Processing math: 59%
Research article

The viscosity solutions of a nonlinear equation related to the p-Laplacian

  • Received: 10 May 2017 Accepted: 25 May 2017 Published: 28 June 2017
  • The viscosity solutions of a nonlinear equation related to the p-Laplacian are considered. Besides there is a damping term in the equation, a nonlocal function is added. By considering the regularized problem and using Moser iteration technique, we get the uniformly local bounded properties of the solutions and the Lp-norm for the gradients. By the compactness theorem, we prove the existence of the viscosity solution of the equation.

    Citation: Qitong Ou, Huashui Zhan. The viscosity solutions of a nonlinear equation related to the p-Laplacian[J]. AIMS Mathematics, 2017, 2(3): 400-421. doi: 10.3934/Math.2017.3.400

    Related Papers:

    [1] Ya-Lei Li, Da-Bin Wang, Jin-Long Zhang . Sign-changing solutions for a class of p-Laplacian Kirchhoff-type problem with logarithmic nonlinearity. AIMS Mathematics, 2020, 5(3): 2100-2112. doi: 10.3934/math.2020139
    [2] Chengbo Zhai, Yuanyuan Ma, Hongyu Li . Unique positive solution for a p-Laplacian fractional differential boundary value problem involving Riemann-Stieltjes integral. AIMS Mathematics, 2020, 5(5): 4754-4769. doi: 10.3934/math.2020304
    [3] Sara Pouyandeh, Amirhossein Morovati Moez, Ali Zeydi Abdian . The spectral determinations of connected multicone graphs KwmCP(n). AIMS Mathematics, 2019, 4(5): 1348-1356. doi: 10.3934/math.2019.5.1348
    [4] Aleksa Srdanov . Fractal form of the partition functions p (n). AIMS Mathematics, 2020, 5(3): 2539-2568. doi: 10.3934/math.2020167
    [5] Haikun Liu, Yongqiang Fu . On the variable exponential fractional Sobolev space Ws(·),p(·). AIMS Mathematics, 2020, 5(6): 6261-6276. doi: 10.3934/math.2020403
    [6] Benedetta Ferrario, Christian Olivera . Lp-solutions of the Navier-Stokes equation with fractional Brownian noise. AIMS Mathematics, 2018, 3(4): 539-553. doi: 10.3934/Math.2018.4.539
    [7] Nazar Khan, Qazi Zahoor Ahmad, Tooba Khalid, Bilal Khan . Results on spirallike p-valent functions. AIMS Mathematics, 2018, 3(1): 12-20. doi: 10.3934/Math.2018.1.12
    [8] Limin Guo, Lishan Liu, Ying Wang . Maximal and minimal iterative positive solutions for p-Laplacian Hadamard fractional differential equations with the derivative term contained in the nonlinear term. AIMS Mathematics, 2021, 6(11): 12583-12598. doi: 10.3934/math.2021725
    [9] Ehsan Movahednia, Young Cho, Choonkil Park, Siriluk Paokanta . On approximate solution of lattice functional equations in Banach f-algebras. AIMS Mathematics, 2020, 5(6): 5458-5469. doi: 10.3934/math.2020350
    [10] Waseem Ahmad Khan, Kottakkaran Sooppy Nisar, Dumitru Baleanu . A note on (p, q)-analogue type of Fubini numbers and polynomials. AIMS Mathematics, 2020, 5(3): 2743-2757. doi: 10.3934/math.2020177
  • The viscosity solutions of a nonlinear equation related to the p-Laplacian are considered. Besides there is a damping term in the equation, a nonlocal function is added. By considering the regularized problem and using Moser iteration technique, we get the uniformly local bounded properties of the solutions and the Lp-norm for the gradients. By the compactness theorem, we prove the existence of the viscosity solution of the equation.


    1. Introduction

    The objective of the paper is to study the nonnegative weak solutions of nonlinear parabolic equation with the type

    ut=div(ump2um)a(x)umq1|um|p1+f0(um)ΩK(y)|um(y,t)|βdy+g(x),  in S=Ω×(0,), (1.1)
    u(x,0)=u0(x),  xΩ, (1.2)
    u(x,t)=0,  (x,t)Ω×(0,), (1.3)

    where ΩRN is a bounded open domain with smooth boundary Ω, ΩK(y)|u(y,t)|βdy represents a nonlocal function dependent on spatial domain Ω, a(x)0 is a bounded function, K(x) and g(x) are bounded functions too, and is the spatial gradient operator. We assume that p>1,m>1, p12, p>2p1, N1,

    0um0(x)Lq1+1m(Ω),q>1, |f0(s)|c|s|1m, sR1=(,). (1.4)

    As usual, the here and after, the constants c may be different from one to another. The equation with the type of (1.1) has been suggested as the mathematical model for a variety of problems in mechanics, physics and biology, which can be found in [10,11,15,17] et al. Equation (1.1) has been widely researched, whether it is linear or nonlinear, is uniformly parabolic or degenerate parabolic. In what follows, we only give a very roughly review.

    If a(x)=g(x)=f00, the existence of nonnegative solution of the problem (1.1)-(1.3), defined in weak sense, is well established (see [10], [6] et al.).

    If g(x)=f0, some special cases of equation (1.1) had been researched by Bertsh [3], Zhou [36] and Zhang [34] et al. For examples, the existence and the properties of the viscosity solution to the following equation are obtained in [3,36]

    ut=uuγ|u|2, (1.5)

    where γ is a positive constant. The existence and the properties of the viscosity solution to the following equation are obtained in [34]

    ut=ub(x)|u|q1|u|2, (1.6)

    where b(x) is a known function. The most important characteristic of the equation (1.5) or (1.6) lies in that, generally, the uniqueness of the solutions is not true, one can refer to [4,9,29,34,36] for the details. Thus, for the equation with the type of (1.1), one mainly concerns with the existence of the viscosity solution and the related properties such as the large time behavior, one can refer to [8,20,33,35] et al. for some progresses in the direction.

    But if p1=0, it is well-known the uniqueness of the solutions is true. Aassila [1] studied equation (1.1) when p=2,m=1 and proved the existence of solution by Schauder fixed point theorem, studied the convergence of the solution towards a steady state by using the point of view in dynamical systems. Cholewa and Dlotko [7], Teman [28] considered the following problem

    utdiv(up2u)+|u|αu=f0(u)+g(x), (1.7)

    and proved the existence of global attractor in L2 which is in fact a bounded set in W1,p0Lα+2. Chen [20] studied the long time behavior of solutions for following equation

    utdiv(up2u)+a(x)|u|αu=f0(u)ΩK(y)|u(y,t)|βdy+g(x), (1.8)

    and obtained the existence and Lp estimate of the global attractor.

    While the papers, first by Nakao-Chen [25] and later by Chen-Wang [6], had studies the global existence and the gradient estimate for the quasilinear parabolic equation of m-Laplacian type with a nonlinear convection term, the typical equations included in [6,25] are with the form as

    ut=div(ur|u|p2u)+A(u). (1.9)

    In our paper, we will study the global solution of equation (1.1) with the initial value (1.2) and homogeneous boundary value (1.3) by the usual regularized method. The main techniques are inspired by [6,25]. However, due to the local and the nonlocal nonlinearity of the equation we considered, even to prove the initial value condition, we have to put some restrictions in the exponents of m,p,p1,q1. In particular, as we have said, instead of the nonlinear convection term A(u) in equation (1.9), equation (1.1) contains the damping term a(x)umq1|ump1|, the uniqueness of the solutions generally is not true. We can only prove the uniqueness of the solutions under the condition p1=0. If p10 we only can prove the uniqueness of the viscosity solutions. At the same time, comparing with [5], since equation (1.1) is more complicated, how to get the estimate in the gradient term of the solution, and how to prove the continuity of the solution etc, become more difficult. A clear promotion lies in that we put not any restrictions in the derivative f0(s) of the function f0(s), while it must satisfy that |f0(s)|c|s|r1 in [5]. Other related works on equation (1.1), one can refer to the references [2,14,16,18,19,22,24,27,30,31,32] et al.

    Now we quote the following definition.

    Definition 1.1. A nonnegative function u(x,t) is called a weak solution of (1.1)-(1.3) if u satisfies

    (i)

    uLloc(0,;L(Ω)), (1.10)
    utL2loc(0,;L2(Ω)),  umLloc(0,;W1,p0(Ω)), (1.11)

    (ii)

    S[uφtump2umφa(x)umq1|um|p1φ]dxdt+S[f0(um)ΩK(y)|um(y,t)|βdy+g(x)]φdxdt=0, φC10(S); (1.12)

    (iii)

    limt0Ωu(x,t)u0(x)dx=0. (1.13)

    We are to get the solution of problem (1.1)-(1.3) by considering the regularized equation

    ut=div((|um|2+1k)p22um)a(x)umq1|um|p1+f0(um)ΩK(y)|um(y,t)|βdy+g(x), (1.14)

    with the initial value (1.2) and the homogeneous boundary value (1.3). Here 0u0k(x) is a suitable smooth function such that u0k(x)L(Ω), limkum0kq1+1m=um0q1+1m.

    Definition 1.2. If uk is the solution of the initial boundary value problem of (1.14)-(1.2)-(1.3), limkuk=u, a.e in S, u is a weak solution of (1.1)-(1.3), then u is said to be a viscosity solution.

    We need some important lemmas in order to get our results.

    Lemma 1.1. If 1l<N, 1+βq, 1rq(1+β)Nl/(Nl), u1+βW1,l(Ω), then

    uqc1/(1+β)u1θru1+βθ/(1+β)1,l, (1.15)

    where θ=(β+1)(r1q1)/(N1l1+(β+1)r1).

    This lemma is a general version of Gagliardo-Nirenberg inequality, it is first proved by M. Nakao [23].

    Lemma 1.2. Let y(t) be a nonnegative function on (0,T]. If it satisfies

    y(t)+Atλθ1y1+θ(t)Btky(t)+Ctδ,0<tT, (1.16)

    where A,θ>0, λθ1, B,C0,k1, then

    y(t)A1θ(2λ+2BT1k)1θtλ+2C(λ+BT1k)1t1δ,0<tT. (1.17)

    This lemma can be found in [26].

    Lemma 1.3. Suppose L11, r,R,M>0, λ1>0. For n=2,3,, let

    Ln=RLn1M, θn=NR(1Ln1L1n)(N(R1)+r)1,
    βn=(Ln+M)θ1nLn, λn=(1+λn1(βnM))β1n.

    Then

    limnλn=L1λ1r+Nl1+MN. (1.18)

    This lemma also was first proved in [25], then used in [6].

    In our paper, we assume that p>1+1m, so equation (1.1) is a doubly degenerate parabolic equation. By considering the solution uk of the regularized problem (1.14)-(1.2)-(1.3) and using Moser iteration technique, we get uk's local bounded properties and the local bounded properties of the Lp-norm of the gradient uk. By the compactness theorem, we get the existence of the viscosity solution of the diffusion equation itself. In details, we will prove the following theorems.

    Theorem 1.1. It is supposed that K, g are suitable smooth bounded functions, a(x)C(¯Ω) and exists a0>0, such that a(x)a0 in Ω, f0 satisfies (1.4). If p>1+1m, u0(x)0,

    um0(x)Lq1+1m(Ω),3>q>21m, (1.19)
    p12, 2p1<p, β<max{p11m,q1+1m}, (1.20)
    ϵ=max{mNq1Nm(p1)N+mq+p1(m(p1)+m2)m(p1)1,(β+m)NNm(p1)N+mq}<1, (1.21)

    then the problem (1.1)-(1.3) has a weak viscosity solution u, satisfying

    umLloc(0,;Lq+11m(Ω))Lloc(0,;W1,p0(Ω)), (1.22)

    and

    um(t)c(1+tλ)(1+t)1/(p11m),t>0, (1.23)

    where λ=N(pq+(p11m)N)1. Moreover, if p>2, then

    umpc(1+tδ1)(1+t)σ,t>0, (1.24)

    where

    δ1=max{1+m1m(p1)1,δ1},δ=max{m+1m,2β},

    and

    σ=p[m(2q1+1)1]+mp1[m(p1)1](pp1).

    Remark 1.1. The condition (1.21) is only used to prove (1.13). We conjecture that this condition can be weaken.

    Theorem 1.2. Let u be a nonnegative weak solution of problem (1.1)-(1.3). If g(x)0, f0(s)0, if p>1+1m, p1+q1>(p1) then

    suppu(.,s)suppu(.,t), (1.25)

    for all s,t with 0<s<t.


    2. The L estimation of the solution

    Instead of considering the regularized problem (1.14)-(1.2)-(1.3) directly as one deals with the case m=1, we have to consider the following approximate problem. For small s>0, we consider

    ut=div((|um|2+1k)p22um)a(x)umq1|um|p1+f0(um)ΩK(y)|um(y,t)|βdy+g(x), (2.1)
    u(x,0)=u0k(x)+s,xΩ, (2.2)
    u(x,t)=s,xΩ,t0, (2.3)

    where 0u0k(x) is a suitable smooth function such that u0k(x)L(Ω), limkum0kq1+1m=um0q1+1m.

    Similar as the chapter 8 of [13], in which the existence of the initial boundary value problem of the quaslinear equation in the divergent form is obtained, by Leray-Schauder fixed point theory, using the condition p12, we know that problem (2.1)-(2.3) has a nonnegative classical solution uks, we omit the details here.

    Let s0. In a similar way as [33], we are able to prove that

    uksuk, in  C(S),
    umksumk, in  Lp(S),
    ukstukt, in  L2(S),
    |umks|p2umksxi |umk|p2umkxi,weakly star in Lloc(0,;Lpp1(Ω)),

    and uk is the solution of equation (2.1) with the following initial boundary values

    u(x,0)=u0k(x),xΩ, (2.4)
    u(x,t)=0,xΩ,t0. (2.5)

    Lemma 2.1. Assume that

    (H1) a(x)C(¯Ω) and exists a0>0, such that a(x)a0 in Ω;

    (H2) f0(s)C(R1), |f0(s)|K0|s|1m, for some K0>0.

    (H3) g(x),K(x)L.

    In addition, β+1m<q1, 3>q21m, then umkLloc(0,;Lq1+1m(Ω)) and

    umkq1+1mc(1+t)1p11m,t0. (2.6)

    Proof. In the proof what follows, we only denote uk as u for simplicity. We only give the proof of the case q>21m, if q=21m, one can get the conclusion just a minor version. Let An=(q2)n3q,Bn=(3q)n2q, and

    fn(s)={sq1,  if  s1n,Ans2+Bns,  if  0s<1n.

    Suppose that n>k, multiply (2.1) with fn(um) and integrate it on Ω. Since f(s)>0, then we have

    Ωfn(um)div(|um|2+1k)p22um)dx=Ω(|um|2+1k)p22|um|2fn(um)dx
    Ω|um|pfn(um)dx=Ωum0(fn(s))1pdspdx, (2.7)
    Ωa(x)fn(um)umq1|um|p1dx0. (2.8)

    Suppose that f0(s)∣≤K0sr. Then

    |Ω{um1n}f0(um)fn(um)ΩK(y)|um(y,t)|βdydx|
    c(K)Ω{um1n}umr(Anu2m+Bnum)dxΩ|u|mβdy
    c(K)n1qrΩ|u|mβdyc(K)n1qrumβq1+1m.

    If r=1m,

    |Ω{um>1n}f0(um)fn(um)ΩK(y)|um(y,t)|βdydx|
    c(K)Ωum(r+q1)dxΩ|u|mβdycumq1+1m+βq1+1m,

    we have

    |Ωf0(um)fn(um)ΩK(y)|um(y,t)|βdydx|
    cumβq1+1m[n1q1m+umq1+1mq1+1m]. (2.9)
    |Ω{um>1n}fn(um)g(x)dx|c(g)Ωum(q1)dxc(g)umq1q1+1m. (2.10)

    From the above calculations, we have

    Ωfn(um)utdx+Ωum0(fn(s))1pdspdxcumq1+1m+βq1+1m+O(1nq1), (2.11)

    by Poincare inequality, we have

    Ωfn(um)utdx+cΩum0(fn(s))1pdspdxcumq1+1m+βq1+1m+O(1nq1). (2.12)

    Let n in (2.12). We can deduce that

    ddtΩum(q1)+1dx+cΩum[q1+1m+p11m]dxcumq1+1m+βq1+1m. (2.13)

    By Jessen inequality, from (2.13) we get

    ddtumq1+1mq1+1m+cumq1+1m+p11mq1+1mcumq1+1m+βq1+1m.

    If

    β<p11m

    by young inequality,

    ddtumq1+1mq1+1m+cumq1+1m+p11mq1+1mc,

    then

    umq+11mc(1+t)1p11m.

    We get the desired result.

    Lemma 2.2. If p>1+1m, uk is the solution of problem (2.1)-(2.4)-(2.5), then

    umkctλ, 0<t1, (2.14)
    umkc(1+t)1p11m,t1, (2.15)

    where λ=N(p11m)N+qp.

    Proof. Multiply (2.1) with um(l1), and integrate it on Ω, then

    Ωum(l1)utdx=Ωdiv(|um|+1k)p22um)um(l1)dxΩa(x)umq1|um|p1um(l1)dx
    +Ωf0(um)um(l1)ΩK(y)|um(y,t)|βdydx+Ωg(x)um(l1)dx
    =(l1)Ω(|um|+1k)p22|um|2um(l2)dxΩa(x)umq1|um|p1um(l1)dx
    +ΩK(y)|um(y,t)|βdyΩf0(um)um(l1)dx+Ωg(x)um(l1)dx
    (l1)Ω(|um|+1k)p22|um|2um(l2)dx
    +c(K)Ω|um(y,t)|βdyΩum(l1)+1dx+c(g)Ωum(l1)dx,

    which deduces that

    ddtuml1+1ml1+1m+c(l1+1m)2pΩump+l1+1m11mppdxcuml1+1ml1+1mumq1+1m+βq1+1m+cuml1l1+1m
    uml1+1ml1+1m+cuml1l1+1m,(by (2.6)).

    Set L=l1+1m. Then

    ddtumLL+cL2pΩumL+p11mppdxcumL+βL+cumL1mL, (2.16)

    where c is a constant independent of l.

    Now, if we choose L1=q1+1m,Ln=rLn1(p11m), θn=rN(1Ln1L1n)(p+N(r1))1, μn=(Ln+p11m)θ1nLn, r>1+(p11m)q1, n=2,3,, by Lemma 1.3, we have

    umLncp/(Ln+p11m)um1θnLn1um(Ln+p11m)/ppθn/(p11m+Ln)p. (2.17)

    If we choose L=Ln in (2.16), by (2.17), we have

    ddtumLnLn+cp/θnL2pnumLn+μnLnump11mμnLn1cumLn+βLn+cumLn1mLn. 0<t1. (2.18)

    We will prove that there exist two bounded sequences {ξn},{λn} such that

    umLnξntλn, 0<t1. (2.19)

    Without loss of the generality, we may assume that umLn1. Otherwise, choosing ξn1, (2.17) is true naturally. Thus, by (2.16), we have

    ddtumLnLn+cp/θnL2pnumLn+μnLnump11mμnLn1cumLn+βLn. 0<t1.

    If n=1, by Lemma 2.1, λ1=0,ξ1=supt0um(t)q1+1m makes (2.19) sure. If (2.19) is true for n1, from (2.18),

    ddtumLnLn+cp/θnL2pnumLn+μnLnξp11mμnn1t(p11mμn)λn1cumLn+βLn. 0<t1. (2.20)

    we can choose

    λn=(λn1(μnp+1+1m)+1)μ1n, ξn=ξn1(cp/θnLp1nλn)1/μn, n=2,3,,
    ddtumLnLn+cumLn+λnLncumLn+βLn. 0<t1. (2.21)

    Suppose that

    β<N(p11m)N+qp, (2.22)

    and notice that as n, λnλ=N(p11m)N+pq.

    ddtumLnLn+cumLn+λnLn0. 0<t1. (2.23)

    By Lemma 1.2 and (2.23), we know (2.19) is true.

    Moreover, it is easy to see that {ξn} is bounded. Thus, by Lemma 1.2, (2.14) is true.

    To prove (2.15), we set τ=log(1+t),t1, w(τ)=(1+t)1p11mum(t). By (2.16), we have

    ddτw(τ)LL+cL2pwL+p11mpppLp11mw(τ)LL+cw(τ)L+βL, τlog2. (2.21)

    By the lemma 3.1 in [24], we can get (2.15), we omit details here.


    3. The L estimation of the gradient

    Lemma 3.1. If p>max{2,1+1m}, uk is the solution of problem (2.1)-(2.4)-(2.5), then

    umkpct(1+m1m(p1)1)+ct1δ, 0<t1, (3.1)
    umkpc(1+t)p(m(2q1+1)1)+mp1(m(p1)1)(pp1),t1. (3.2)

    Here δ=max{m1m,2β}.

    Proof. Multiply (2.1) with umt, and integrate it on Ω, then

    mΩum1(ut)2dx=Ωdiv((|um|2+1k)p22um)umtdxΩa(x)umq1|um|p1umtdx
    +Ωf0(um)umtdxΩK(y)|um(y,t)|βdy+Ωg(x)umtdx. (3.3)
    Ωdiv((|um|2+1k)p22um)umtdx=Ω(|um|+1k)p22umumtdx
    =12Ω(|um|2+1k)p22|um|2tdx
    =12Ωddt|um|20(s+1k)p22dsdx=12ddtΓk(|um|2), (3.4)

    where we define that

    Γk(|um|2)=Ω|um|20(s+1k)p22dsdx.

    At the same time,

    |a(x)umq1|um|p1umtdx|m2Ωum1(ut)2dx+cΩ|um|2q1+m1m|um|2p1dx. (3.5)

    By Lemma 2.1, using Young inequality and H¨older inequality,

    |Ωf0(um)umtdxΩK(y)|um(y,t)|βdy|
    c(εΩum1(ut)2dx+cΩum+1dx)umβq1+1m
    cεΩum1(ut)2dx+cΩum+1dx
    |Ωg(x)umtdx|εΩum1(ut)2dx+cΩum1dx.

    By (3.3)-(3.5), we have

    Ωum1(ut)2dx+1mddtΓk(|um|2)cΩ|um|2q1+m1m|um|2p1dx+cΩum+1dx+cΩum1dx. (3.6)

    Multiply (2.1) with um, and integrate it on Ω, then

    1m+1Ωddtum+1dx=Ωdiv((|um|2+1k)p22um)umdxΩa(x)umq1|um|p1umdx
    +Ωf0(um)umΩK(y)|um(y,t)|βdydx+Ωg(x)umdx
    =Ω(|um|2+1k)p22|um|2dxΩa(x)umq1|um|p1umdx
    +Ωf0(um)umΩK(y)|um(y,t)|βdydx+Ωg(x)umdx

    and

    Γk(|um|2)Ω(|um|2+1k)p22|um|2dx
    =1m+1Ωddtum+1dxΩa(x)umq1|um|p1umdx+Ωf0(um)umΩK(y)|um(y,t)|βdydx+Ωg(x)umdx
    1m+1um+122um12ut2+c(K)Ω|um(y,t)|βdyΩum+1dx+c(g)Ωumdx,

    so

    1mddtΓk(|um|2)+(m+1)2um+1222Γ2k(|um|2)
    cΩ|um|2q1+m1m|um|2p1dx+cΩum+1dx+cΩum1dx
    +cum+1222(Ω|um(y,t)|βdyΩum+1dx+Ωumdx)2
    cΩ|um|2q1+m1m|um|2p1dx+cΩum+1dx+cΩum1dx
    +c(Ω|um(y,t)|βdy)2Ωum+1dx+cum+122mm+122. (3.7)

    Setting 2γ=2q1+11m, for a[0,2γ], if we notice that p>2p1, then we have

    Ω|um|2a|um|2p1dxum(t)a(Ω|um|(2γa)pp2p1dx)p2p1pum2p1p. (3.8)

    If 2γ(p2p1)(N+1)/N, let a=(2γ(p2p1)(1+qN))+. By Lemma 1.3,

    (Ω|um|(2γa)pp2p1dx)p2p1pcum(t)(2γa)(1θ)sump2p1p, (3.9)

    where θ=(s1(12p1p)(2γa)1)/(N1p1+s1), and s=(2γp+2p1a)N/(p2p1) when 2γ(p2p1)(1+q/N), s=q when (p2p1)(1+N1)2γ(p2p1)(1+q/N). By Lemma 2.1 and Lemma 2.2, from (3.8), we have

    Ω|um|2a|um|2p1dxctλaumppctλaΓk(|um|2). 0<t1. (3.10)

    At the same time, if we choose q=2 in Lemma 2.1, we have

    um1+1m=(Ωum+1dx)mm+1c(1+t)(p1mm+1)1c,

    and

    Ωum1dxctm1mλ, um+1222=Ωum+1dxc. (3.11)

    By (3.7) and Lemma 2.2, we have

    Γk(t)+ctm+1m(p1)1Γ2k(t)ctλaΓk(t)+c(tλm1m+t2βλ), 0<t1. (3.12)

    If 2γ<(p2p1)(N+1)/N and p2p12a2γ,

    Ω|um|2a|um|2p1dxcum2a(1θ)1um2aθ+2p1pcumppcΓk(|um|2). 0<t1. (3.13)

    If 2γ<(p2p1)(N+1)/N and p2p12a0,

    Ω|um|2a|um|2dxc(1+umpp)c(1+Γk(|um|2)). 0<t1. (3.14)

    (3.13) and (3.14) imply that (3.12) is still true when 2γ<(p2p1)(N+1)/N. Using Lemma 1.2,

    Γk(t)ct(1+m1m(p1)1)+ct1δ, 0<t1,

    where δ=max{m+1m,2β}. Then (3.1) is true. Now, we will prove (3.2). For t1, by (2.15)

    Ω|um|2a|um|2p1dxcum2pum(t)2γ2γp/p2p1c(1+t)2γ/(p11m)um2p1p. t1. (3.15)
    Γk(|um|2)=|um|20(s2+1k)p22dscumpp=c(um2p1p)p2p1, t1. (3.16)
    um+1222=(Ωum+1dx)2c(1+t)(p11m)1, t1. (3.17)

    by (3.7), using (3.15)-(3.17)

    \Gamma_{k}'(t)+c(1+t)^{-(p-1-\frac{1}{m})^{-1}}\Gamma_{k}^{2}(t)\leq c(1+t)^{2\gamma/(p-1-\frac{1}{m})}(\Gamma_{k}(t))^{\frac{2p_1}{p}}
    +c\int_{\Omega}u^{m+1}dx+c\int_{\Omega}u^{m-1}dx +c(\int_{\Omega}|u^m(y, t)|^{\beta}dy)^{2}\int_{\Omega}u^{m+1}dx+c\|u^{\frac{m+1}{2}}\|_{2}^{2(m-1)},

    by Young inequality,

    \Gamma_{k}'(t)+c(1+t)^{-(p-1-\frac{1}{m})^{-1}}\Gamma_{k}^{2}(t)\leq c(1+t)^{\frac{-m(2\gamma p+p_1)}{(m(p-1)-1)(p-p_1)}}+c(1+t)^{-\frac{m(m+1)}{m(p-1)-1}}
    =c(1+t)^{-\frac{p(m(2q_1+1)-1)+mp_1}{(m(p-1)-1)(p-p_1)}}+c(1+t)^{-\frac{m(m+1)}{m(p-1)-1}},

    which means (3.2) is true.

    Lemma 3.2. If p> 1+\frac{1}{m}, u_{k} is the solution of problem (2.1) -(2.4)-(2.5), then

    \int_{t}^{T}\int_{\Omega}u^{m-1}_{k}(u_{kt})^{2}dxds\leq ct^{-(1+\frac{m-1}{m(p-1)-1})}+ct^{-(\lambda \gamma+\frac{m-1}{m(p-1)-1})}+ct^{-\frac{1+m}{m}\lambda}, \ 0<t\leq T. (3.18)

    Proof. From (3.6), (3.10) and (2.14), we have

    \int_{\Omega}u^{m-1}(u_{t})^{2}dx+\frac{1}{m}\frac{d}{dt}\Gamma_{k}(|\nabla u^{m}|^{2})\leq c\int_{\Omega}|u^{m}|^{2q_1+\frac{m-1}{m}}|\nabla u^{m}|^{2p_1}dx+c\int_{\Omega}u^{m+1}dx+c\int_{\Omega}u^{m-1}dx
    \int_{t}^{T}\int_{\Omega}u^{m-1}(u_{t})^{2}dxds\leq \Gamma_{k}(t)+c\int_{t}^{T}\int_{\Omega}|u^{m}|^{2q_1+\frac{m-1}{m}}|\nabla u^{m}|^{2p_1}dxds+c\int_{t}^{T}\int_{\Omega}u^{m+1}dx
    \leq\Gamma_{k}(t)+c\int_{t}^{T}s^{-\lambda(2q_1+\frac{m-1}{m})}\Gamma_{k}(s)ds+c\int_{t}^{T}\int_{\Omega}u^{m+1}dx
    \leq ct^{-(1+\frac{m-1}{m(p-1)-1})}+ct^{-(\lambda \gamma+\frac{m-1}{m(p-1)-1})}+ct^{-\frac{1+m}{m}\lambda}. (3.19)

    4. The proof of Theorem 1.1

    The proof of Theorem 1.1 from Lemma 2.1, Lemma 2.2, Lemma 3.1 and Lemma 3.2, using the compactness theory (cf [21]), there is a sequence (still denoted it as \{u_{k}\}) of \{u_{k}\} such that when k\rightarrow \infty, u_{k}\rightarrow u, \ a.e. \ {\rm in}\ S and so

    \lim\limits_{k\rightarrow \infty}f_0(u_{k}^{m})\int_{\Omega}K(y)|u_{k}^{m}(y, t)|^{\beta}dy= f_0(u^{m})\int_{\Omega}K(y)|u^{m}(y, t)|^{\beta}dy.

    Moreover, we have

    u_{k}\rightharpoonup \ u, \text{weakly* star in}\ L^{\infty}_{\rm loc}(0, \infty; L^{m(q-1)+1}(\Omega)), (4.1)
    u_{kt}\rightharpoonup u_{t}, \text{ weakly in} \ L^{2}(0, \infty; L^{2}(\Omega)), \nabla u^{m}_{k}\rightharpoonup \nabla u^{m}, \ \text{weakly in} \ L^{p}_{{\rm loc}}(0, \infty; L^{p}(\Omega)) (4.2)
    |\nabla u^{m}_{k}|^{p-2} u^{m}_{kx_{i}}\rightharpoonup\ \chi_{i}, \text{weakly* in}\ L_{\text{loc}}^{\infty}(0, \infty; L^{\frac{p}{p-1}}(\Omega)), (4.3)
    a(x)u_{k}^{mq_1}|\nabla u^{m}_{k}|^{p_1}\rightharpoonup\ \nu, \text{weakly* in}\ L_{\text{loc}}^{\infty}(0, \infty; L^{\frac{p}{p_1}}(\Omega)), (4.4)

    where \chi=\{\chi_{i}: 1\leq i\leq N\} and every \chi_{i} is a function in L_{loc}^{\infty}(0, T; L^{\frac{p}{p-1}}(\Omega)), \nu \in L_{loc}^{\infty}(0, \infty; L^{\frac{p}{p_1}}(\Omega)). (4.1) and (4.2) are clearly true.

    In what follows, we only need to prove that

    \chi=|\nabla u^{m}|^{p-2}\nabla u^{m}, \ \ {\rm in}\ L_{{\rm loc}}^{\infty}(0, \infty; L^{\frac{p}{p-1}}(\Omega)). (4.5)

    and

    \nu=a(x)u^{mq_1}|\nabla u^{m}|^{p_1}, \ \ {\rm in} \ L_{{\rm loc}}^{\infty}(0, \infty; L^{\frac{p}{p_1}}(\Omega)). (4.6)

    It is easy to know that

    \iint_{S}\left(u\varphi_{t}-\chi\cdot \nabla\varphi-\nu \varphi+ f_0(u^{m})\int_{\Omega}K(y)|u^{m}(y, t)|^{\beta}dy\varphi+g(x)\varphi\right)dxdt=0, \ \forall \varphi \in C_{0}^{\infty}(S), (4.7)

    so, if we can prove that

    \iint_{S}\mid \nabla u^{m}\mid^{p-2}\nabla u^{m}\cdot \nabla\varphi dxdt=\iint_{S}\chi\cdot \nabla\varphi dxdt, \ \forall \varphi \in C_0^{1}(S); (4.8)
    \iint_{S}a(x)u^{mq_1}|\nabla u^{m}|^{p_1}\varphi dxdt=\iint_{S}\nu \varphi dxdt, \ \ \forall \varphi \in C_0^{1}(S); (4.9)

    then (4.5), (4.6) and (1.12) are true.

    First, for any \psi\in C^{\infty}_{0}(S), 0\leq\psi\leq 1; v^{m}\in L^{p}_{\text{loc}}(0, T; W^{1, p}_{0}(\Omega)), we have

    \iint_{S}\psi(\mid \nabla u_{k}^{m}\mid^{p-2}\nabla u_{k}^{m}-\mid \nabla v^{m}\mid^{p-2}\nabla v^{m})\cdot\nabla(u_{k}^{m}-v^{m})dxdt\geq 0, (4.10)

    If we multiply with u^{m}_{k}\psi on two sides of (2.1), then we have

    \iint_{S}\psi\left(|\nabla u^{m}_{k}|^{2}+\frac{1}{k}\right)^{\frac{p-2}{2}}|\nabla u^{m}_{k}|^{2}dxdt=\frac{1}{m+1}\iint_{S}\psi_{t}u^{m+1}_{k}dxdt-\iint_{S}u^{m}_{k}\left(|\nabla u^{m}_{k}|^{2}+\frac{1}{k}\right)^{\frac{p-2}{2}}\nabla u^{m}_{k}\cdot\nabla\psi dxdt
    -\iint_{S}a(x)u_{k}^{m(q_1+1)}|\nabla u^{m}_{k}|^{p_1}\psi dxdt+\iint_{S}[ f_0(u_{k}^{m})\int_{\Omega}K(y)|u_{k}^{m}(y, t)|^{\beta}dy+g(x)]u^{m}_{k}\psi dxdt. (4.11)

    Noticing that when 1 < p < 2,

    |\nabla u^{m}_{k}|^{2}\geq (|\nabla u_{k}^{m}|^{2}+\frac{1}{k})^{\frac{p}{2}}-(\frac{1}{k})^{\frac{p}{2}},
    (|\nabla u_{k}^{m}|^{2}+\frac{1}{k})^{\frac{p-2}{2}}|\nabla u^{m}_{k}|\leq (|\nabla u_{k}^{m}|^{2}+\frac{1}{k})^{\frac{p-1}{2}},

    and when p\geq 2,

    (|\nabla u_{k}^{m}|^{2}+\frac{1}{k})^{\frac{p-2}{2}}|\nabla u_{k}^{m}|^{2}\geq|\nabla u_{k}^{m}|^{p},
    (|\nabla u_{k}^{m}|^{2}+\frac{1}{k})^{\frac{p-2}{2}}|\nabla u_{k}^{m}|\leq(|\nabla u_{k}^{m}|^{p-1}+1),

    by (4.10), (4.11), we have

    \frac{1}{m+1}\iint_{S}\psi_{t}u^{m+1}_{k}dxdt-\iint_{S}u^{m}_{k}\left(|\nabla u^{m}_{k}|^{2}+\frac{1}{k}\right)^{\frac{p-2}{2}}\nabla u^{m}_{k}\cdot\nabla\psi dxdt
    -\iint_{S}a(x)u_{k}^{m(q_1+1)}|\nabla u^{m}_{k}|^{p_1}\psi dxdt +(\frac{1}{k})^{\frac{p-2}{2}}\text{mes}\Omega
    +\iint_{S}[ f_0(u_{k}^{m})\int_{\Omega}K(y)|u_{k}^{m}(y, t)|^{\beta}dy+g(x)]u^{m}_{k}\psi dxdt
    -\iint_{S}\psi|\nabla u_{k}^{m}|^{p-2}\nabla u_{k}^{m}\cdot\nabla v^{m}dxdt-\iint_{S}\psi|\nabla v^{m}|^{p-2}\nabla v^{m}\cdot \nabla(u_{k}^{m}-v^{m})dxdt\geq 0. (4.12)

    Since

    \left(|\nabla u^{m}_{k}|^{2}+\frac{1}{k}\right)^{\frac{p-2}{2}}\nabla u^{m}_{k}=|\nabla u_{k}^{m}|^{p-2}\nabla u_{k}^{m}+\frac{p-2}{2k}\int_{0}^{1}(|\nabla u_{k}^{m}|^{2}+\frac{s}{k})^{\frac{p-4}{2}}ds\nabla u^{m}_{k},

    and

    \lim\limits_{k\rightarrow\infty}\iint_{S}\int_{0}^{1}(|\nabla u_{k}^{m}|^{2}+\frac{s}{k})^{\frac{p-4}{2}}ds\nabla u^{m}_{k}\cdot\nabla\psi u^{m}_{k}dxdt=0,

    if we let k\rightarrow\infty in (4.12), we have

    \frac{1}{m+1}\iint_{S}\psi_{t}u^{m+1}dxdt -\iint_{S}u^m\nu\psi dxdt-\iint_{S}u^m\chi\nabla\psi dxdt
    -\iint_{S}\psi \chi\cdot\nabla v^{m}dxdt-\iint_{S}\psi|\nabla v^{m}|^{p-2}\nabla v^{m}\cdot \nabla(u^{m}-v^{m})dxdt
    +\iint_{S}[ f_0(u^{m})\int_{\Omega}K(y)|u^{m}(y, t)|^{\beta}dy+g(x)]u^{m}\psi dxdt \geq 0. (4.13)

    Now, we choose \varphi=\psi u^{m} in (4.7),

    \frac{1}{m+1}\iint_{S}\psi_{t}u^{m+1}dxdt-\iint_{S}u^m\nu\psi dxdt -\iint_{S}\chi\cdot\nabla \psi u^m dxdt
    +\iint_{S}[f_0(u^{m})\int_{\Omega}K(y)|u^{m}(y, t)|^{\beta}dy+g(x)]\psi u^{m}dxdt =\iint_{S}\psi \chi\cdot\nabla u^m dxdt.

    From this formula and (4.13), we have

    \iint_{S}\psi(\chi-|\nabla v^{m}|^{p-2}\nabla v^{m})\cdot \nabla(u^{m}-v^{m})dxdt\geq 0. (4.14)

    Let v^{m}=u^{m}-\lambda\varphi, \lambda\geq 0, \varphi\in C^{\infty}_{0}(S). Then

    \iint_{S}\psi(\chi_{i}-|\nabla(u^{m}-\lambda\varphi)|^{p-2}(u^{m}-\lambda\varphi)_{x_{i}})dxdt\geq 0.

    Let \lambda\rightarrow 0. We obtain

    \iint_{S}\psi(\chi_{i}-|\nabla u^{m}|^{p-2}u^{m}_{x_{i}})dxdt\geq0, \forall \varphi\in C^{\infty}_{0}(S).

    Moreover, if we choose \lambda\leq 0, we are able to get

    \iint_{S}\psi(\chi_{i}-|\nabla u^{m}|^{p-2}u^{m}_{x_{i}})dxdt\leq0, \forall \varphi\in C^{\infty}_{0}(S).

    Now, if we choose \psi such that \text{supp}\varphi\subset\text{supp}\psi, and on \text{supp}\varphi, \psi=1, then we can get (4.8).

    By a process of limitation, we can choose the test function \varphi in (4.8) as u^m, then we have

    \lim\limits_{k\rightarrow 0}\iint_{S}|\nabla u_{k}^{m}|^{p}dxdt=\iint_{S}\chi\cdot \nabla u^m dxdt=\iint_{S}|\nabla u^{m}|^{p}dxdt. (4.15)

    Due to (1.20), 2p_{1} < p, then by H\ddot{o}lder inequality, we have

    \lim\limits_{k\rightarrow 0}\iint_{S}|\nabla u_{k}^{m}|^{p_1}dxdt=\iint_{S}\chi\cdot \nabla u^m dxdt=\iint_{S}|\nabla u^{m}|^{p_1}dxdt. (4.16)

    By a refinement of Fatou's lemma, the theorem 1.4.1 in [12], we are easy to prove (4.9), and so (1.12) is true.

    Secondly, we are to prove (1.13).

    For small r>0, denote \Omega_{r}=\{x\in\Omega: \text{dist}(x, \partial \Omega)\leq r\}. For any \eta>0, let

    \text{sgn}_{\eta}(s)=\left\{\begin{array}{ccc} 1, \ \ &\ \ {\rm if}\ \ s>\eta, \\ \frac{s}{\eta}, \ \ &\ \ {\rm if}\ \ |s|\leq\eta, \\ -1, \ \ &\ \ {\rm if}\ \ s<-\eta. \end{array} \right.

    For any given small r>0, large enough k, l, we declare that

    \int_{\Omega_{2r}}|u_{k}(x, t)-u_{l}(x, t)|dx\leq \int_{\Omega_{r}}|u_{k}(x, 0)-u_{l}(x, 0)|dx+c_{r}(t), (4.17)

    where c_{r}(t) is independent of k, l, and \lim_{t\rightarrow 0}c_{r}(t)=0. By (2.1)

    \int_{0}^{t}\int_{\Omega_{r}}\varphi (u_{kt}-u_{lt})dxd\tau+\int_{0}^{t}\int_{\Omega_{r}}\nabla \varphi [(|\nabla u_{k}^{m}|^{2}+\frac{1}{k})^{\frac{p-2}{2}}\nabla u_{k}^{m}-(|\nabla u_{l}^{m}|^{2}+\frac{1}{l})^{\frac{p-2}{2}}\nabla u_{l}^{m}]dxd\tau
    +\int_{0}^{t}\int_{\Omega_{r}}a(x)(u^{mq_1}_{k}|\nabla u_{k}^{m}|^{p_1}-u^{mq_1}_{l}|\nabla u_{l}^{m}|^{p_1})\varphi dxd\tau
    +\int_{0}^{t}\int_{\Omega_{r}}[f_0(u^{m}_{k})\int_{\Omega}K(y)|u^{m}_{k}(y, t)|^{\beta}dy -f_0(u^{m}_{l})\int_{\Omega}K(y)|u^{m}_{l}(y, t)|^{\beta}dy]\varphi dxd\tau =0, (4.18)

    for \forall \varphi \in L^{p}(0, T; W_{0}^{1, p}(\Omega)). Suppose that \xi(x)\in C_{0}^{1}(\Omega_{r}) such that

    0\leq\xi\leq 1; \ \ \xi\mid_{\Omega_{2r}}=1,

    and choose \varphi=\xi\text{sgn}_{\eta}(u_{k}^{m}-u_{l}^{m}) in (4.18), then

    \int_{0}^{t}\int_{\Omega_{r}} \xi\text{sgn}_{\eta}(u_{k}^{m}-u_{l}^{m}) (u_{kt}-u_{lt})dxd\tau
    +\int_{0}^{t}\int_{\Omega_{r}} [(|\nabla u_{k}^{m}|^{2}+\frac{1}{k})^{\frac{p-2}{2}}\nabla u_{k}^{m}-(x|\nabla u_{l}^{m}|^{2}+\frac{1}{l})^{\frac{p-2}{2}}\nabla u_{l}^{m}]\nabla\xi \text{sgn}_{\eta}(u_{k}^{m}-u_{l}^{m}) dxd\tau
    +\int_{0}^{t}\int_{\Omega_{r}} [(|\nabla u_{k}^{m}|^{2}+\frac{1}{k})^{\frac{p-2}{2}}\nabla u_{k}^{m}-(x|\nabla u_{l}^{m}|^{2}+\frac{1}{l})^{\frac{p-2}{2}}\nabla u_{l}^{m}]\nabla(u_{k}^{m}-u_{l}^{m})\xi \text{sgn}'_{\eta}(u_{k}^{m}-u_{l}^{m}) dxd\tau
    +\int_{0}^{t}\int_{\Omega_{r}}a(x)(u^{mq_1}_{k}|\nabla u_{k}^{m}|^{p_1}-u^{mq_1}_{l}|\nabla u_{l}^{m}|^{p_1})\xi\text{sgn}_{\eta}(u_{k}^{m}-u_{l}^{m}) dxd\tau
    +\int_{0}^{t}\int_{\Omega_{r}}[f_0(u^{m}_{k})\int_{\Omega}K(y)|u^{m}_{k}(y, t)|^{\beta}dy -f_0(u^{m}_{l})\int_{\Omega}K(y)|u^{m}_{l}(y, t)|^{\beta}dy]\xi\text{sgn}_{\eta}(u_{k}^{m}-u_{l}^{m}) dxd\tau \leq0. (4.19)

    If we notice that the third term in the left hand side on (4.19) is nonnegative when \eta\rightarrow 0, then we have

    \lim\limits_{\eta\rightarrow 0}\int_{0}^{t}\int_{\Omega_{r}} \xi\text{sgn}_{\eta}(u_{k}^{m}-u_{l}^{m}) (u_{kt}-u_{lt})dxd\tau
    +\lim\limits_{\eta\rightarrow 0}\int_{0}^{t}\int_{\Omega_{r}}[(|\nabla u_{k}^{m}|^{2}+\frac{1}{k})^{\frac{p-2}{2}}\nabla u_{k}^{m}-(|\nabla u_{l}^{m}|^{2}+\frac{1}{l})^{\frac{p-2}{2}}\nabla u_{l}^{m}]\nabla\xi \text{sgn}_{\eta}(u_{k}^{m}-u_{l}^{m}) dxd\tau
    +\lim\limits_{\eta\rightarrow 0}\int_{0}^{t}\int_{\Omega_{r}}a(x)(u^{mq_1}_{k}|\nabla u_{k}^{m}|^{p_1}-u^{mq_1}_{l}|\nabla u_{l}^{m}|^{p_1})\xi\text{sgn}_{\eta}(u_{k}^{m}-u_{l}^{m}) dxd\tau
    +\lim\limits_{\eta\rightarrow 0}\int_{0}^{t}\int_{\Omega_{r}}[f_0(u^{m}_{k})\int_{\Omega}K(y)|u^{m}_{k}(y, t)|^{\beta}dy -f_0(u^{m}_{l})\int_{\Omega}K(y)|u^{m}_{l}(y, t)|^{\beta}dy]\xi\text{sgn}_{\eta}(u_{k}^{m}-u_{l}^{m}) dxd\tau =0. (4.20)

    At the same time,

    \lim\limits_{\eta\rightarrow 0}\int_{0}^{t}\int_{\Omega_{r}} \xi\text{sgn}_{\eta}(u_{k}^{m}-u_{l}^{m}) (u_{kt}-u_{lt})dxd\tau=\int_{0}^{t}\int_{\Omega_{r}}\xi\text{sgn}(u_{k}^{m}-u_{l}^{m}) (u_{kt}-u_{lt})dxd\tau
    =\int_{0}^{t}\int_{\Omega_{r}}\xi\text{sgn}(u_{k}-u_{l}) (u_{kt}-u_{lt})dxd\tau
    \lim\limits_{\eta\rightarrow 0}\int_{0}^{t}\int_{\Omega_{r}} \xi\text{sgn}_{\eta}(u_{k}-u_{l}) (u_{kt}-u_{lt})dxd\tau=\lim\limits_{\eta\rightarrow 0}\int_{0}^{t}\int_{\Omega_{r}} \xi(\int_{0}^{u_{k}-u_{l}}\text{sgn}_{\eta}(s)ds)_{\tau}dxd\tau
    =\lim\limits_{\eta\rightarrow 0}\int_{0}^{t}\int_{\Omega_{r}} \xi\int_{0}^{u_{k}-u_{l}}\text{sgn}_{\eta}(s)ds\mid_{0}^{t}dx =\int_{\Omega_{r}}\xi|u_{k}-u_{l}|dx-\int_{\Omega_{r}}\xi|u_{0k}-u_{0l}|dx. (4.21)

    By (4.20) (4.21), we have

    \int_{\Omega_{2r}}\xi|u_{k}-u_{l}|dx\leq\int_{\Omega_{r}}|u_{0k}-u_{0l}|dx +c\int_{0}^{t}\int_{\Omega_{r}}[(|\nabla u_{k}^{m}|^{2}+\frac{1}{k})^{\frac{p-1}{2}}+(|\nabla u_{l}^{m}|^{2}+\frac{1}{l})^{\frac{p-1}{2}}]dxd\tau
    +\int_{0}^{t}\int_{\Omega_{r}}a(x)|u^{mq_1}_{k}|\nabla u_{k}^{m}|^{p_1}-u^{mq_1}_{l}|\nabla u_{l}^{m}|^{p_1}| dxd\tau
    \int_{0}^{t}\int_{\Omega_{r}}|f_0(u^{m}_{k})\int_{\Omega}K(y)|u^{m}_{k}(y, t)|^{\beta}dy -f_0(u^{m}_{l})\int_{\Omega}K(y)|u^{m}_{l}(y, t)|^{\beta}dy|dxd\tau. (4.22)

    By Lemma 2.2 and Lemma 3.1, if 0 < t\leq 1,

    \int_{0}^{t}\int_{\Omega_{r}}a(x)|u^{mq_1}_{k}|\nabla u_{k}^{m}|^{p_1}-u^{mq_1}_{1}|\nabla u_{1}^{m}|^{p_1}| dxd\tau\leq c\int_{0}^{t}\int_{\Omega_{r}} t^{-\epsilon}dxd\tau,

    which means (4.17) is true. Here

    \epsilon=\max\{\frac{mNq_1}{Nm(p-1)-N+mq}+\frac{p_1(m(p-1)+m-2)}{m(p-1)-1}, \frac{(\beta+m)N}{Nm(p-1)-N+mq}\}<1

    Now, for any given small r, if k, l are large enough, by (4.17), we have

    \int_{\Omega_{2r}}|u(x, t)-u_{0}(x)|dx\leq \int_{\Omega_{r}}|u(x, t)-u_{k}(x, t)|dx+\int_{\Omega_{2r}}|u_{0k}(x)-u_{0l}(x)|dx
    +\int_{\Omega_{2r}}|u_{l}(x, t)-u_{0l}(x)|dx+\int_{\Omega_{2r}}|u_{0l}(x)-u_{0}(x)|dx

    letting t\rightarrow 0, we get (1.13).


    5. The uniqueness of the solutions and the proof of Theorem 1.2

    As we have said in the introduction, the uniqueness of the solutions of problem (1.1)-(1.3) is not true generally. But it is not difficult to prove the following theorems.

    Theorem 5.1. Let u_1, u_2 be the two solutions of the problem (1.1)-(1.3) with the different initial values u_{01}(x), u_{02}(x) respectively. If (\frac{1}{m}+\beta-2)\setminus q_{1} < 1 and

    p_1=0, (5.1)

    then

    \int_{\Omega}|u_{1}(x, t)-u_{2}(x, t)|dx\leq \int_{\Omega}|u_{01}(x)-u_{02}(x)|dx, \ \forall t\geq 0. (5.2)

    Proof. Let u_1(t), u_2(t) be two solutions of equation (1.1). Let v_1=u_{1}^{m}(t), v_2= u_{2}^{m}(t). Denote w(t)=v_1^{\frac{1}{m}}(t)-u_2^{\frac{1}{m}}(t), v(t)=v_{1}(t)-v_{2}(t). Then w(t), v_1(t), v_2(t) satisfy that

    w'(t)-[{\rm div}(\|\nabla v_{1}\|^{p-2}\nabla v_{1})-{\rm div}(\|\nabla v_{2}\|^{p-2}\nabla v_{2})+a(x)(v_{1}^{q_1}-v_{2}^{q_1})
    =f_{0}(v_{1})\int_{\Omega}K(y)|v_{1}|^{\beta}dy-f_{0}(v_{2})\int_{\Omega}K(y)|v_{2}|^{\beta}dy. (5.3)

    For any positive integer n, let g_{n}(s) be an odd function and

    g_{n}(s)=\left\{\begin{array}{cc} 1, \ \ &\ \ {\rm if}\ \ s>\frac{1}{n}, \\ n^{2}s^{2}e^{1-n^{2}s^{2}}, \ \ &\ \ {\rm if}\ \ s\leq\frac{1}{n}. \end{array} \right.

    Clearly, when |s|\geq n^{-1}, g'_{n}(s)=0; when |s|\leq n^{-1}, 0\leq g'_{n}(s)=6s^{-1}.

    Multiplying (5.3) with g_{n}(v_{1}-v_2) and integrating on \Omega, we have

    \int_{\Omega}g_{n}(v)w'(t)dx+\int_{\Omega}[|\nabla |v_{1}|^{p-2}|\nabla v_{1}-|\nabla |v_{2}|^{p-2}|\nabla v_{2}]\nabla(v_{1}-v_2)g_{n}'(v)dx+\int_{\Omega}a(x)(v_{1}^{q_1}-v_{2}^{q_1})g_{n}(v)dx
    =\int_{\Omega}g_{n}(v) [f_{0}(v_{1})\int_{\Omega}K(y)|v_{1}|^{\beta}dy-f_{0}(v_{2})\int_{\Omega}K(y)|v_{2}|^{\beta}dy]dx. (5.4)

    Moreover,

    \lim\limits_{n\rightarrow \infty}\int_{\Omega}g_{n}(v)w'(t)dx=\frac{d}{dt}\|w(t)\|_{1},
    \int_{\Omega}[|\nabla |v_{1}|^{p-2}|\nabla v_{1}-|\nabla |v_{2}|^{p-2}|\nabla v_{2}]\nabla(v_{1}-v_2)g_{n}'(v)dx\geq 0,
    \int_{\Omega}a(x)(v_{1}^{q_1}-v_{2}^{q_1})g_{n}(v)dx\geq 0,
    |\int_{\Omega}g_{n}(v) [f_{0}(v_{1})\int_{\Omega}K(y)|v_{1}|^{\beta}dy-f_{0}(v_2)\int_{\Omega}K(y)|v_{2}|^{\beta}dy]dx|
    \leq|\int_{\Omega}K(y)|v_{1}|^{\beta}dy\int_{\Omega}[f_{0}(v_{1})-f_{0}(v_{2})]dx| +c|\int_{\Omega}f_{0}(v_{2})dx||\int_{\Omega}\int_{v_{2}}^{v_{1}}s^{\beta-1}dsdy|
    \leq c\|w(t)\|_{1}\|v_{1}\|^{\beta}_{\beta}+c\|v_{2}\|_{1}\int_{\Omega}|\xi|^{\beta-1}|v(t)|dx,

    where \xi\in [v_{1}, v_{2}].

    So

    \frac{d}{dt}\|w(t)\|_{1}\leq c\|w(t)\|_{1}\|v_{1}\|^{\beta}_{\beta}+c\|v_{2}\|_{1}(\|v_{1}\|^{\beta}_{\beta}+\|v_{2}\|^{\beta}_{\beta}), (5.5)

    By using (1.23)-(1.24) of Theorem 1.1 to (5.5), letting n\rightarrow \infty. By Gronwall's inequality, for any given T>0, we can deduce that

    \|w(t)\|_{1}\equiv 0, 0\leq t\leq T. (5.6)

    Another aim of the section is to prove the uniqueness of the viscosity solution of problem (1.1)-(1.3)

    Theorem 5.2. Suppose that a(x) and K(x) are bounded functions. If u(x, t)\in L^{\infty}(S), |\nabla u|\leq c in addition, 2\geq p_{1}\geq 1, then the viscosity solution of (1.1)-(1.3) is unique.

    Proof. Let u, v be the two viscosity solutions of (1.1)-(1.3). Then there are two sequences \{u_{k}\} and \{v_{l}\}, which are the solutions of problem (1.14)-(1.2)-(1.3), such that

    \lim\limits_{k\rightarrow \infty} u_{k}=u, \ \ \lim\limits_{l\rightarrow \infty} v_{l}=v, \ {\rm a.e. in } \ S. (5.7)

    Clearly, since u(x, t), v(x, t)\in L^{\infty}(S), we may assume

    \|u_{k}\|_{\infty}\leq c, \ \|v_{l}\|_{\infty}\leq c. (5.8)

    Let

    w =u_k-v_l, \ \ w_{1}=u^{m}_k-v^{m}_l.

    Then

    w_{t}=\left(a_{ij}(x, t)w_{1x_{j}}\right)_{x_{i}}+b(x, t, w, \nabla w), (x, t)\in \Omega\times (0, \infty) (5.9)
    w(x, 0)=u_{0k}(x)-v_{0l}(x), \ x\in \Omega (5.10)
    w(x, t)=0, \ (x, t)\in \partial \Omega\times (0, \infty), (5.11)

    where

    a_{ij}(x, t)=\int_{0}^{1}{\left| s\nabla u_{k}^{m}+(1-s)\nabla v_{l}^{m}\right|}^{p-2}ds\cdot\delta_{ij}
    +\int_{0}^{1}(p-2)\left|s\nabla u_{k}^{m}+(1-s)\nabla v_{l}^{m}\right| ^{p-4}(su_{kx_{i}}^{m}+(1-s)v_{lx_{i}}^{m})(su_{kx_{j}}^{m}+(1-s)v_{lx_{j}}^{m})ds,

    and since p_1\geq 1, using the convexity of the function s^{p_1}, by (5.8), we have

    b(x, t, w, \nabla w)= a(x)[u^{mq_1}_k|\nabla u^{m}_k|^{p_1}-v^{mq_1}_l|\nabla v^{m}_l|^{p_1}]
    +f_0(u^{m}_k)\int_{\Omega}K(y)|u^{m}_k(y, t)|^{\beta}dy-f_0(v^{m}_l)\int_{\Omega}K(y)|v^{m}_l(y, t)|^{\beta}dy,
    |b(x, t, w, \nabla w)|\leq c|\nabla (u^{m}_k-v^{m}_l)|^{p_1}\leq c|\nabla w|^{p_{1}}\leq c|\nabla w|^{2}+c.

    By the chapter 8 of [13], we know that

    \|u_{k}(x, t)-v_{l}(x, t)\|_{\infty}\leq c\|u_{0k}-v_{0l}\|_{\infty}.

    Let k, l\rightarrow \infty, we know that the uniqueness of the viscosity solution (1.1)-(1.3) is true.

    Suppose that the viscosity solution of problem (1.1)-(1.3) is unique in what follows. Then, by considering the regularized problem (1.14)-(1.2)-(1.3), we easily get the following Theorem 5.3, and Theorem 1.2 is a simple corollary of Theorem 5.3.

    Theorem 5.3. Let u be a weak solution of problem (1.1)-(1.3). If v satisfies

    v_{t}\geq\text{div}(\mid \nabla v^{m}\mid^{p-2}\nabla v^{m})-a(x)v^{mq_1}|\nabla v^{m}|^{p_1}
    +f_0(v^{m})\int_{\Omega}K(y)|v^{m}(y, t)|^{\beta}dy+g(x)\ \text{ in }S=\Omega\times (0, \infty), (5.12)
    v(x, 0)\geq u_{0}(x), \ \ x\in \Omega, (5.13)
    v(x, t)=0, \ \ (x, t)\in \partial \Omega\times (0, \infty), (5.14)

    then

    u(x, t)\geq v(x, t), \ \forall (x, t)\in S. (5.15)

    Now, let

    v(x, t)=u_{kr}(x, t)=ru_{k}(x, r^{m(p-1)-1}t), \;\ r\in (0, 1).

    Then

    v_{t}(x, t) =\text{div}(\mid Dv^{m}\mid ^{p-2}Dv^{m}) -a(x)r^{m(p-1-q_{1}-p_{1})}v^{mq_{1}}\mid Dv^{m}\mid^{p_{1}}
    +r^{m[p-1-\beta]}f_{0}(r^{-m}v^{m})\int_{\Omega}K(y)|v^{m}|^{\beta}dy+r^{m(p-1)}g(x), (x, t)\in \Omega\times(0, \infty) (5.16)
    v(x, 0) =ru_{k}(x, 0), x\in \Omega, (5.17)
    v(x, t)=0, \ (x, t)\in \partial \Omega\times(0, \infty). (5.18)

    Noticing that g(x)\leq 0, f_{0}(r^{-m}v^{m})\geq f_{0}(v^{m}), and

    p_{1}+q_{1}<p-1, p-1-\beta<0, \ 0<r<1,

    which implies that

    r^{m(p-1-q_{1}-p_{1})}<1, \ r^{m[p-1-\beta]}>1,
    v_{t}(x, t)\geq\text{div}(\mid Dv^{m}\mid ^{p-2}Dv^{m}) -a(x)v^{q_{1}m}\mid Dv^{m}\mid^{p_{1}} +f_{0}(v^{m})\int_{\Omega}K(y)|v^{m}|^{\beta}dy+g(x),

    using the argument similar to that in the proof Lemma 3.5 of [35], we can prove

    u_{k}\geq u_{kr}.

    It follows that

    \frac{u_{k}(x, r^{m(p-1)-1}t)-u_{k}(x, t)}{(r^{m(p-1)-1}-1)t}
    \geq \frac{r-1}{(1-r^{m(p-1)-1})t}u_{k}(x, r^{m(p-1)-1}t).

    Letting r\rightarrow 1, we get

    u_{kt}\geq -\frac{u_{k}}{(m(p-1)-1)t}. (5.19)

    By (5.19), we can easily get Theorem 1.2.


    Acknowledgement

    The paper is supported by Natural Science Foundation of Fujian province in China (No: 2015J01592), supported by Science Foundation of Xiamen University of Technology.


    Conflict of Interest

    All authors declare no conflicts of interest in this paper.


    [1] M. Aassila, The influence of nonlocal nonlinearities on the long time behavior of solutions of diffusion problems, J. of Diff. Equ., 192 (2003), 47-69.
    [2] A. V. Babin and M. I. Vishik, Attractors of evolution equations, North-Holland, Amsterdam, 1992.
    [3] M. Bertsch, R. Dal Passo and M. Ughi, Discontinuous viscosity solutions of a degenerate parabolic equation, Trans. Amer. Math. Soc., 320 (1990), 779-798.
    [4] M. Bertsch, R. Dal Passo and M. Ughi, Non-uniqueness of solutions of a degenerate parabolic equation, Ann. Math. Pura Appl., 161 (1992), 57-81.
    [5] C. Chen, On global attractor for m-Laplacian parabolic equation with local and nonlocal nonlinearity, J. Math. Anal. Appl., 337 (2008), 318-332.
    [6] C. Chen and R. Wang, Global existence and L∞ estimates of solution for doubly degenerate parabolic equation (in Chinese), ACTA Math. Sinica, 44 (2001), 1089-1098.
    [7] J. W. Cholewa and T. Dlotko, Global attractors in abstract parabolic problems, London Math. Soc. Lecture Note Ser. , Cambridge Univ. Press, 278 (2000).
    [8] A. Dall'Aglioa, D. Giachetti, I. Peral and S. León, Global existence for some slightly super-linear parabolic equations with measure data, J. Math. Anal. Appl., 345 (2008), 892-902.
    [9] R. Dal Passo and S. Luckhaus, A degenerate diffusion problem not in divergence form, J. Diff. Equa., 69 (1987), 1-14.
    [10] E. DiBenedetto, Degenerate parabolic equations, Universitext, Springer Verlag, 1993.
    [11] J. R. Esteban and J. L. Vazquez, Homogeneous diffusion in R with power-like nonlinear diffusivity, Arch. Rational Mech. Anal., 103 (1988), 39-88.
    [12] L. C. Evans, Weak convergence methods for nonlinear partial differential equations, Conference Board of the Mathematical Sciences, Regional Conferences Series in Mathematics Number 74,1998.
    [13] L. Gu, Second order parabolic partial differential equations, The Publishing Company of Xiamen University, China, 2002.
    [14] A. V. Ivanov, Hölder estimates for quasilinear parabolic equations, J.Soviet Mat., 56 (1991), 2320-2347.
    [15] A. S. Kalashnikkov, Some problems of nonlinear parabolic equations of second order, USSR. Math, Nauk, T., 42 (1987), 135-176.
    [16] S. Kamin and J. L. Vázquez, Fundamental solutions and asymptotic behavior for the p-Laplacian equation, Rev. Mat. Iberoamericana, 4 (1988), 339-354.
    [17] O. A. Ladyzenskaja, New equations for the description of incompressible fluids and solvability in the large boundary value problem for them, Proc. Steldov Inst. Math., 102 (1976), 95-118.
    [18] K. Lee, A. Petrosyan and J.L. Vázquez, Large time geometric properties of solutions of the evolution p-Laplacian equation, J. Diff. Equ., 229 (2006), 389-411.
    [19] K. Lee and J. L. V'azque, Geometrical properties of solutions of the Porous Medium Equation for large times, Indiana Univ. Math. J., 52 (2003), 991-1016.
    [20] P. Lei, Y. Li and P. Lin, Null controllability for a semilinear parabolic equation with gradient quadratic growth, Nonlinear Anal. T.M.A., 68 (2008), 73-82.
    [21] J. L. Lions, Quelques méthodes de resolution des problè mes aux limites non linear, Dound Gauthier-Villars, Paris, 1969.
    [22] J. Manfredi and V. Vespri, Large time behavior of solutions to a class of doubly nonlinear parabolic equations, Electronic J. Diff. Equ., 1994 (1994), 1-16.
    [23] M. Nakao, Global solutions for some nonlinear parabolic equations with non-monotonic perturbations, Non. Anal. TMA, 10 (1986), 299-314.
    [24] M. Nakao, Lp estimates of solutions of some nonlinear degenerate diffusion equation, J. Math. Soc. Japan, 37 (1985), 41-63.
    [25] M. Nakao and C. Chen, Global existence and gradient estimate for the quasilinear parabolic equation of m-Laplacian type with a nonlinear convection term, J. Diff. Equ., 162 (2000), 224-250.
    [26] Y. Ohara, L∞ estimates of solutions of some nonlinear degenerate parabolic equations, Nonlinear Anal. TMA, 18 (1992), 413-426.
    [27] M. Pierre, Uniqueness of solution of u_{t}-\triangle\varphi(u)=0 with initial datum a measure, Nonlinear Analysis TMA., 6 (1982), 175-187.
    [28] R. Temam, Infinite-dimensional dynamical in mechanics and physics, Springer-Verlag, New York, 1997.
    [29] M. Ughi, A degenerate parabolic equation modelling the spread of an epidemic, Ann. Math. Pura Appl., 143 (1986), 385-400.
    [30] M. Winkler, Large time behavior of solutions to degenerate parabolic equations with absorption, NoDEA. 8 (2001), 343-361.
    [31] Z. Wu, J. Zhao, J. Yin and H. Li, Nonlinear diffusion equations, Word Scientific Publishing, 2001.
    [32] J. Yuan, Z. Lian, L. Cao, J. Gao and J. Xu, Extinction and positivity for a doubly nonlinear degenerate parabolic equation, Acta Math. Sinica, Eng. Ser., 23 (2007), 1751-1756.
    [33] H. Zhan, The Asymptotic Behavior of Solutions for a Class of Doubly Nonlinear Parabolic Equations, J. Math. Anal. Appl., 370 (2010), 1-10.
    [34] Q. Zhang and P. Shi, Global solutions and self-similar solutions of semilinear parabolic equations with nonlinear gradient terms, Nonlinear Anal. T.M.A., 72 (2010), 2744-2752.
    [35] J. Zhao and H. Yuan, The Cauchy problem of some doubly nonlinear degenerate parabolic equations (in Chinese), Chinese Ann. Math., A, 16 (1995), 179-194.
    [36] W. Zhou and S. Cai, The continuity of the viscosity of the Cauchy problem of a degenerate parabolic equation not in divergence form, J. Jilin University (Natural Sci.), 42 (2004), 341-345.
  • Reader Comments
  • © 2017 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(5066) PDF downloads(992) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog