Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

Cell division symmetry control and cancer stem cells

Department of Biological Sciences, University of Toledo, Toledo, OH 43606, USA

Stem cells including cancer stem cells (CSC) divide symmetrically or asymmetrically. Usually symmetric cell division makes two daughter cells of the same fate, either as stem cells or more differentiated progenies; while asymmetric cell division (ACD) produces daughter cells of different fates. In this review, we first provide an overview of ACD, and then discuss more molecular details of ACD using the well- characterized Drosophila neuroblast system as an example. Aiming to explore the connections between cell heterogeneity in cancers and the critical need of ACD for self-renewal and generating cell diversity, we then examine how cell division symmetry control impacts common features associated with CSCs, including niche competition, cancer dormancy, drug resistance, epithelial-mesenchymal transition (EMT) and its reverse process mesenchymal-epithelial transition (MET), and cancer stem cell plasticity. As CSC may underlie resistance to therapy and cancer metastasis, understanding how cell division mode is selected and executed in these cells will provide possible strategies to target CSC.
  Figure/Table
  Supplementary
  Article Metrics

Keywords cancer stem cells; asymmetric cell division; symmetric cell division; fate determinants; stem cell plasticity; cancer dormancy; epithelial-mesenchymal transition; mesenchymal-epithelial transition

Citation: Sreemita Majumdar, Song-Tao Liu. Cell division symmetry control and cancer stem cells. AIMS Molecular Science, 2020, 7(2): 82-98. doi: 10.3934/molsci.2020006

References

  • 1. Morrison SJ, Kimble J (2006) Asymmetric and symmetric stem-cell divisions in development and cancer. Nature 441: 1068–1074.    
  • 2. Ge Y, Fuchs E (2018) Stretching the limits: from homeostasis to stem cell plasticity in wound healing and cancer. Nat Rev Genet 19: 311–325.    
  • 3. Yousefi M, Li L, Lengner CJ (2017) Hierarchy and Plasticity in the Intestinal Stem Cell Compartment. Trends Cell Biol 27: 753–764.    
  • 4. Tetteh PW, Farin HF, Clevers H (2015) Plasticity within stem cell hierarchies in mammalian epithelia. Trends Cell Biol 25: 100–108.    
  • 5. Losick VP, Morris LX, Fox DT, et al. (2011) Drosophila stem cell niches: a decade of discovery suggests a unified view of stem cell regulation. Dev Cell 21: 159–171.    
  • 6. Reya T, Morrison SJ, Clarke MF, et al. (2001) Stem cells, cancer, and cancer stem cells. Nature 414: 105–111.    
  • 7. Bajaj J, Diaz E, Reya T (2020) Stem cells in cancer initiation and progression. J Cell Biol 219: e201911053.    
  • 8. Greaves M, Maley CC (2012) Clonal evolution in cancer. Nature 481: 306–313.    
  • 9. Brooks MD, Burness ML, Wicha MS (2015) Therapeutic Implications of Cellular Heterogeneity and Plasticity in Breast Cancer. Cell Stem Cell 17: 260–271.    
  • 10. Kreso A, Dick JE (2014) Evolution of the cancer stem cell model. Cell Stem Cell 14: 275–291.    
  • 11. Ye X, Weinberg RA (2015) Epithelial-Mesenchymal Plasticity: A Central Regulator of Cancer Progression. Trends Cell Biol 25: 675–686.    
  • 12. Najafi M, Mortezaee K, Ahadi R (2019) Cancer stem cell (a)symmetry & plasticity: Tumorigenesis and therapy relevance. Life Sci 231: 116520.    
  • 13. Lee G, Hall RR, Ahmed AU (2016) Cancer Stem Cells: Cellular Plasticity, Niche, and its Clinical Relevance. J Stem Cell Res Ther 6: 363.
  • 14. Skrypek N, Goossens S, De Smedt E, et al. (2017) Epithelial-to-Mesenchymal Transition: Epigenetic Reprogramming Driving Cellular Plasticity. Trends Genet 33: 943–959.    
  • 15. Hung KF, Yang T, Kao SY (2019) Cancer stem cell theory: Are we moving past the mist? J Chin Med Assoc 82: 814–818.    
  • 16. Batlle E, Clevers H (2017) Cancer stem cells revisited. Nat Med 23: 1124–1134.    
  • 17. Horvitz HR, Herskowitz I (1992) Mechanisms of asymmetric cell division: two Bs or not two Bs, that is the question. Cell 68: 237–255.    
  • 18. Knoblich JA (2001) Asymmetric cell division during animal development. Nat Rev Mol Cell Biol 2: 11–20.
  • 19. Venkei ZG, Yamashita YM (2018) Emerging mechanisms of asymmetric stem cell division. J Cell Biol 217: 3785–3795.    
  • 20. Neumuller RA, Knoblich JA (2009) Dividing cellular asymmetry: asymmetric cell division and its implications for stem cells and cancer. Genes Dev 23: 2675–2699.    
  • 21. Lechler T, Fuchs E (2005) Asymmetric cell divisions promote stratification and differentiation of mammalian skin. Nature 437: 275–280.    
  • 22. Cabernard C, Doe CQ (2009) Apical/Basal Spindle Orientation Is Required for Neuroblast Homeostasis and Neuronal Differentiation in Drosophila. Developmental Cell 17: 134–141.    
  • 23. Yamashita YM, Jones DL, Fuller MT (2003) Orientation of Asymmetric Stem Cell Division by the APC Tumor Suppressor and Centrosome. Science 301: 1547.    
  • 24. Santoro A, Vlachou T, Carminati M, et al. (2016) Molecular mechanisms of asymmetric divisions in mammary stem cells. EMBO Rep 17: 1700–1720.    
  • 25. Knoblich JA (2008) Mechanisms of asymmetric stem cell division. Cell 132: 583–597.    
  • 26. Morin X, Bellaiche Y (2011) Mitotic spindle orientation in asymmetric and symmetric cell divisions during animal development. Dev Cell 21: 102–119.    
  • 27. Rhyu MS, Jan LY, Jan YN (1994) Asymmetric distribution of numb protein during division of the sensory organ precursor cell confers distinct fates to daughter cells. Cell 76: 477–491.    
  • 28. Guo M, Jan LY, Jan YN (1996) Control of daughter cell fates during asymmetric division: interaction of Numb and Notch. Neuron 17: 27–41.    
  • 29. Wirtz-Peitz F, Nishimura T, Knoblich JA (2008) Linking cell cycle to asymmetric division: Aurora- A phosphorylates the Par complex to regulate Numb localization. Cell 135: 161–173.    
  • 30. Campanale JP, Sun TY, Montell DJ (2017) Development and dynamics of cell polarity at a glance. J Cell Sci 130: 1201–1207.    
  • 31. Doe CQ, Bowerman B (2001) Asymmetric cell division: fly neuroblast meets worm zygote. Curr Opin Cell Biol 13: 68–75.    
  • 32. Loyer N, Januschke J (2020) Where does asymmetry come from? Illustrating principles of polarity and asymmetry establishment in Drosophila neuroblasts. Curr Opin Cell Biol 62: 70–77.
  • 33. Johnston CA, Hirono K, Prehoda KE, et al. (2009) Identification of an Aurora-A/PinsLINKER/Dlg spindle orientation pathway using induced cell polarity in S2 cells. Cell 138: 1150–1163.    
  • 34. Cabernard C, Prehoda KE, Doe CQ (2010) A spindle-independent cleavage furrow positioning pathway. Nature 467: 91–94.    
  • 35. Gateff E (1978) Malignant neoplasms of genetic origin in Drosophila melanogaster. Science 200: 1448–1459.    
  • 36. Caussinus E, Gonzalez C (2005) Induction of tumor growth by altered stem-cell asymmetric division in Drosophila melanogaster. Nat Genet 37: 1125–1129.    
  • 37. Wang H, Somers GW, Bashirullah A, et al. (2006) Aurora-A acts as a tumor suppressor and regulates self-renewal of Drosophila neuroblasts. Genes Dev 20: 3453–3463.    
  • 38. Betschinger J, Mechtler K, Knoblich JA (2006) Asymmetric segregation of the tumor suppressor brat regulates self-renewal in Drosophila neural stem cells. Cell 124: 1241–1253.    
  • 39. Seldin L, Macara I (2017) Epithelial spindle orientation diversities and uncertainties: recent developments and lingering questions. F1000Res 6: 984.    
  • 40. McCaffrey LM, Montalbano J, Mihai C, et al. (2012) Loss of the Par3 polarity protein promotes breast tumorigenesis and metastasis. Cancer Cell 22: 601–614.    
  • 41. Zen K, Yasui K, Gen Y, et al. (2009) Defective expression of polarity protein PAR-3 gene (PARD3) in esophageal squamous cell carcinoma. Oncogene 28: 2910–2918.    
  • 42. McCaffrey LM, Macara IG (2009) The Par3/aPKC interaction is essential for end bud remodeling and progenitor differentiation during mammary gland morphogenesis. Genes Dev 23: 1450–1460.    
  • 43. Huang L, Muthuswamy SK (2010) Polarity protein alterations in carcinoma: a focus on emerging roles for polarity regulators. Curr Opin Genet Dev 20: 41–50.    
  • 44. Lee DF, Su J, Ang YS, et al. (2012) Regulation of embryonic and induced pluripotency by aurora kinase-p53 signaling. Cell Stem Cell 11: 179–194.    
  • 45. Zhou H, Kuang J, Zhong L, et al. (1998) Tumour amplified kinase STK15/BTAK induces centrosome amplification, aneuploidy and transformation. Nat Genet 20: 189–193.    
  • 46. Willems E, Dedobbeleer M, Digregorio M, et al. (2018) The functional diversity of Aurora kinases: a comprehensive review. Cell Div 13: 7.    
  • 47. Sasai K, Parant JM, Brandt ME, et al. (2008) Targeted disruption of Aurora A causes abnormal mitotic spindle assembly, chromosome misalignment and embryonic lethality. Oncogene 27: 4122–4127.    
  • 48. di Pietro F, Echard A, Morin X (2016) Regulation of mitotic spindle orientation: an integrated view. EMBO Rep 17: 1106–1130.    
  • 49. Mukherjee S, Kong J, Brat DJ (2015) Cancer stem cell division: when the rules of asymmetry are broken. Stem Cells Dev 24: 405–416.    
  • 50. Li HS, Wang D, Shen Q, et al. (2003) Inactivation of Numb and Numblike in embryonic dorsal forebrain impairs neurogenesis and disrupts cortical morphogenesis. Neuron 40: 1105–1118.    
  • 51. Garcia-Heredia JM, Verdugo Sivianes EM, Lucena-Cacace A, et al. (2016) Numb-like (NumbL) downregulation increases tumorigenicity, cancer stem cell-like properties and resistance to chemotherapy. Oncotarget 7: 63611–63628.
  • 52. Tosoni D, Zecchini S, Coazzoli M, et al. (2015) The Numb/p53 circuitry couples replicative self- renewal and tumor suppression in mammary epithelial cells. J Cell Biol 211: 845–862.    
  • 53. Lapidot T, Sirard C, Vormoor J, et al. (1994) A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 367: 645–648.    
  • 54. Bonnet D, Dick JE (1997) Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 3: 730–737.    
  • 55. Al-Hajj M, Wicha MS, Benito-Hernandez A, et al. (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 100: 3983–3988.    
  • 56. Singh SK, Clarke ID, Terasaki M, et al. (2003) Identification of a cancer stem cell in human brain tumors. Cancer Res 63: 5821–5828.
  • 57. Dontu G, Abdallah WM, Foley JM, et al. (2003) In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes Dev 17: 1253–1270.    
  • 58. Reynolds BA, Weiss S (1996) Clonal and population analyses demonstrate that an EGF-responsive mammalian embryonic CNS precursor is a stem cell. Dev Biol 175: 1–13.    
  • 59. Lanzkron SM, Collector MI, Sharkis SJ (1999) Hematopoietic stem cell tracking in vivo: a comparison of short-term and long-term repopulating cells. Blood 93: 1916–1921.    
  • 60. Pece S, Tosoni D, Confalonieri S, et al. (2010) Biological and molecular heterogeneity of breast cancers correlates with their cancer stem cell content. Cell 140: 62–73.    
  • 61. Moore N, Lyle S (2011) Quiescent, slow-cycling stem cell populations in cancer: a review of the evidence and discussion of significance. J Oncol Article ID 396076.
  • 62. Bu P, Chen KY, Lipkin SM, et al. (2013) Asymmetric division: a marker for cancer stem cells in early stage tumors? Oncotarget 4: 950–951.
  • 63. Ginestier C, Hur MH, Charafe-Jauffret E, et al. (2007) ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell 1: 555–567.    
  • 64. Greve B, Kelsch R, Spaniol K, et al. (2012) Flow cytometry in cancer stem cell analysis and separation. Cytometry A 81: 284–293.
  • 65. Mani SA, Guo W, Liao MJ, et al. (2008) The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133: 704–715.    
  • 66. Bu P, Chen KY, Chen JH, et al. (2013) A microRNA miR-34a-regulated bimodal switch targets Notch in colon cancer stem cells. Cell Stem Cell 12: 602–615.    
  • 67. Chen G, Kong J, Tucker-Burden C, et al. (2014) Human Brat ortholog TRIM3 is a tumor suppressor that regulates asymmetric cell division in glioblastoma. Cancer Res 74: 4536–4548.    
  • 68. Clarke MF, Dick JE, Dirks PB, et al. (2006) Cancer stem cells--perspectives on current status and future directions: AACR Workshop on cancer stem cells. Cancer Res 66: 9339–9344.    
  • 69. Till JE, Mc CE (1961) A direct measurement of the radiation sensitivity of normal mouse bone marrow cells. Radiat Res 14: 213–222.    
  • 70. Quintana E, Shackleton M, Sabel MS, et al. (2008) Efficient tumour formation by single human melanoma cells. Nature 456: 593–598.    
  • 71. Post Y, Clevers H (2019) Defining Adult Stem Cell Function at Its Simplest: The Ability to Replace Lost Cells through Mitosis. Cell Stem Cell 25: 174–183.    
  • 72. Bailey PC, Lee RM, Vitolo MI, et al. (2018) Single-Cell Tracking of Breast Cancer Cells Enables Prediction of Sphere Formation from Early Cell Divisions. iScience 8: 29–39.    
  • 73. Korkaya H, Liu S, Wicha MS (2011) Breast cancer stem cells, cytokine networks, and the tumor microenvironment. J Clin Invest 121: 3804–3809.    
  • 74. Kiel MJ, Yilmaz OH, Iwashita T, et al. (2005) SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 121: 1109–1121.    
  • 75. Kunisaki Y, Bruns I, Scheiermann C, et al. (2013) Arteriolar niches maintain haematopoietic stem cell quiescence. Nature 502: 637–643.    
  • 76. Snippert HJ, van der Flier LG, Sato T, et al. (2010) Intestinal crypt homeostasis results from neutral competition between symmetrically dividing Lgr5 stem cells. Cell 143: 134–144.    
  • 77. Lopez-Garcia C, Klein AM, Simons BD, et al. (2010) Intestinal stem cell replacement follows a pattern of neutral drift. Science 330: 822–825.    
  • 78. Wang R, Chadalavada K, Wilshire J, et al. (2010) Glioblastoma stem-like cells give rise to tumour endothelium. Nature 468: 829–833.    
  • 79. Tominaga K, Minato H, Murayama T, et al. (2019) Semaphorin signaling via MICAL3 induces symmetric cell division to expand breast cancer stem-like cells. Proc Natl Acad Sci USA 116: 625–630.    
  • 80. Huang S, Law P, Francis K, et al. (1999) Symmetry of initial cell divisions among primitive hematopoietic progenitors is independent of ontogenic age and regulatory molecules. Blood 94: 2595–2604.    
  • 81. Braun KM, Watt FM (2004) Epidermal label-retaining cells: background and recent applications. J Investig Dermatol Symp Proc 9: 196–201.    
  • 82. Bickenbach JR, Mackenzie IC (1984) Identification and localization of label-retaining cells in hamster epithelia. J Invest Dermatol 82: 618–622.    
  • 83. Kusumbe AP, Bapat SA (2009) Cancer stem cells and aneuploid populations within developing tumors are the major determinants of tumor dormancy. Cancer Res 69: 9245–9253.    
  • 84. Dey-Guha I, Wolfer A, Yeh AC, et al. (2011) Asymmetric cancer cell division regulated by AKT. Proc Natl Acad Sci USA 108: 12845–12850.    
  • 85. Bajaj J, Zimdahl B, Reya T (2015) Fearful symmetry: subversion of asymmetric division in cancer development and progression. Cancer Res 75: 792–797.    
  • 86. Gattinoni L, Speiser DE, Lichterfeld M, et al. (2017) T memory stem cells in health and disease. Nature Med 23: 18–27.    
  • 87. Ciocca ML, Barnett BE, Burkhardt JK, et al. (2012) Cutting edge: Asymmetric memory T cell division in response to rechallenge. J Immunol 188: 4145–4148.    
  • 88. Schmidt JM, Panzilius E, Bartsch HS, et al. (2015) Stem-cell-like properties and epithelial plasticity arise as stable traits after transient Twist1 activation. Cell Rep 10: 131–139.    
  • 89. Kroger C, Afeyan A, Mraz J, et al. (2019) Acquisition of a hybrid E/M state is essential for tumorigenicity of basal breast cancer cells. Proc Natl Acad Sci USA 116: 7353–7362.    
  • 90. Ye X, Tam WL, Shibue T, et al. (2015) Distinct EMT programs control normal mammary stem cells and tumour-initiating cells. Nature 525: 256–260.    
  • 91. Dongre A, Weinberg RA (2019) New insights into the mechanisms of epithelial-mesenchymal transition and implications for cancer. Nat Rev Mol Cell Biol 20: 69–84.
  • 92. Kreso A, O'Brien CA, van Galen P, et al. (2013) Variable clonal repopulation dynamics influence chemotherapy response in colorectal cancer. Science 339: 543–548.    
  • 93. Zhu Y, Luo M, Brooks M, et al. (2014) Biological and clinical significance of cancer stem cell plasticity. Clin Transl Med 3: 32.    
  • 94. Jasnos L, Aksoy FB, Hersi HM, et al. (2013) Identifying division symmetry of mouse embryonic stem cells: negative impact of DNA methyltransferases on symmetric self-renewal. Stem Cell Rep 1: 360–369.    

 

Reader Comments

your name: *   your email: *  

© 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved