Loading [MathJax]/jax/output/SVG/jax.js
Review Special Issues

Calcification in human vessels and valves: from pathological point of view

  • Vascular and valvular calcification are commonly encountered in clinical medicine and a greater understanding of their significance and pathophysiology remain a subject of immense importance. In the coronary arteries, vascular calcification burden correlates with the severity of luminal stenosis and atherosclerotic plaque burden. While in progressive lesions, the presence of coronary calcification is not binary but rather depends on the type of calcification. Racial and gender differences, and comorbidities like diabetes mellitus and chronic kidney disease, all affect the presence and severity of calcification. The peripheral arteries of the lower extremities are affected by both medial calcification and intimal calcification, and the former barely contributes to luminal stenosis. The character of atherosclerosis differs between above-knee and below-knee lesions. Valvular calcification generally occurs on the aortic valve leaflets, and pathologic findings range from minimal fibrocalcific changes in early disease to end-stage lesions characterized by fibrotic thickening and nodular calcification. Valvular calcification is similar to atherosclerotic changes, in terms of lipid deposition, inflammation, osteogenic differentiation of valvular interstitial cells, and oxidative stress. However, the mechanisms of vascular and valvular calcification are still not well understood. A deeper understanding of vascular and valvular calcification is needed in order to develop effective anti-calcification therapies and to improve outcomes in these patients.

    Citation: Yu Sato, Hiroyuki Jinnouchi, Atsushi Sakamoto, Anne Cornelissen, Masayuki Mori, Rika Kawakami, Kenji Kawai, Renu Virmani, Aloke V. Finn. Calcification in human vessels and valves: from pathological point of view[J]. AIMS Molecular Science, 2020, 7(3): 183-210. doi: 10.3934/molsci.2020009

    Related Papers:

    [1] Xue Han, Tingting Wang . The hybrid power mean of the generalized Gauss sums and the generalized two-term exponential sums. AIMS Mathematics, 2024, 9(2): 3722-3739. doi: 10.3934/math.2024183
    [2] Wenpeng Zhang, Jiafan Zhang . The hybrid power mean of some special character sums of polynomials and two-term exponential sums modulo $ p $. AIMS Mathematics, 2021, 6(10): 10989-11004. doi: 10.3934/math.2021638
    [3] Jinmin Yu, Renjie Yuan, Tingting Wang . The fourth power mean value of one kind two-term exponential sums. AIMS Mathematics, 2022, 7(9): 17045-17060. doi: 10.3934/math.2022937
    [4] Wenpeng Zhang, Yuanyuan Meng . On the sixth power mean of one kind two-term exponential sums weighted by Legendre's symbol modulo $ p $. AIMS Mathematics, 2021, 6(7): 6961-6974. doi: 10.3934/math.2021408
    [5] Jin Zhang, Wenpeng Zhang . A certain two-term exponential sum and its fourth power means. AIMS Mathematics, 2020, 5(6): 7500-7509. doi: 10.3934/math.2020480
    [6] Xiaoxue Li, Wenpeng Zhang . A note on the hybrid power mean involving the cubic Gauss sums and Kloosterman sums. AIMS Mathematics, 2022, 7(9): 16102-16111. doi: 10.3934/math.2022881
    [7] Wenpeng Zhang, Yuanyuan Meng . On the fourth power mean of one special two-term exponential sums. AIMS Mathematics, 2023, 8(4): 8650-8660. doi: 10.3934/math.2023434
    [8] Junfeng Cui, Li Wang . The generalized Kloosterman's sums and its fourth power mean. AIMS Mathematics, 2023, 8(11): 26590-26599. doi: 10.3934/math.20231359
    [9] Xiaoge Liu, Yuanyuan Meng . On the $ k $-th power mean of one kind generalized cubic Gauss sums. AIMS Mathematics, 2023, 8(9): 21463-21471. doi: 10.3934/math.20231093
    [10] Xuan Wang, Li Wang, Guohui Chen . The fourth power mean of the generalized quadratic Gauss sums associated with some Dirichlet characters. AIMS Mathematics, 2024, 9(7): 17774-17783. doi: 10.3934/math.2024864
  • Vascular and valvular calcification are commonly encountered in clinical medicine and a greater understanding of their significance and pathophysiology remain a subject of immense importance. In the coronary arteries, vascular calcification burden correlates with the severity of luminal stenosis and atherosclerotic plaque burden. While in progressive lesions, the presence of coronary calcification is not binary but rather depends on the type of calcification. Racial and gender differences, and comorbidities like diabetes mellitus and chronic kidney disease, all affect the presence and severity of calcification. The peripheral arteries of the lower extremities are affected by both medial calcification and intimal calcification, and the former barely contributes to luminal stenosis. The character of atherosclerosis differs between above-knee and below-knee lesions. Valvular calcification generally occurs on the aortic valve leaflets, and pathologic findings range from minimal fibrocalcific changes in early disease to end-stage lesions characterized by fibrotic thickening and nodular calcification. Valvular calcification is similar to atherosclerotic changes, in terms of lipid deposition, inflammation, osteogenic differentiation of valvular interstitial cells, and oxidative stress. However, the mechanisms of vascular and valvular calcification are still not well understood. A deeper understanding of vascular and valvular calcification is needed in order to develop effective anti-calcification therapies and to improve outcomes in these patients.


    Let q,m,nZ+ with q>2 and m>n1. For any u,vZ, we are concerned with the two-term exponential sums

    G(u,v,m,n;q)=qj=1eq(ujm+vjn),

    where eq(x)=exp(2πix/q) and i2=1.

    For convenience, the following letters and symbols are commonly used in this paper and should be interpreted in the following sense unless otherwise stated.

    χ is Dirichlet character.

    χk is k-order Dirichlet character.

    ϕ(a) is Euler function.

    α is uniquely determined by 4p=α2+27β2 and α1mod3.

    τ(χ) is Gauss sums defined by

    τ(χ)=qs=1χ(s)eq(s).

    The mean value calculation and upper bound estimation of exponential sums has always been a classical problem in analytic number theory. As a special kind of exponential sums, Gauss sums have had an important effect on both cryptography and analytic number theory. Analytic number theory and cryptography will benefit greatly from any significant advancements made in this area. In this paper, we will estimate and calculate the fourth power mean value of two-term exponential sums weighted by a character χ3. In this field, many scholars have investigated the results of G(u,v,m,n;q) in various forms, and obtained many meaningful results, see [3,5,7,8,11,15]. For instance, Zhang and Zhang [9] obtained the power mean about G(u,v,3,1;p)

    p1u=1|pi=1ep(ui3+vi)|4={2p3p2 if3p1,2p37p2 if3p1,

    where p is an odd prime and v is not divisible by p.

    Wang and Zhang [6] obtained the eighth power mean of G(u,v,3,1;p)

    p1u=1|pi=1ep(ui3+vi)|8={7(2p53p4)if6p5,14p575p48p3α2if6p1.

    In addition, Zhang and Han [12] shown the power mean of G(1,v,3,1;p)

    p1v=1|pi=1ep(i3+vi)|6=5p48p3p2, (1.1)

    where p is an odd prime with 3ϕ(p).

    But if 3ϕ(p), whether there exists an exact formula for (1.1). Consider the mean of the simplest

    p1v=1|pi=1ep(i3+vi)|4. (1.2)

    It is worth mentioning that, Zhang and Zhang [10] studied the power mean of the exponential sums weight by χ2, one has the identities

    p1u=1χ2(u)|pi=1ep(ui3+i)|4={p2(ζ+3)if6p5,p2(ζ3)if6p1,

    where ζ=p1t=1(t1+¯tp) with ζZ satisfies inequality |ζ|2p.

    Cao and Wang (see Lemma 3 in [2]) proved the following conclusion, that is, if p is a prime with 3ϕ(p), then for any χ3modp, one has the identity

    p1u=1χ3(u)(pi=1ep(ui3+i))4=(¯χ3(3)3p¯χ3(3)p)τ2(¯χ3)αpτ(χ3).

    Unfortunately, this lemma is incorrect, there is a calculation error in it. It is precisely because of the computational error in this lemma that the main result in the whole text is wrong.

    The following year, Zhang and Meng [16] studied the power mean of G(u,1,3,1;p) weighted by χ2. In this paper, We intend to correct the error in [2] and give a correct conclusion. At the same time, as an application, we give an exact result for (1.2). That is, it will prove these two conclusions:

    Theorem 1. If p is a prime with 3ϕ(p), then we have

    p1u=1χ3(u)|pi=1ep(ui3+i)|4=αpτ(χ3)3pτ2(¯χ3).

    Theorem 2. If p is a prime with 3ϕ(p), then we have

    p1v=1|pi=1ep(i3+vi)|4=2p3p23pA2kpαAk,

    where Ak=ωk[αp2+((αp2)2p3)12]13+ωk[αp2((αp2)2p3)12]13, k=1,2 or 3 is dependent on p, and ω=1+3i2.

    Corollary 1. If p is a prime with 3ϕ(p), then we have the asymptotic formula

    p1v=1|pi=1ep(i3+vi)|4=2p3+O(p2).

    Corollary 2. If p is a prime with 3ϕ(p), then for any integer l, we have recursive formula

    Vl(p)=p1u=1ϑl(u)|pj=1ep(uj3+j)|4=αpp1u=1ϑl3(u)|pj=1ep(uj3+j)|4+3pp1u=1ϑl2(u)|pj=1ep(uj3+j)|4=αpVl3(p)+3pVl2(p),

    when l take 13, the following equations hold

    V1(p)=p1u=1ϑ(u)|pj=1ep(uj3+j)|4=5αp2,V2(p)=p1u=1ϑ2(u)|pj=1ep(uj3+j)|4=4p420p3α2p2,V3(p)=p1u=1ϑ3(u)|pj=1ep(uj3+j)|4=2αp422αp3,

    where ϑ(u)=pi=1ep(ui3).

    In fact, with the third-order linear recursive formula in Corollary 2 and its three initial values V1(p), V2(p) and V3(p), we can easily give the general term formula for the sequence {Vl(p)}.

    Corollary 3. If p is a prime with 3ϕ(p), then we have

    p1u=1|pj=1ep(uj3+j)pi=1ep(ui3)|4=54p3α4p2α227p2α4+2pα21.

    Before starting our proofs of main results, we present the proofs of several key equations in preparation for the next chapter. The properties of Gauss sums and reduced (complete) residue systems are used repeatedly in the proof. In addition, we will refer to the basic contents of number theory in references [1] and [14].

    Lemma 1. If p is a prime with 3ϕ(p), then

    τ3(χ3)+τ3(¯χ3)=αp. (2.1)

    Proof. This is consequence of [4] or [13], herein we omit it.

    Lemma 2. If p is a prime with 3ϕ(p), then

    pi=1pj=1ps=1¯χ3(i3+j3s31)=p(α3)+3τ3(¯χ3).

    Proof. Recall that τ(χ3)τ(¯χ3)=p and (2.1), we have

    pi=1pj=1ps=1¯χ3(i3+j3s31)=1τ(χ3)p1t=1χ3(t)pi=1pj=1ps=1ep(t(i3+j3s31))=1τ(χ3)p1t=1χ3(t)ep(t)(pi=1ep(it3))2(ps=1ep(st3))=1τ(χ3)p1t=1χ3(t)ep(t)(1+p1i=1(1+χ3(i)+¯χ3(i))ep(it))3=1τ(χ3)p1t=1χ3(t)ep(t)(¯χ3(t)τ(χ3)+χ3(t)τ(¯χ3))3=1τ(χ3)p1t=1χ3(t)ep(t)[τ3(χ3)+τ3(¯χ3)+3p(¯χ3(t)τ(χ3)+χ3(t)τ(¯χ3))]=αp+3pτ(χ3)τ(χ3)p1t=1ep(t)+3pτ(χ3)τ(¯χ3)p1t=1χ23(t)ep(t)=p(α3)+3pτ2(¯χ3)τ(χ3)=p(α3)+3τ3(¯χ3).

    This completes the proof.

    Lemma 3. If p is a prime with 3ϕ(p), then

    τ(¯χ3χ2)=¯χ3(2)τ2(χ3)τ(χ2)p.

    Proof. Recall that τ(χ3)τ(¯χ3)=p, we obtain

    pi=1χ3(i21)=pi=1χ3(i2+2i)=1τ(¯χ3)p1j=1¯χ3(j)p1i=1χ3(i)ep(j(i+2))=τ(χ3)τ(¯χ3)p1j=1χ3(j)ep(2j)=¯χ3(2)τ2(χ3)τ(¯χ3)=¯χ3(2)τ3(χ3)p. (2.2)

    From another perspective, we have

    pi=1χ3(i21)=1τ(¯χ3)p1j=1¯χ3(j)pi=1ep(j(i21))=1τ(¯χ3)p1j=1¯χ3(j)ep(j)pi=1ep(i2j)=1τ(¯χ3)p1j=1¯χ3(j)ep(j)[1+p1i=1(1+χ2(i))ep(ij)]=1τ(¯χ3)p1j=1¯χ3(j)ep(j)p1i=1χ2(i)ep(ij)=τ(χ2)τ(¯χ3)p1j=1¯χ3χ2(j)ep(j)=χ2(1)τ(χ2)τ(¯χ3χ2)τ(¯χ3)=χ2(1)τ(χ2)τ(¯χ3χ2)τ(χ3)p. (2.3)

    Combining (2.2) and (2.3), we determine the relationship equation between τ(¯χ3χ2), τ(χ3) and τ(χ2)

    τ(¯χ3χ2)=¯χ3(2)τ2(χ3)τ(χ2)p.

    This completes the proof.

    Lemma 4. If p is a prime with 3ϕ(p), then

    pi=1pj=1ps=1i+js10modp¯χ3(i3+j3s31)=¯χ3(3)τ3(¯χ3)p.

    Proof. Using Lemma 3, we have

    pi=1pj=1ps=1i+js10modp¯χ3(i3+j3s31)=pi=1pj=1ps=1i+j1modp¯χ3(i3+j3+3j2s+3js21)=χ3(4)pi=1pj=1ps=1i+j1modp¯χ3(4i3+j3+3j(2s+j)24)=χ3(4)τ(χ3)pi=1pj=1p1t=1i+j1modpχ3(t)ps=1ep(t(4i3+j3+3js24))=χ3(4)τ(χ3)pi=1pj=1p1t=1i+j1modpχ3(t)ep(t(4i3+j34))[1+p1s=1(1+χ2(s))ep(3jst)]=χ3(4)τ(χ3)pi=1pj=1p1t=1i+j1modpχ3(t)ep(t(4i3+j34))χ2(3jt)τ(χ2)=χ3(4)χ2(3)τ(χ2)τ(χ3)pi=1pj=1i+j1modpχ2(j)τ(χ3χ2)¯χ3χ2(4i3+j34)=χ3(4)χ2(3)τ(χ2)τ(χ3χ2)τ(χ3)pi=1χ2(1i)¯χ3χ2(3i3+3i23i3)=¯χ3(6)χ2(1)τ(χ2)τ(χ3χ2)τ(χ3)p1i=1¯χ3((i+2)2i)=¯χ3(6)χ2(1)τ(χ2)τ(χ3χ2)τ(χ3)p1i=1¯χ3(i)χ3(i+2)=¯χ3(6)χ2(1)τ(χ2)τ(χ3χ2)τ(χ3)p1i=1χ3(1+2¯i)=¯χ3(6)χ2(1)τ(χ2)τ(χ3χ2)τ(χ3)(1+pi=1χ3(i))=χ2(1)¯χ3(6)τ(χ2)τ(¯χ3)τ(χ3χ2)p=¯χ3(3)τ3(¯χ3)p.

    This completes the proof.

    Lemma 5. If p is a prime and 3ϕ(p), then

    pi=1pj=1ps=1¯χ3(i3+j3s3)ep(i+js)=3p+¯χ3(3)τ3(¯χ3).

    Proof. Note that τ(χ3)τ(¯χ3)=p and ¯χ3(i3)=1 with i is an integer relatively prime to p. Therefore we have

    pi=1pj=1ps=1¯χ3(i3+j3s3)ep(i+js)=pi=1pj=1¯χ3(i3+j3)ep(i+j)+pi=1pj=1ps=1¯χ3(i3+j31)ep(s(i+j1))pi=1pj=1¯χ3(i3+j31)=pi=1¯χ3(i3)ep(i)+pi=1pj=1¯χ3(i3+1)ep(j(i+1))pi=1¯χ3(i3+1)+ppi=1pj=1i+j1modp¯χ3(i3+j31)1τ(χ3)p1t=1χ3(t)pi=1pj=1ep(t(i3+j31))=p1i=1ep(i)+ppi=1i+10modp¯χ3(i3+1)1p1i=1(1+χ3(i)+¯χ3(i))¯χ3(i+1)+ppi=1pj=1i+j0modp¯χ3(i3+j3+3j2+3j)1τ(χ3)p1t=1χ3(t)ep(t)(pi=1ep(it3))2=1pi=1¯χ3(i+1)p1i=1χ3(i)¯χ3(i+1)p1i=1¯χ3(i)¯χ3(i+1)+ppj=1¯χ3(3j2+3j)1τ(χ3)p1t=1χ3(t)ep(t)[1+p1i=1(1+χ3(i)+¯χ3(i))ep(it)]2=1p1i=1¯χ3(1+¯i)p1i=1¯χ3(i2+i)+p¯χ3(3)p1j=1¯χ3(j2+j)1τ(χ3)p1t=1χ3(t)ep(t)(¯χ3(t)τ(χ3)+χ3(t)τ(¯χ3))2=1τ(χ3)(τ2(χ3)p1t=1¯χ3(t)ep(t)+τ2(¯χ3)p1t=1ep(t)+2pp1t=1χ3(t)ep(t))+(1+p¯χ3(3))1τ(χ3)p1s=1χ3(s)p1i=1¯χ3(i)ep(s(i+1))=1τ(χ3)(τ2(χ3)τ(¯χ3)τ2(¯χ3)+2pτ(χ3))τ2(¯χ3)τ(χ3)+p¯χ3(3)τ2(¯χ3)τ(χ3)=¯χ3(3)τ3(¯χ3)3p.

    This proves Lemma 5.

    Proof of Theorem 1. Recall that ¯χ3(i3)=1 with (i,p)=1. Hence

    p1u=1χ3(u)|pi=1ep(ui3+i)|4=pi=1pj=1ps=1pt=1p1u=1χ3(u)ep(u(i3+j3s3t3)+i+jst)=τ(χ3)pi=1pj=1ps=1pt=1¯χ3(i3+j3s3t3)ep(i+jst)=τ(χ3)pi=1pj=1ps=1p1t=1¯χ3(i3t3+j3t3s3t3t3)ep(it+jtstt)+τ(χ3)pi=1pj=1ps=1¯χ3(i3+j3s3)ep(i+js)=τ(χ3)pi=1pj=1ps=1¯χ3(i3+j3s31)pt=1ep(t(i+js1))+τ(χ3)p1i=0pj=1ps=1¯χ3(i3+j3s3)ep(i+js)τ(χ3)pi=1pj=1ps=1¯χ3(i3+j3s31)=pτ(χ3)pi=1pj=1ps=1i+js1modp¯χ3(i3+j3s31)τ(χ3)pi=1pj=1ps=1¯χ3(i3+j3s31)+τ(χ3)pi=1pj=1ps=1¯χ3(i3+j3s3)ep(i+js).

    Applying Lemmas 2, 4 and 5 we obtain

    p1u=1χ3(u)|pi=1ep(ui3+i)|4=τ(χ3)¯χ3(3)τ3(¯χ3)τ(χ3)(p(α3)+3τ3(¯χ3))+τ(χ3)(¯χ3(3)τ3(¯χ3)3p)=αpτ(χ3)3pτ2(¯χ3).

    Proof of Theorem 2. Based on Theorem 1 and the identities obtained in [9]

    p1u=1|pi=1ep(ui3+vi)|4={2p3p2 if3p1,2p37p2if3p1.

    We have

    p1v=1|pi=1ep(i3+vi)|4=p1v=1|pi=1ep((¯vi)3+i)|4=p1v=1(1+χ3(v)+¯χ3(v))|pi=1ep(vi3+i)|4=p1v=1|pi=1ep(vi3+i)|4+p1v=1χ3(v)|pi=1ep(vi3+i)|4+p1v=1¯χ3(v)|pi=1ep(vi3+i)|4=2p37p2αpτ(χ3)3pτ2(¯χ3)αpτ(¯χ3)3pτ2(χ3)=2p3p23p(τ(χ3)+τ(¯χ3))2αp(τ(χ3)+τ(¯χ3)). (3.1)

    Now we need to determine the value of the real number τ(χ3)+τ(¯χ3) in (3.1). For convenience, write the A=τ(χ3)+τ(¯χ3), we construct cubic equation A33pAαp=0 based on (2.1) and τ(χ3)τ(¯χ3)=p. According to Cardans formula (formula of roots of a cubic equation), the three roots of the equation are

    A1=[αp2+((αp2)2+(p)3)12]13+[αp2((αp2)2+(p)3)12]13,A2=ω[αp2+((αp2)2+(p)3)12]13+ω2[αp2((αp2)2+(p)3)12]13,A3=ω2[αp2+((αp2)2+(p)3)12]13+ω[αp2((αp2)2+(p)3)12]13,

    where ω=1+3i2.

    It is clear that all Ak (k=1,2 or 3) are real numbers, So A=A1,A2 or A3. Therefore, the proof of theorem is complete.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    The authors gratefully appreciates the referees and editor for their helpful and detailed comments.

    This work is supported by Hainan Provincial Natural Science Foundation of China (123RC473) and Natural Science Foundation of China (12126357).

    The authors declare that there are no conflicts of interest regarding the publication of this paper.


    Abbreviation AV: Aortic valve; CAD: Coronary artery disease; CFA: Common femoral artery; CKD: Chronic kidney disease; CLI: Critical limb ischemia; DM: Diabetes mellitus; FEM-POP: Femoral and popliteal arteries; HbA1c: Hemoglobin A1c; INFRA-POP: Infrapopliteal arteries; MGP: Matrix Gla protein; NF-kB: Nuclear factor kappa beta; OPN: Osteopontin; OPG: Osteoprotegerin; PAD: Peripheral artery disease; RANKL: Receptor activator of NF-B ligand; SFA: Superficial femoral artery; VIC: Valvular interstitial cells; VSMC: Vascular smooth muscle cell;

    Conflict of interest



    CVPath Institute has received institutional research support from R01 HL141425 Leducq Foundation Grant; 480 Biomedical; 4C Medical; 4Tech; Abbott; Accumedical; Amgen; Biosensors; Boston Scientific; Cardiac Implants; Celonova; Claret Medical; Concept Medical; Cook; CSI; DuNing, Inc; Edwards LifeSciences; Emboline; Endotronix; Envision Scientific; Lutonix/Bard; Gateway; Lifetech; Limflo; MedAlliance; Medtronic; Mercator; Merill; Microport Medical; Microvention; Mitraalign; Mitra assist; NAMSA; Nanova; Neovasc; NIPRO; Novogate; Occulotech; OrbusNeich Medical; Phenox; Profusa; Protembis; Qool; Recor; Senseonics; Shockwave; Sinomed; Spectranetics; Surmodics; Symic; Vesper; W.L. Gore; Xeltis. A.V. F. has received honoraria from Abbott Vascular; Biosensors; Boston Scientific; Celonova; Cook Medical; CSI; Lutonix Bard; Sinomed; Terumo Corporation; and is a consultant to Amgen; Abbott Vascular; Boston Scientific; Celonova; Cook Medical; Lutonix Bard; Sinomed. Anne Cornelissen receives research grants from University Hospital RWTH Aachen. R.V. has received honoraria from Abbott Vascular; Biosensors; Boston Scientific; Celonova; Cook Medical; Cordis; CSI; Lutonix Bard; Medtronic; OrbusNeich Medical; CeloNova; SINO Medical Technology; ReCore; Terumo Corporation; W. L. Gore; Spectranetics; and is a consultant Abbott Vascular; Boston Scientific; Celonova; Cook Medical; Cordis; CSI; Edwards Lifescience; Lutonix Bard; Medtronic; OrbusNeich Medical; ReCore; Sinomededical Technology; Spectranetics; Surmodics; Terumo Corporation; W. L. Gore; Xeltis. The other authors declare no competing interests.

    [1] Torii S, Jinnouchi H, Sakamoto A, et al. (2020) Vascular responses to coronary calcification following implantation of newer-generation drug-eluting stents in humans: impact on healing. Eur Heart J 41: 786-796. doi: 10.1093/eurheartj/ehz850
    [2] Watanabe Y, Lefèvre T, Bouvier E, et al. (2015) Prognostic value of aortic root calcification volume on clinical outcomes after transcatheter balloon-expandable aortic valve implantation. Catheter Cardiovasc Interv 86: 1105-1113. doi: 10.1002/ccd.25986
    [3] Iung B, Vahanian A (2011) Epidemiology of valvular heart disease in the adult. Nat Rev Cardiol 8: 162-172. doi: 10.1038/nrcardio.2010.202
    [4] Bonow RO, Leon MB, Doshi D, et al. (2016) Management strategies and future challenges for aortic valve disease. Lancet 387: 1312-1323. doi: 10.1016/S0140-6736(16)00586-9
    [5] Nakahara T, Dweck MR, Narula N, et al. (2017) Coronary Artery Calcification: From Mechanism to Molecular Imaging. JACC Cardiovasc Imaging 10: 582-593. doi: 10.1016/j.jcmg.2017.03.005
    [6] Otsuka F, Sakakura K, Yahagi K, et al. (2014) Has our understanding of calcification in human coronary atherosclerosis progressed? Arterioscler Thromb Vasc Biol 34: 724-736. doi: 10.1161/ATVBAHA.113.302642
    [7] Stary HC, Blankenhorn DH, Chandler AB, et al. (1992) A definition of the intima of human arteries and of its atherosclerosis-prone regions. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Circulation 85: 391-405. doi: 10.1161/01.CIR.85.1.391
    [8] Orlandi A (2015) The contribution of resident vascular stem cells to arterial pathology. Int J Stem Cells 8: 9-17. doi: 10.15283/ijsc.2015.8.1.9
    [9] Harper E, Forde H, Davenport C, et al. (2016) Vascular calcification in type-2 diabetes and cardiovascular disease: Integrative roles for OPG, RANKL and TRAIL. Vascul Pharmacol 82: 30-40. doi: 10.1016/j.vph.2016.02.003
    [10] Fadini GP, Rattazzi M, Matsumoto T, et al. (2012) Emerging role of circulating calcifying cells in the bone-vascular axis. Circulation 125: 2772-2781. doi: 10.1161/CIRCULATIONAHA.112.090860
    [11] Burke AP, Weber DK, Kolodgie FD, et al. (2001) Pathophysiology of calcium deposition in coronary arteries. Herz 26: 239-244. doi: 10.1007/PL00002026
    [12] Mori H, Torii S, Kutyna M, et al. (2018) Coronary Artery Calcification and its Progression: What Does it Really Mean? JACC Cardiovasc Imaging 11: 127-142. doi: 10.1016/j.jcmg.2017.10.012
    [13] Sangiorgi G, Rumberger JA, Severson A, et al. (1998) Arterial calcification and not lumen stenosis is highly correlated with atherosclerotic plaque burden in humans: a histologic study of 723 coronary artery segments using nondecalcifying methodology. J Am Coll Cardiol 31: 126-133. doi: 10.1016/S0735-1097(97)00443-9
    [14] Glagov S, Weisenberg E, Zarins CK, et al. (1987) Compensatory enlargement of human atherosclerotic coronary arteries. N Engl J Med 316: 1371-1375. doi: 10.1056/NEJM198705283162204
    [15] Burke AP, Virmani R, Galis Z, et al. (2003) 34th Bethesda Conference: Task force #2--What is the pathologic basis for new atherosclerosis imaging techniques? J Am Coll Cardiol 41: 1874-1886. doi: 10.1016/S0735-1097(03)00359-0
    [16] Williams JK, Adams MR, Klopfenstein HS (1990) Estrogen modulates responses of atherosclerotic coronary arteries. Circulation 81: 1680-1687. doi: 10.1161/01.CIR.81.5.1680
    [17] Burke AP, Taylor A, Farb A, et al. (2000) Coronary calcification: insights from sudden coronary death victims. Z Kardiol 2: 49-53. doi: 10.1007/s003920070099
    [18] Burke AP, Farb A, Malcom G, et al. (2001) Effect of menopause on plaque morphologic characteristics in coronary atherosclerosis. Am Heart J 141: S58-62. doi: 10.1067/mhj.2001.109946
    [19] Manson JE, Allison MA, Rossouw JE, et al. (2007) Estrogen therapy and coronary-artery calcification. N Engl J Med 356: 2591-2602. doi: 10.1056/NEJMoa071513
    [20] Bild DE, Detrano R, Peterson D, et al. (2005) Ethnic differences in coronary calcification: the Multi-Ethnic Study of Atherosclerosis (MESA). Circulation 111: 1313-1320. doi: 10.1161/01.CIR.0000157730.94423.4B
    [21] Burke A, Farb A, Kutys R, et al. (2002) Atherosclerotic coronary plaques in African Americans are less likely to calcify than coronary plaques in Caucasian Americans. Circulation 106: 481-481.
    [22] Lee TC, O'Malley PG, Feuerstein I, et al. (2003) The prevalence and severity of coronary artery calcification on coronary artery computed tomography in black and white subjects. J Am Coll Cardiol 41: 39-44.
    [23] Loria CM, Liu K, Lewis CE, et al. (2007) Early adult risk factor levels and subsequent coronary artery calcification: the CARDIA Study. J Am Coll Cardiol 49: 2013-2020. doi: 10.1016/j.jacc.2007.03.009
    [24] Kiel DP, Kauppila LI, Cupples LA, et al. (2001) Bone loss and the progression of abdominal aortic calcification over a 25 year period: the Framingham Heart Study. Calcif Tissue Int 68: 271-276. doi: 10.1007/BF02390833
    [25] Mauriello A, Servadei F, Zoccai GB, et al. (2013) Coronary calcification identifies the vulnerable patient rather than the vulnerable Plaque. Atherosclerosis 229: 124-129. doi: 10.1016/j.atherosclerosis.2013.03.010
    [26] Huang CC, Lloyd-Jones DM, Guo X, et al. (2011) Gene expression variation between African Americans and whites is associated with coronary artery calcification: the multiethnic study of atherosclerosis. Physiol Genomics 43: 836-843. doi: 10.1152/physiolgenomics.00243.2010
    [27] Fornage M, Boerwinkle E, Doris PA, et al. (2004) Polymorphism of the soluble epoxide hydrolase is associated with coronary artery calcification in African-American subjects: The Coronary Artery Risk Development in Young Adults (CARDIA) study. Circulation 109: 335-339. doi: 10.1161/01.CIR.0000109487.46725.02
    [28] Rumberger JA, Simons DB, Fitzpatrick LA, et al. (1995) Coronary artery calcium area by electron-beam computed tomography and coronary atherosclerotic plaque area. A histopathologic correlative study. Circulation 92: 2157-2162. doi: 10.1161/01.CIR.92.8.2157
    [29] Raggi P, Shaw LJ, Berman DS, et al. (2004) Prognostic value of coronary artery calcium screening in subjects with and without diabetes. J Am Coll Cardiol 43: 1663-1669. doi: 10.1016/j.jacc.2003.09.068
    [30] Carson AP, Steffes MW, Carr JJ, et al. (2015) Hemoglobin a1c and the progression of coronary artery calcification among adults without diabetes. Diabetes care 38: 66-71. doi: 10.2337/dc14-0360
    [31] Burke AP, Kolodgie FD, Farb A, et al. (2001) Healed plaque ruptures and sudden coronary death: evidence that subclinical rupture has a role in plaque progression. Circulation 103: 934-940. doi: 10.1161/01.CIR.103.7.934
    [32] Burke AP, Kolodgie FD, Zieske A, et al. (2004) Morphologic findings of coronary atherosclerotic plaques in diabetics: a postmortem study. Arterioscler Thromb Vasc Biol 24: 1266-1271. doi: 10.1161/01.ATV.0000131783.74034.97
    [33] Goodman WG, Goldin J, Kuizon BD, et al. (2000) Coronary-artery calcification in young adults with end-stage renal disease who are undergoing dialysis. N Engl J Med 342: 1478-1483. doi: 10.1056/NEJM200005183422003
    [34] Sigrist M, Bungay P, Taal MW, et al. (2006) Vascular calcification and cardiovascular function in chronic kidney disease. Nephrol Dial Transplant 21: 707-714. doi: 10.1093/ndt/gfi236
    [35] Baber U, de Lemos JA, Khera A, et al. (2008) Non-traditional risk factors predict coronary calcification in chronic kidney disease in a population-based cohort. Kidney Int 73: 615-621. doi: 10.1038/sj.ki.5002716
    [36] Block GA, Raggi P, Bellasi A, et al. (2007) Mortality effect of coronary calcification and phosphate binder choice in incident hemodialysis patients. Kidney Int 71: 438-441. doi: 10.1038/sj.ki.5002059
    [37] Raggi P, Boulay A, Chasan-Taber S, et al. (2002) Cardiac calcification in adult hemodialysis patients. A link between end-stage renal disease and cardiovascular disease? J Am Coll Cardiol 39: 695-701. doi: 10.1016/S0735-1097(01)01781-8
    [38] Oh J, Wunsch R, Turzer M, et al. (2002) Advanced coronary and carotid arteriopathy in young adults with childhood-onset chronic renal failure. Circulation 106: 100-105. doi: 10.1161/01.CIR.0000020222.63035.C0
    [39] Chertow GM, Raggi P, Chasan-Taber S, et al. (2004) Determinants of progressive vascular calcification in haemodialysis patients. Nephrol Dial Transplant 19: 1489-1496. doi: 10.1093/ndt/gfh125
    [40] Chertow GM, Burke SK, Raggi P (2002) Sevelamer attenuates the progression of coronary and aortic calcification in hemodialysis patients. Kidney Int 62: 245-252. doi: 10.1046/j.1523-1755.2002.00434.x
    [41] Guerin AP, London GM, Marchais SJ, et al. (2000) Arterial stiffening and vascular calcifications in end-stage renal disease. Nephrol Dial Transplant 15: 1014-1021. doi: 10.1093/ndt/15.7.1014
    [42] Adeney KL, Siscovick DS, Ix JH, et al. (2009) Association of serum phosphate with vascular and valvular calcification in moderate CKD. J Am Soc Nephrol 20: 381-387. doi: 10.1681/ASN.2008040349
    [43] Kestenbaum B, Sampson JN, Rudser KD, et al. (2005) Serum phosphate levels and mortality risk among people with chronic kidney disease. J Am Soc Nephrol 16: 520-528. doi: 10.1681/ASN.2004070602
    [44] Dhingra R, Sullivan LM, Fox CS, et al. (2007) Relations of serum phosphorus and calcium levels to the incidence of cardiovascular disease in the community. Arch Intern Med 167: 879-885. doi: 10.1001/archinte.167.9.879
    [45] Palmer SC, Gardner S, Tonelli M, et al. (2016) Phosphate-Binding Agents in Adults With CKD: A Network Meta-analysis of Randomized Trials. Am J Kidney Dis 68: 691-702. doi: 10.1053/j.ajkd.2016.05.015
    [46] Raggi P, Bellasi A, Bushinsky D, et al. (2020) Slowing Progression of Cardiovascular Calcification With SNF472 in Patients on Hemodialysis: Results of a Randomized Phase 2b Study. Circulation 141: 728-739. doi: 10.1161/CIRCULATIONAHA.119.044195
    [47] Raggi P, Chertow GM, Torres PU, et al. (2011) The ADVANCE study: a randomized study to evaluate the effects of cinacalcet plus low-dose vitamin D on vascular calcification in patients on hemodialysis. Nephrol Dial Transplant 26: 1327-1339. doi: 10.1093/ndt/gfq725
    [48] Sadek T, Mazouz H, Bahloul H, et al. (2003) Sevelamer hydrochloride with or without alphacalcidol or higher dialysate calcium vs calcium carbonate in dialysis patients: an open-label, randomized study. Nephrol Dial Transplant 18: 582-588. doi: 10.1093/ndt/18.3.582
    [49] Sawabe M, Arai T, Kasahara I, et al. (2006) Sustained progression and loss of the gender-related difference in atherosclerosis in the very old: a pathological study of 1074 consecutive autopsy cases. Atherosclerosis 186: 374-379. doi: 10.1016/j.atherosclerosis.2005.07.023
    [50] Dalager S, Paaske WP, Kristensen IB, et al. (2007) Artery-related differences in atherosclerosis expression: implications for atherogenesis and dynamics in intima-media thickness. Stroke 38: 2698-2705. doi: 10.1161/STROKEAHA.107.486480
    [51] Yahagi K, Kolodgie FD, Otsuka F, et al. (2016) Pathophysiology of native coronary, vein graft, and in-stent atherosclerosis. Nat Rev Cardiol 13: 79-98. doi: 10.1038/nrcardio.2015.164
    [52] Herisson F, Heymann MF, Chetiveaux M, et al. (2011) Carotid and femoral atherosclerotic plaques show different morphology. Atherosclerosis 216: 348-354. doi: 10.1016/j.atherosclerosis.2011.02.004
    [53] Derksen WJM, de Vries J-PPM, Vink A, et al. (2010) Histologic atherosclerotic plaque characteristics are associated with restenosis rates after endarterectomy of the common and superficial femoral arteries. J Vasc Surg 52: 592-599. doi: 10.1016/j.jvs.2010.03.063
    [54] Soor GS, Vukin I, Leong SW, et al. (2008) Peripheral vascular disease: who gets it and why? A histomorphological analysis of 261 arterial segments from 58 cases. Pathology (Phila) 40: 385-391.
    [55] Lachman AS, Spray TL, Kerwin DM, et al. (1977) Medial calcinosis of Monckeberg. A review of the problem and a description of a patient with involvement of peripheral, visceral and coronary arteries. Am J Med 63: 615-622. doi: 10.1016/0002-9343(77)90207-8
    [56] Amos RS, Wright V (1980) Monckeberg's arteriosclerosis and metabolic bone disease. Lancet 2: 248-249. doi: 10.1016/S0140-6736(80)90133-6
    [57] Kolodgie F, Nakazawa G, Santorgi G, et al. (2007) Differences and commons in pathology and reaction on stents between cardiac and peripheral arteries. European Symposium of Vascular Biomaterials 2007 New Technologies in Vascular Biomaterials Strasbourg: EUROPROT 49-70.
    [58] Torii S, Mustapha AJ, Narula J, et al. (2019) Histopathologic Characterization of Peripheral Arteries in Subjects with Abundant Risk Factors. JACC Cardiovasc Imaging 12: 1501-1513. doi: 10.1016/j.jcmg.2018.08.039
    [59] Mauriello A, Sangiorgi GM, Virmani R, et al. (2010) A pathobiologic link between risk factors profile and morphological markers of carotid instability. Atherosclerosis 208: 572-580. doi: 10.1016/j.atherosclerosis.2009.07.048
    [60] Diehm N, Silvestro A, Baumgartner I, et al. (2009) Chronic critical limb ischemia: European experiences. J Cardiovasc Surg (Torino) 50: 647-653.
    [61] Narula N, Dannenberg AJ, Olin JW, et al. (2018) Pathology of Peripheral Artery Disease in Patients With Critical Limb Ischemia. J Am Coll Cardiol 72: 2152-2163. doi: 10.1016/j.jacc.2018.08.002
    [62] Kamenskiy A, Poulson W, Sim S, et al. (2018) Prevalence of Calcification in Human Femoropopliteal Arteries and its Association with Demographics, Risk Factors, and Arterial Stiffness. Arterioscler Thromb Vasc Biol 38: e48-e57. doi: 10.1161/ATVBAHA.117.310490
    [63] Deas DS, Marshall AP, Bian A, et al. (2015) Association of cardiovascular and biochemical risk factors with tibial artery calcification. Vasc Med 20: 326-331. doi: 10.1177/1358863X15581448
    [64] Shao JS, Cheng SL, Sadhu J, et al. (2010) Inflammation and the osteogenic regulation of vascular calcification: a review and perspective. Hypertension 55: 579-592. doi: 10.1161/HYPERTENSIONAHA.109.134205
    [65] Moe SM, Chen NX (2004) Pathophysiology of vascular calcification in chronic kidney disease. Circ Res 95: 560-567. doi: 10.1161/01.RES.0000141775.67189.98
    [66] Kroger K, Stang A, Kondratieva J, et al. (2006) Prevalence of peripheral arterial disease - results of the Heinz Nixdorf recall study. Eur J Epidemiol 21: 279-285. doi: 10.1007/s10654-006-0015-9
    [67] Vasuri F, Fittipaldi S, Pacilli A, et al. (2016) The incidence and morphology of Monckeberg's medial calcification in banked vascular segments from a monocentric donor population. Cell Tissue Bank 17: 219-223. doi: 10.1007/s10561-016-9543-z
    [68] Creager MA, Belkin M, Bluth EI, et al. (2012) 2012 ACCF/AHA/ACR/SCAI/SIR/STS/SVM/SVN/SVS key data elements and definitions for peripheral atherosclerotic vascular disease: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Clinical Data Standards (Writing Committee to Develop Clinical Data Standards for Peripheral Atherosclerotic Vascular Disease). Circulation 125: 395-467. doi: 10.1161/CIR.0b013e31823299a1
    [69] Sahasakul Y, Edwards WD, Naessens JM, et al. (1988) Age-related changes in aortic and mitral valve thickness: implications for two-dimensional echocardiography based on an autopsy study of 200 normal human hearts. Am J Cardiol 62: 424-430. doi: 10.1016/0002-9149(88)90971-X
    [70] Nkomo VT, Gardin JM, Skelton TN, et al. (2006) Burden of valvular heart diseases: a population-based study. Lancet 368: 1005-1011. doi: 10.1016/S0140-6736(06)69208-8
    [71] Sakamoto A, Guo L, Virmani R, et al. (2019) Is there a role for activated platelets in progression of aortic valve calcification? Eur Heart J 40: 1374-1377. doi: 10.1093/eurheartj/ehy775
    [72] Butany J, Collins MJ, Demellawy DEI, et al. (2005) Morphological and clinical findings in 247 surgically excised native aortic valves. Can J Cardiol 21: 747-755.
    [73] Roberts WC, Ko JM (2004) Weights of individual cusps in operatively-excised stenotic three-cuspid aortic valves. Am J Cardiol 94: 681-684. doi: 10.1016/j.amjcard.2004.05.045
    [74] Owens DS, Katz R, Takasu J, et al. (2010) Incidence and progression of aortic valve calcium in the Multi-ethnic Study of Atherosclerosis (MESA). Am J Cardiol 105: 701-708. doi: 10.1016/j.amjcard.2009.10.071
    [75] Mohler ER, Gannon F, Reynolds C, et al. (2001) Bone formation and inflammation in cardiac valves. Circulation 103: 1522-1528. doi: 10.1161/01.CIR.103.11.1522
    [76] O'Brien KD, Reichenbach DD, Marcovina SM, et al. (1996) Apolipoproteins B, (a), and E accumulate in the morphologically early lesion of ‘degenerative’ valvular aortic stenosis. Arterioscler Thromb Vasc Biol 16: 523-532. doi: 10.1161/01.ATV.16.4.523
    [77] Milin AC, Vorobiof G, Aksoy O, et al. (2014) Insights into aortic sclerosis and its relationship with coronary artery disease. J Am Heart Assoc 3: 001111. doi: 10.1161/JAHA.114.001111
    [78] Chiu JJ, Chien S (2011) Effects of disturbed flow on vascular endothelium: pathophysiological basis and clinical perspectives. Physiol Rev 91: 327-387. doi: 10.1152/physrev.00047.2009
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(7377) PDF downloads(490) Cited by(7)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog