. Let $ Q^{\prime} $ be another quadratic function satisfying (3.4). Since
$ limi→∞˜φQ(2ix,u2,…,un)|4|iβ=limi→∞limm→∞1|4|iβmax{φ(0,2i+jx,u2,…,un)|4|jβ:0≤j<m}=limi→∞limm→∞max{φ(0,2jx,u2,…,un)|4|jβ:i≤j<m+i} $ | (3.13) |
for all $ x, u_{2}, \ldots, u_{n}\in X $. So we have
$ ‖Q(x)−Q′(x),u2,…,un‖β=limi→∞|4|−iβ‖Q(2ix)−Q′(2ix),u2,…,un‖β≤limi→∞|4|−iβmax{‖Q(2ix)−f(2ix),u2,…,un‖β,‖f(2ix)−Q′(2ix),u2,…,un‖β}≤1|4|βlimi→∞|4|−iβ˜φQ(2ix,u2,…,un)=0 $ |
for all $ x, u_{2}, \ldots, u_{n}\in X $. If
$ limi→∞limm→∞max{|4|−jβφ(0,2jx,u2,…,un):i≤j<m+i}=0, $ |
then $ \|Q(x)-Q^{\prime}(x), u_{2}, \ldots, u_{n}\|_{\beta} = 0 $. By Lemma 2.1, $ Q = Q^{\prime} $, and the proof is complete.
Corollary 3.1. Let $ \rho:[0, \infty)\to [0, \infty) $ be a function satisfying
(ⅰ) $ \rho(|2|t)\leq \rho(|2|)\, \rho(t) $ for all $ t\geq 0 $,
(ⅱ) $ \rho(|2|)\leq |2|^{r\beta} $, where $ r $ is a fixed real number in $ r\in [2, \infty) $.
Let $ \delta > 0 $, $ X $ be an $ n $-normed space with norm $ \|\cdot, \ldots, \cdot\| $, let $ f:X\to Y $ be an even function with $ f(0) = 0 $ and satisfying the inequality
$ ‖Df(x,y),u2,…,un‖β≤δ[ρ(‖x,u2,…,un‖)+ρ(‖y,u2,…,un‖)] $ | (3.14) |
for all $ x, y, u_{2}, \ldots, u_{n}\in X $. Then there exists a unique quadratic function $ Q:X\to Y $ such that
$ ‖f(x)−Q(x),u2,…,un‖β≤δ|4|βρ(‖x,u2,…,un‖) $ | (3.15) |
for all $ x, u_{2}, \ldots, u_{n}\in X $.
Proof. Define $ \varphi:X^{n+1}\to [0, \infty) $ by
$ φ(x,y,u2,…,un):=δ[ρ(‖x,u2,…,un‖)+ρ(‖y,u2,…,un‖)]. $ |
Since $ |4|^{-\beta}\rho(|2|) < |2|^{(r-2)\beta}\leq 1 $, we have
$ limm→∞φ(2mx,2my,u2,…,un)|4|mβ≤limm→∞(ρ(|2|)|4|β)mφ(x,y,u2,…,un)=0 $ |
for all $ x, y, u_{2}, \ldots, u_{n}\in X $. Also
$ ˜φQ(x,u2,…,un)=limm→∞max{φ(0,2jx,u2,…,un)|4|jβ:0≤j<m}=φ(0,x,u2,…,un) $ |
and
$ limi→∞limm→∞max{φ(0,2jx,u2,…,un)|4|jβ:i≤j<m+i}=limi→∞φ(0,2ix,u2,…,un)|4|iβ=0 $ |
for all $ x, u_{2}, \ldots, u_{n}\in X $. Hence the result follows by Theorem 3.1.
Theorem 3.2. Let $ \varphi:X^{n+1}\to [0, \infty) $ be a function such that
$ limm→∞φ(2mx,2my,u2,…,un)|8|mβ=0 $ | (3.16) |
for all $ x, y, u_{2}, \ldots, u_{n}\in X $. The limit
$ limm→∞max{|8|−jβφ(0,2jx,u2,…,un):0≤j<m} $ | (3.17) |
denoted by $ \tilde{\varphi}_{C}(x, u_{2}, \ldots, u_{n}) $, exists for all $ x, u_{2}, \ldots, u_{n}\in X $. Suppose that $ f: X\to Y $ is an odd function satisfying
$ ‖Df(x,y),u2,…,un‖β≤φ(x,y,u2,…,un) $ | (3.18) |
for all $ x, y, u_{2}, \ldots, u_{n}\in X $. Then there exists a cubic function $ C:X\to Y $ such that
$ ‖f(x)−C(x),u2,…,un‖β≤1|8|β˜φC(x,u2,…,un) $ | (3.19) |
for all $ x, u_{2}, \ldots, u_{n}\in X $. And if, in addition,
$ limi→∞limm→∞max{|8|−jβφ(0,2jx,u2,…,un):i≤j<m+i}=0 $ |
then $ C $ is the unique cubic function satisfying (3.19).
Proof. Putting $ x = 0 $ in (3.18), and by the oddness of $ f $, we get
$ ‖f(2y)−8f(y),u2,…,un‖β≤φ(0,y,u2,…,un) $ | (3.20) |
for all $ y, u_{2}, \ldots, u_{n}\in X $. If we replace $ y $ by $ x $ in (3.20) and divide both sides of (3.20) by $ |8|^{\beta} $, then we have
$ ‖f(2x)8−f(x),u2,…,un‖β≤|8|−βφ(0,x,u2,…,un) $ | (3.21) |
for all $ x, u_{2}, \ldots, u_{n}\in X $. Replacing $ x $ by $ 2^{j}x $ in (3.21) and dividing both sides of (3.21) by $ |8|^{m\beta} $, we obtain
$ ‖f(2m+1x)8m+1−f(2mx)8m,u2,…,un‖β≤|8|−mβ|8|−βφ(0,2mx,u2,…,un) $ | (3.22) |
for all $ x, u_{2}, \ldots, u_{n}\in X $ and $ m\in {\mathbb{N}} $. Taking the limit as $ m\to \infty $ and using (3.16), we have
$ limm→∞‖f(2m+1x)8m+1−f(2mx)8m,u2,…,un‖β=0 $ | (3.23) |
for all $ x, u_{2}, \ldots, u_{n}\in X $. By Remark 2, we know that the sequence $ \{\frac{f(2^{m}x)}{8^{m}}\} $ is Cauchy. Since $ Y $ is a complete space, we conclude that $ \{\frac{f(2^{m}x)}{8^{m}}\} $ is convergent. So we can define the function $ C: X\to Y $ by
$ C(x)=limm→∞f(2mx)8m $ |
for all $ x\in X $.
Similar to the proof of Theorem 3.1, using induction one can show that
$ ‖f(x)−f(2mx)8m,u2,…,un‖β≤max{φ(0,2ix,u2,…,un)|8|(i+1)β:0≤i<m} $ | (3.24) |
for all $ x, u_{2}, \ldots, u_{n}\in X $ and $ m\in {\mathbb{N}} $. By taking $ m $ to approach infinity in (3.24) and using (3.17), one obtains (3.19). It follows from (3.16) and (3.18) that
$ ‖DC(x,y),u2,…,un‖β=limm→∞1|8|mβ‖Df(2mx,2my),u2,…,un‖β≤limm→∞φ(2mx,2my,u2,…,un)|8|mβ=0 $ |
for all $ x, y, u_{2}, \ldots, u_{n}\in X $. By Lemma 2.1, we get $ D_{C}(x, y) = 0 $ for all $ x, y\in X $. Therefore the function $ C:X\to Y $ satisfies (1.4). Since $ f $ is an odd function, $ C $ is an odd function. By Lemma 3.2 (see also [44, Corollary 2.2]), $ C $ is cubic. Then $ C $ satisfies
$ C(2x+y)+C(2x−y)=2C(x+y)+2C(x−y)+12C(x) $ | (3.25) |
for all $ x, y\in X $. Letting $ x = 0 $ in (3.25), and by the oddness of $ C $, we get $ C(2x) = 8C(x) $, so $ C(2^{m}x) = 8^{m}C(x) $. Let
$ limi→∞limm→∞max{|8|−jβφ(0,2jx,u2,…,un):i≤j<m+i}=0, $ |
for all $ x, u_{2}, \ldots, u_{n}\in X $ and let $ C^{\prime} $ be another cubic function satisfying (3.19). Then
$ ‖C(x)−C′(x),u2,…,un‖β=limi→∞|8|−iβ‖C(2ix)−C′(2ix),u2,…,un‖β≤limi→∞|8|−iβmax{‖C(2ix)−f(2ix),u2,…,un‖β,‖f(2ix)−C′(2ix),u2,…,un‖β}≤1|8|βlimi→∞limm→∞max{φ(0,2jx,u2,…,un)|8|jβ:i≤j<m+i}=0 $ |
for all $ x, u_{2}, \ldots, u_{n}\in X $. Therefore $ \|C(x)-C^{\prime}(x), u_{2}, \ldots, u_{n}\|_{\beta} = 0 $. By Lemma 2.1, we have $ C = C^{\prime} $. This completes the proof of the uniqueness of $ C $.
Corollary 3.2. Let $ \rho:[0, \infty)\to [0, \infty) $ be a function satisfying
(ⅰ) $ \rho(|2|t)\leq \rho(|2|)\, \rho(t) $ for all $ t\geq 0 $,
(ⅱ) $ \rho(|2|)\leq |2|^{\lambda\beta} $, where $ \lambda $ a fixed real number in $ \lambda\in [3, \infty) $.
Let $ \delta > 0 $, $ X $ be an $ n $-normed space with norm $ \|\cdot, \ldots, \cdot\| $, let $ f:X\to Y $ be an odd function satisfying the inequality
$ ‖Df(x,y),u2,…,un‖β≤δ[ρ(‖x,u2,…,un‖)+ρ(‖y,u2,…,un‖)] $ | (3.26) |
for all $ x, y, u_{2}, \ldots, u_{n}\in X $. Then there exists a unique cubic function $ C:X\to Y $ such that
$ ‖f(x)−C(x),u2,…,un‖β≤δ|8|βρ(‖x,u2,…,un‖) $ | (3.27) |
for all $ x, u_{2}, \ldots, u_{n}\in X $.
Proof. The proof is similar to the proof of Corollary 3.1 and the result follows from Theorem 3.2.
Combining Theorems 3.1 and 3.2, we obtain the following theorem.
Theorem 3.3. Let $ \varphi:X^{n+1}\to [0, \infty) $ be a function such that
$ limm→∞φ(2mx,2my,u2,…,un)|4|mβ=limm→∞φ(2mx,2my,u2,…,un)|8|mβ=0 $ | (3.28) |
for all $ x, y, u_{2}, \ldots, u_{n}\in X $. The limit
$ limm→∞max{φ(0,2jx,u2,…,un)|4|jβ:0≤j<m} $ | (3.29) |
denoted by $ \tilde{\varphi}_{Q}(x, u_{2}, \ldots, u_{n}) $, and
$ limm→∞max{φ(0,2jx,u2,…,un)|8|jβ:0≤j<m} $ | (3.30) |
denoted by $ \tilde{\varphi}_{C}(x, u_{2}, \ldots, u_{n}) $, exists for all $ x, u_{2}, \ldots, u_{n}\in X $. Suppose that $ f:X\to Y $ is a function satisfying $ f(0) = 0 $ and
$ ‖Df(x,y),u2,…,un‖β≤φ(x,y,u2,…,un) $ | (3.31) |
for all $ x, y, u_{2}, \ldots, u_{n}\in X $. Then there exist a quadratic function $ Q:X\to Y $ and a cubic function $ C:X\to Y $ such that
$ ‖f(x)−Q(x)−C(x),u2,…,un‖β≤1|8|βmax{max{˜φQ(x,u2,…,un),˜φQ(−x,u2,…,un)},1|2|βmax{˜φC(x,u2,…,un),˜φC(−x,u2,…,un)}} $ | (3.32) |
for all $ x, u_{2}, \ldots, u_{n}\in X $, and if, in addition,
$ limi→∞limm→∞max{φ(0,2jx,u2,…,un)|4|jβ:i≤j<m+i}=limi→∞limm→∞max{φ(0,2jx,u2,…,un)|8|jβ:i≤j<m+i}=0 $ |
then $ Q $ is the unique quadratic function and $ C $ is the unique cubic function.
Proof. Let $ f_{e}(x) = \frac{1}{2}[f(x)+f(-x)] $ for all $ x\in X $. Then $ f_{e}(0) = 0 $, $ f_{e}(-x) = f_{e}(x) $ for all $ x \in X $, and
$ ‖Dfe(x,y),u2,…,un‖β≤1|2|βmax{φ(x,y,u2,…,un),φ(−x,−y,u2,…,un)} $ |
for all $ x, y, u_{2}, \ldots, u_{n}\in X $. By Theorem 3.1, then there exists a unique quadratic function $ Q:X\to Y $ satisfying
$ ‖fe(x)−Q(x),u2,…,un‖β≤1|23|βmax{˜φQ(x,u2,…,un),˜φQ(−x,u2,…,un)} $ | (3.33) |
for all $ x, u_{2}, \ldots, u_{n}\in X $.
Let $ f_{o}(x) = \frac{1}{2}[f(x)-f(-x)] $ for all $ x\in X $. Then $ f_{o}(0) = 0 $, $ f_{o}(-x) = -f_{o}(x) $, and
$ ‖Dfo(x,y),u2,…,un‖β≤1|2|βmax{φ(x,y,u2,…,un),φ(−x,−y,u2,…,un)} $ |
for all $ x, y, u_{2}, \ldots, u_{n}\in X $. By Theorem 3.2, then there exists a unique cubic function $ C:X\to Y $ satisfying
$ ‖fo(x)−C(x),u2,…,un‖β≤1|24|βmax{˜φC(x,u2,…,un),˜φC(−x,u2,…,un)} $ | (3.34) |
for all $ x, u_{2}, \ldots, u_{n}\in X $. Hence, (3.32) follows from (3.33) and (3.34). This completes the proof of the theorem.
From now on, assume that $ |2|\neq 1 $, $ X $ is a non-Archimedean $ (n, \beta_{1}) $-normed space and $ Y $ is a complete non-Archimedean $ (n, \beta) $-normed space, where $ n\geq 2 $ and $ 0 < \beta, \beta_{1}\leq 1 $. We can formulate our results as follows.
Theorem 3.4. Let $ \theta\in [0, \infty) $, $ p, q\in (0, \infty) $ with $ (p+q)\beta_{1} > 2\beta $. Suppose that $ f: X\to Y $ is an even function satisfying $ f(0) = 0 $ and
$ ‖Df(x,y),u2,…,un‖β≤θ(‖x,u2,…,un‖pβ1‖y,u2,…,un‖qβ1+‖x,u2,…,un‖p+qβ1+‖y,u2,…,un‖p+qβ1) $ | (3.35) |
for all $ x, y, u_{2}, \ldots, u_{n}\in X $. Then there exists a unique quadratic function $ Q:X\to Y $ such that
$ ‖f(x)−Q(x),u2,…,un‖β≤θ|4|β‖x,u2,…,un‖p+qβ1 $ | (3.36) |
for all $ x, u_{2}, \ldots, u_{n}\in X $.
Proof. Putting $ x = 0 $ in (3.35), and by the evenness of $ f $, we get
$ ‖f(2y)−4f(y),u2,…,un‖β≤θ‖y,u2,…,un‖p+qβ1 $ | (3.37) |
for all $ y, u_{2}, \ldots, u_{n}\in X $. If we replace $ y $ by $ x $ in (3.37) and divide both sides of (3.37) by $ |4|^{\beta} $, then we have
$ ‖f(2x)4−f(x),u2,…,un‖β≤θ|4|−β‖x,u2,…,un‖p+qβ1 $ | (3.38) |
for all $ x, u_{2}, \ldots, u_{n}\in X $. Replacing $ x $ by $ 2^{m}x $ in (3.38) and dividing both sides of (3.38) by $ |4|^{m\beta} $, we obtain
$ ‖f(2m+1x)4m+1−f(2mx)4m,u2,…,un‖β≤θ|4|−mβ|4|−β|2m(p+q)β1|‖x,u2,…,un‖p+qβ1=θ|4|−β|2(p+q)β1−2β|m‖x,u2,…,un‖p+qβ1 $ | (3.39) |
for all $ x, u_{2}, \ldots, u_{n}\in X $ and $ m\in {\mathbb{N}} $. Since $ (p+q)\beta_{1} > 2\beta $ and $ |2|\neq 1 $, we have
$ limm→∞‖f(2m+1x)4m+1−f(2mx)4m,u2,…,un‖β=0 $ | (3.40) |
for all $ x, u_{2}, \ldots, u_{n}\in X $. By Remark 2, we know that the sequence $ \{\frac{f(2^{m}x)}{4^{m}}\} $ is Cauchy. Since $ Y $ is a complete space, we conclude that $ \{\frac{f(2^{m}x)}{4^{m}}\} $ is convergent. So we can define the function $ Q: X\to Y $ by
$ Q(x)=limm→∞f(2mx)4m $ |
for all $ x\in X $. Similar to the proof of Theorem 3.2, using induction one can show that
$ ‖f(x)−f(2mx)4m,u2,…,un‖β≤θ|4|−β‖x,u2,…,un‖p+qβ1 $ | (3.41) |
for all $ x, u_{2}, \ldots, u_{n}\in X $ and $ m\in {\mathbb{N}} $. By taking the limit as $ m\to \infty $ in (3.41), we obtain (3.36).
It follows from (3.35) and Lemma 2.2 that
$ ‖DQ(x,y),u2,…,un‖β=limm→∞1|4|mβ‖Df(2mx,2my),u2,…,un‖β≤limm→∞θ|4|mβ(‖2mx,u2,…,un‖pβ1‖2my,u2,…,un‖qβ1+‖2mx,u2,…,un‖p+qβ1+‖2my,u2,…,un‖p+qβ1)=limm→∞θ|2(p+q)β1−2β|m(‖x,u2,…,un‖pβ1‖y,u2,…,un‖qβ1+‖x,u2,…,un‖p+qβ1+‖y,u2,…,un‖p+qβ1) $ |
for all $ x, y, u_{2}, \ldots, u_{n}\in X $. Since $ (p+q)\beta_{1} > 2\beta $ and $ |2|\neq 1 $, we get
$ ‖DQ(x,y),u2,…,un‖β=0 $ |
for all $ x, y, u_{2}, \ldots, u_{n}\in X $. By Lemma 2.1, we get $ D_{Q}(x, y) = 0 $ for all $ x, y\in X $. Therefore the function $ Q:X\to Y $ satisfies (1.4). Since $ f $ is an even function, $ Q $ is an even function. By Lemma 3.1 (see also [44, Corollary 2.2]), $ Q $ is quadratic. Then, we get $ Q(2x) = 4Q(x) $ and $ Q(2^{m}x) = 4^{m}Q(x) $.
To prove the uniqueness property of $ Q $. Let $ Q^{\prime} $ be another quadratic function satisfying (3.36). Then
$ ‖Q(x)−Q′(x),u2,…,un‖β=limm→∞|4|−mβ‖Q(2mx)−Q′(2mx),u2,…,un‖β≤limm→∞|4|−mβmax{‖Q(2mx)−f(2mx),u2,…,un‖β,‖f(2mx)−Q′(2mx),u2,…,un‖β}≤θ|4|βlimm→∞|2(p+q)β1−2β|m‖x,u2,…,un‖p+qβ1=0 $ |
for all $ x, u_{2}, \ldots, u_{n}\in X $. By Lemma 2.1, we get $ Q = Q^{\prime} $ for all $ x\in X $. So $ Q $ is the unique quadratic function satisfying (3.36).
Theorem 3.5. Let $ \theta\in [0, \infty) $, $ p, q\in (0, \infty) $ with $ (p+q)\beta_{1} > 3\beta $. Suppose that $ f: X\to Y $ is an odd function satisfying
$ ‖Df(x,y),u2,…,un‖β≤θ(‖x,u2,…,un‖pβ1‖y,u2,…,un‖qβ1+‖x,u2,…,un‖p+qβ1+‖y,u2,…,un‖p+qβ1) $ |
for all $ x, y, u_{2}, \ldots, u_{n}\in X $. Then there exists a unique cubic function $ C:X\to Y $ such that
$ ‖f(x)−C(x),u2,…,un‖β≤θ|8|β‖x,u2,…,un‖p+qβ1 $ |
for all $ x, u_{2}, \ldots, u_{n}\in X $.
Proof. The proof is similar to the proof of Theorem 3.4.
Next, combining Theorems 3.4 and 3.5, we obtain the following result.
Theorem 3.6. Let $ \theta\in [0, \infty) $, $ p, q\in (0, \infty) $ with $ (p+q)\beta_{1} > 3\beta $. Suppose that $ f:X\to Y $ is a function satisfying $ f(0) = 0 $ and
$ ‖Df(x,y),u2,…,un‖β≤θ(‖x,u2,…,un‖pβ1‖y,u2,…,un‖qβ1+‖x,u2,…,un‖p+qβ1+‖y,u2,…,un‖p+qβ1) $ |
for all $ x, y, u_{2}, \ldots, u_{n}\in X $. Then there exist a unique quadratic function $ Q:X\to Y $ and a unique cubic function $ C:X\to Y $ such that
$ ‖f(x)−Q(x)−C(x),u2,…,un‖β≤θ|8|β‖x,u2,…,un‖p+qβ1 $ |
for all $ x, u_{2}, \ldots, u_{n}\in X $.
Proof. The proof is similar to the proof of Theorem 3.3 and the result follows from Theorems 3.4 and 3.5.
The author is grateful to the referees for their helpful comments and suggestions that help to improve the quality of the manuscript.
The author declares no conflict of interest in this paper.
[1] |
Abutalebi J, Della Rosa PA, Green DQ, et al. (2012). Bilingualism tunes the anterior cingulate cortex for conflict monitoring. Cereb Cortex 22(9): 2076-2086. doi: 10.1093/cercor/bhr287
![]() |
[2] |
Abutalebi J, Canini M, Della Rosa PA, et al. (2014). Bilingualism protects anterior temporal lobe integrity in aging. Neurobiol Aging 35(9): 2126-2133. doi: 10.1016/j.neurobiolaging.2014.03.010
![]() |
[3] |
Gold BT, Johnson NF, Powell DK. (2013). Lifelong bilingualism contributes to cognitive reserve against white matter integrity declines in aging. Neuropsychologia 51(13): 2841-2846. doi: 10.1016/j.neuropsychologia.2013.09.037
![]() |
[4] | Bialystok E, Craik FIM, Green DW, et al. (2009). Bilingual minds. Psychol Sci Public Interest10(3): 89-129. |
[5] | Hilchey MD, Klein RM. (2011). Are there bilingual advantages on nonlinguistic interference tasks? Implications for the plasticity of executive control processes. Psychon B Rev 18: 625-658. |
[6] |
Paap KR, Greenberg ZL. (2013). There is no coherent evidence for a bilingual advantage in executive processing. Cogn Psychol 66(2): 232-258. doi: 10.1016/j.cogpsych.2012.12.002
![]() |
[7] |
Green DW. (1998). Mental control of the bilingual lexico-semantic system. Bilingualism: Lang Cogn 1(2): 67-81. doi: 10.1017/S1366728998000133
![]() |
[8] |
Bialystok E, Martin MM. (2004). Attention and inhibition in bilingual children: Evidence from the dimensional change card sort task. Dev Sci 7(3): 325-339. doi: 10.1111/j.1467-7687.2004.00351.x
![]() |
[9] |
Fernandez M, Tartar JL, Padron D, et al. (2013). Neurophysiological marker of inhibition distinguishes language groups on nonlinguistic executive function test. Brain Cogn 83: 330-336. doi: 10.1016/j.bandc.2013.09.010
![]() |
[10] |
Falkenstein M, Hoormann J, Hohnsbein J. (1999). ERP components in Go/NoGo tasks and their relation to inhibition. Acta Psychol 101(2-3): 267-291. doi: 10.1016/S0001-6918(99)00008-6
![]() |
[11] |
Falkenstein M, Hoormann J, Hohnsbein J. (2002). Inhibition-related ERP components: Variations with modality, age, and time-on-task. J Psychophysiol 16(3): 167-175. doi: 10.1027//0269-8803.16.3.167
![]() |
[12] | Kousaie S, Phillips NA. (2012). Conflict monitoring and resolution: Are two languages better than one? Evidence from reaction time and event-related brain potentials. Brain Res 1446: 71-90. |
[13] |
Luk G, Anderson JAE, Craik FIM, et al. (2010) Distinct neural correlates for two types of inhibition in bilinguals: response inhibition versus interference suppression. Brain Cogn 74:347-357. doi: 10.1016/j.bandc.2010.09.004
![]() |
[14] | Krizman J, Marian V, Shook A, et al. (2012) Subcortical encoding of sound is enhanced in bilinguals and relates to executive function advantages. Proc Natl Acad Sci 109(20): 7877-7881. |
[15] | Munoz-Sandoval AF, Cummins J, Alvarado CG, et al. (1998). Bilingual verbal ability test: Comprehensive manual. Itasca: Riverside Publishing. |
[16] | Wechsler D. (2008) Wechsler adult intelligence scale. 4th Ed (WAIS IV). San Antonio: Psychological Corporation. |
[17] | Mao YT, Pallas SL. (2013) Cross0modal plasticity results in increased inhibition in primary auditory cortical areas. Neural Plast 2013. doi:10. 1155/2013/530651. |
[18] | Chittajallu R, Isaac JTR. (2010). Emergence of cortical inhibition by coordinated sensory-driven plasticity at distinct synaptic loci. Nat Neurosci 13(10). doi:10. 1038/nn. 2369. |
[19] |
Bak T, Nissan JJ, Allerhand MM, et al. (2014). Does bilingualism in fluence cognitive aging? Ann Neurol 75(6): 959-963. doi: 10.1002/ana.24158
![]() |
[20] |
Chambers CD, Garavan H, Bellgrove MA. (2009). Insights into the neural basis of response inhibition from cognitive and clinical neuroscience. Neurosci Biobehav Res 33(5): 631-646. doi: 10.1016/j.neubiorev.2008.08.016
![]() |
[21] | Lustig C, Hasher L, Zacks R. (2007). Inhibitory deficit theory: Recent developments in a “new view”. In: MacLeod CW, Gorfein CD. Inhibition in cognition. Washington, DC: American Psychological Association. ERPs to the first stimulus in the auditory and visual modality. |
[22] |
Yi Y, Friedman D. (2014). Age-related differences in working memory: ERPs reveal age-related delays in selection- and inhibition-related processes. Neuropsychol Dev Cogn B Aging Neuropsychol Cogn 21(4): 483-513. doi: 10.1080/13825585.2013.833581
![]() |
1. | Mohammad Amin Tareeghee, Abbas Najati, Batool Noori, Choonkil Park, Asymptotic behavior of a generalized functional equation, 2022, 7, 2473-6988, 7001, 10.3934/math.2022389 | |
2. | Araya Kheawborisut, Siriluk Paokanta, Jedsada Senasukh, Choonkil Park, Ulam stability of hom-ders in fuzzy Banach algebras, 2022, 7, 2473-6988, 16556, 10.3934/math.2022907 | |
3. | S. Deepa, S. Bowmiya, A. Ganesh, Vediyappan Govindan, Choonkil Park, Jung Rye Lee, Mahgoub transform and Hyers-Ulam stability of $ n^{th} $ order linear differential equations, 2022, 7, 2473-6988, 4992, 10.3934/math.2022278 | |
4. | Yamin Sayyari, Mehdi Dehghanian, Choonkil Park, Jung Rye Lee, Stability of hyper homomorphisms and hyper derivations in complex Banach algebras, 2022, 7, 2473-6988, 10700, 10.3934/math.2022597 | |
5. | Ramakrishnan Kalaichelvan, Uma Jayaraman, Gunaseelan Mani, Sabri T.M. Thabet, Imed Kedim, Thabet Abdeljawad, Stability of generalized cubic- and quartic-type functional equations in the setting of non-Archimedean spaces, 2025, 19, 1658-3655, 10.1080/16583655.2025.2474846 |