Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

Phospholipid—the dynamic structure between living and non-living world; a much obligatory supramolecule for present and future

1 School of Biosciences and Technology, VIT University, Vellore–632014, Tamil Nadu, India
2 Biomedical Sciences Research Institute, Ulster University, Coleraine, BT52 1SA, UK

Phospholipids (PLs) are amphiphilic molecules that are in charge of controlling what goes in or out of the cell, keeping up the structure and numerous associated functions. These primary molecules are not only the integral part but also a vastly diverse group of molecules present in microorganisms, plants, and animals. PLs provide rigidity, signal transduction, energy to cells. PLs such as lecithins are molecules of future food, medicine and cosmetic industry. PLs are used in fat and oil refining and these are also used as carriers in drug and drug delivery system. Of course, challenges are there in the assay of phospholipids because of their availability of hydrophobic and hydrophilic components in the same environment. This review is mainly focused to unveil the function, characteristics, features and applications of PLs in various fields.
  Figure/Table
  Supplementary
  Article Metrics

Keywords phospholipids; plant-phospholipids; animal-phospholipids; microbial-phospholipids; lecithin; phosphoinositide

Citation: Manikandan Alagumuthu, Divakar Dahiya, Poonam Singh Nigam. Phospholipid—the dynamic structure between living and non-living world; a much obligatory supramolecule for present and future. AIMS Molecular Science, 2019, 6(1): 1-19. doi: 10.3934/molsci.2019.1.1

References

  • 1. López-Marqués RL, Poulsen LR, Bailly A, et al. (2014) Structure and mechanism of ATP-dependent phospholipid transporters. Biochim biophys Acta 1850: 461–475.
  • 2. Lopez-Marques RL, Theorin L, Palmgren MG, et al. (2014) P4-ATPases: lipid flippases in the cell membrane. Pflug Arch Eur J Physiol 466: 1227–1240.    
  • 3. Li J, Wang XL, Zhang T, et al. (2015) A review on phospholipids and their main applications in drug delivery system. Asian J Pharm Sci 10: 81–98.    
  • 4. Miao J, Du YZ, Yuan H, et al. (2013) Drug resistance reversal activity of anticancer drug loaded solid lipid nanoparticles in multidrug resistant cancer cells. Colloids Surf B 110: 74–80.    
  • 5. Janben HJ, Steinbuchel A (2014) Fatty acid synthesis in E. coli and its applications towards the production of fatty acid-based biofuels. Biotechnol Biofuels 7: 7.
  • 6. Hussein J (2013) Cell membrane fatty acids and health. Int J Pharm Pharm Sci 5: 38–46.
  • 7. Caforio A, Driessen AJM (2017) Archaeal phospholipids: Structural properties and biosynthesis. Biochim Biophys Acta-Mol Cell Biol Lipids 1862: 1325–1339.    
  • 8. Schiller J, Suss R, Arnhold J, et al. (2004) Matrix-assisted laser desorption and ionization time-of-flight (MALDI-TOF) mass spectrometry in lipid and phospholipid research. Prog Lipid Res 43: 449–488.    
  • 9. Irvine RF, Schell MJ (2001) Back in the water: the return of the inositol phosphates. Nat Rev Mol Cell Biol 2: 327–338.    
  • 10. Hannun YA, Luberto C, Argraves KM (2001) Enzymes of sphingolipid metabolism: from modular to integrative signaling. Biochemistry 40: 4893–4903.    
  • 11. Cooper GM (2000) The Cell: A Molecular Approach. 2Eds., Sunderland (MA): Sinauer Associates. Available from: https://www.ncbi.nlm.nih.gov/books/NBK9928/.
  • 12. Dowhan W, Mileykovskaya E, Bogdanov M (2004) Diversity and versatility of lipid-protein interactions revealed by molecular genetic approaches. Biochim Biophys Acta 1666: 19–39.    
  • 13. Adlercreutz P (2000) Enzymatic conversions of glycerophospholipids. In: Bornscheuer, U.T. Editor, Enzymes in Lipid Modification, Weinheim: Wiley, 292–306.
  • 14. George CM, Gil-Soo H (2007) Regulation of phospholipid synthesis in Saccharomyces cerevisiae by zinc depletion. Biochim Biophys Acta 1771: 322–330.    
  • 15. Perumal Chandran S, Natarajan SB, Senthil Rajan D, et al. (2014) Phospholipids as versatile polymer in drug delivery system. Int J Pharm Pharm Sci 6: 8–11.
  • 16. Yang S, Qiao B, Lu SH, et al. (2007) Comparative lipidomics analysis of cellular development and apoptosis in two Taxus cell lines. Biochim Biophys Acta 1771: 600–612.    
  • 17. Mashaghi S, Jadidi T, Koenderink G, et al. (2013) Lipid nanotechnology. Int J Mol Sci 14: 4242–4282.    
  • 18. van Hoogevest P, Wendel A (2014) The use of natural and synthetic phospholipids as pharmaceutical excipients. Eur J Lipid Sci Technol 116: 1088–1107.    
  • 19. Burdge GC, Calder PC (2015) Introduction to fatty acids and lipids. World Rev Nutr Diet 112: 1–16.
  • 20. Berg JM, Tymoczko JL, Stryer L (2002) Biochemistry. 5Eds. New York: W H Freeman. Available from: https://www.ncbi.nlm.nih.gov/books/NBK22581.
  • 21. Schönfeld P, Reiser G (2013) Why does brain metabolism not favor burning of fatty acids to provide energy? - Reflections on disadvantages of the use of free fatty acids as fuel for brain. J Cerebr Blood F Met 33: 1493–1499.
  • 22. Boudière L, Michaud M, Petroutsos D, et al. (2014) Glycerolipids in photosynthesis: composition, synthesis and trafficking. Biochim Biophys Acta-Bioenerg 1837: 470–480.    
  • 23. Siebers M, Brands M, Wewer V, et al. (2016) Lipids in plant-microbe interactions. Biochim Biophys Acta-Mol Cell Biol Lipids 1861: 1379–1395.    
  • 24. Baccile N, Cuvier AS, Prévost S, et al. (2016) Self-assembly mechanism of pH-responsive glycolipids: micelles, fibers, vesicles, and bilayers. Langmuir 32: 10881–10894.    
  • 25. Harroun TA, Heller WT, Weiss TM et al. (1999) Theoretical analysis of hydrophobic matching and membrane-mediated interactions in lipid bilayers containing gramicidin. Biophys J 76: 3176–3185.    
  • 26. Peterson BL, Cummings BS (2006) A review of chromatographic methods for the assessment of phospholipids in biological samples. Biomed Chromatogr 20: 227–243.    
  • 27. Camera E, Picardo M, Presutti C, et al. (2004) Separation and characterization of sphingoceramides by high-performance liquid chromatography–electrospray Ionization mass spectrometry. J Sep Sci 27: 971–976.    
  • 28. Chung SY, Moriyama T, Uezu E, et al. (1995) Administration of phosphatidylcholine increases brain acetylcholine concentration and improves memory in mice with dementia. J Nutr 125: 1484–1489.
  • 29. Nakamura Y (2017) Plant phospholipid diversity: emerging functions in metabolism and protein-lipid interactions. Trends Plant Sci 22: 1027–1040.    
  • 30. Bevers EM, Comfurius P, Dekkers DW, et al. (1998) Transmembrane phospholipid distribution in blood cells: control mechanisms and pathophysiological significance. Bio Chem 379: 973–986.
  • 31. Sodt AJ, Pastor RW (2014) Molecular modeling of lipid membrane curvature induction by a peptide: more than simply shape. Biophys J 106: 1958–1969.    
  • 32. Hama S, Ogino C, Kondo A (2015) Enzymatic synthesis and modification of structures phospholipids: recent advances in enzyme preparation and biocatalytic process. Appl Microbiol Biot 99: 7879–7891.    
  • 33. Fahy E, Subramaniam S, Brown HA, et al. (2005) A comprehensive classification system for lipids. J Lipid Res 46: 839–862.    
  • 34. Hawthorne JN, Ansell GB (1982) Phospholipids: New Comprehensive Biochemistry. Amsterdam: Elsevier Biomedical Press.
  • 35. Berg JM, Tymoczko JL, Stryer L (2002) Biochemistry. 5Eds., New York: W H Freeman. Available from: https://www.ncbi.nlm.nih.gov/books/NBK22361/
  • 36. Vance DE, Vance JE (2002) Biochemistry of Lipids, Lipoproteins, and Membranes. 4Eds., Amsterdam: Elsevier, 505–526.
  • 37. Vance JE (2015) Phospholipid synthesis and transport in mammalian cells. Traffic 16: 1–18.    
  • 38. Lorant J, Alemayehu G (2010) Importance of the sphingosine base double-bond geometry for the structural and thermodynamic properties of sphingomyelin bilayers. Biophys J 99: 2957–2966.    
  • 39. Ramstedt B, Slotte JP (2006) Sphingolipids and the formation of sterol-enriched ordered membrane domains. Biochim Biophys Acta-Biomembr 1758: 1945–1956.    
  • 40. Olsen I, Janzen E (2001) Sphingolipids in bacteria and fungi. Anaerobe 7: 103–112.    
  • 41. Moskot M, Bocheńska K, Jakóbkiewicz-Banecka J, et al. (2018) Abnormal Sphingolipid World in Inflammation Specific for Lysosomal Storage Diseases and Skin Disorders. Int J Mol Sci 19: 247.    
  • 42. Helen JS, Sofia KM, Vassilios MK (1989) Lipid composition and structural studies on lipids from the land snail Eobania vermiculata. Naturforsch 44c: 597-608.
  • 43. van Hoogevest P, Wendel A (2014) The use of natural and synthetic phospholipids as pharmaceutical excipients. Eur J Lipid Sci Technol 116: 1088–1107.    
  • 44. Brites P, Waterham HR, Wander, RJA (2004) Functions and biosynthesis of plasmalogens in health and disease. Biochim Biophys Acta 1636: 219–231.    
  • 45. Snyder F, Lee TC, Wykle RL (2002) Ether-linked lipids and their bioactive species in biochemistry of lipids, lipoproteins, and membranes. In: Vance, D.E., Vance, J.E. Editors, Biochemistry of Lipids, Lipoproteins and Membranes, 4Eds., Amsterdam: Elsevier, 233–262.
  • 46. Li G, Kim J, Huang Z, et al. (2016) Efficient replacement of plasma membrane outer leaflet phospholipids and sphingolipids in cells with exogenous lipids. P Natl Acad Sci USA 113: 14025–14030.    
  • 47. Montigny C, Lyons J, Champeil P, et al. (2016) On the molecular mechanism of flippase- and scramblase-mediated phospholipid transport. Biochim Biophys Acta 1861: 767–783.    
  • 48. Zhou Y, Wang CO, Cho K, et al. (2015) Signal transduction membrane potential modulates plasma membrane phospholipid dynamics and K-Ras signaling. Science 349: 873–876.    
  • 49. Vance JE (2008) Phosphatidylserine and phosphatidylethanolamine in mammalian cells: two metabolically related amino phospholipids. J Lipid Res 49: 1377–1387.    
  • 50. Fadeel B, Xue D (2009) The ins and outs of phospholipid asymmetry in the plasma membrane: roles in health and disease. Criti Rev Biochem Mol Biol 44: 264–277.    
  • 51. Suetsugu S, Kurisu S, Takenawa T (2014) Dynamic shaping of cellular membranes by phospholipids and membrane-deforming proteins. Physiol Rev 94: 1219–1248.    
  • 52. Darland-Ransom M, Wang XC, Sun CL, et al. (2008) Role of C. elegans TAT-1 protein in maintaining plasma membrane phosphatidylserine asymmetry. Science 320: 528–531.
  • 53. Mapes J, Chen YZ, Kim A, et al. (2012) CED-1, CED-7, and TTR-52 regulate surface phosphatidylserine expression on apoptotic and phagocytic cells. Curr Biol 22: 1267–1275.    
  • 54. Helen W (2015) Biological membranes. Essays Biochem 59: 43–69.    
  • 55. Van Meer G, Voelker DR, Feigenson GW (2008) Membrane lipids: Where they are and how they behave. Nat Rev Mol Cell Biol 9: 112–124.    
  • 56. Giordano F (2018) Non-vesicular lipid trafficking at the endoplasmic reticulum-mitochondria interface. Biochem Soc Trans 46: 437–452.    
  • 57. Panatala R, Hennrich H, Holthuis JCM (2015) Inner workings and biological impact of phospholipid flippases. J Cell Sci 128: 2021–2032.    
  • 58. Sebastian TT, Baldridge RD, Xu P, et al. (2012) Phospholipid flippases: building asymmetric membranes and transport vesicles. Biochim Biophys Acta 1821: 1068–1077.    
  • 59. Tanaka K, Fujimura KK, Yamamoto T (2011) Functions of phospholipid flippases. J Biochem 149: 131–143.    
  • 60. Contreras FX, Sánchez-Magraner L, Alonso A, et al. (2010) Transbilayer (flip-flop) lipid motion and lipid scrambling in membranes. FEBS Lett 584: 1779–1786.    
  • 61. Hankins HM, Baldridge RD, Xu P, et al. (2015) Role of flippases, scramblases and transfer proteins in phosphatidylserine subcellular distribution. Traffic 16: 35–47.    
  • 62. Lagace TA, Ridgway ND (2013) The role of phospholipids in the biological activity and structure of the endoplasmic reticulum. Biochim Biophys Acta-Mol cell Res 1833: 2499–2510.    
  • 63. Pomorski TG, Holthuis JCM, Herrmann A, et al. (2004) Tracking down lipid flippases and their biological functions. J Cell Sci 117: 805–813.    
  • 64. Nakao H, Ikeda K, Ishihama Y, et al. (2016) Membrane-spanning sequences in endoplasmic reticulum proteins promote phospholipid flip-flop. Biophys J 110: 2689–2697.    
  • 65. Montigny C, Lyons J, Champeil P, et al. (2016) On the molecular mechanism of flippase- and scramblase-mediated phospholipid transport. Biochim Biophys Acta-Mol Cell Biol Lipids 1861: 767–783.    
  • 66. Siarheyeva A, Sharom FJ (2009) The ABC transporter MsbA interacts with lipid A and amphipathic drugs at different. Biochem J 419: 317–328.    
  • 67. Casadei MA, Mañas P, Niven G, et al. (2002) Role of membrane fluidity in pressure resistance of Escherichia coli NCTC 8164. Appl Environ Microbiol 68: 5965–5972.    
  • 68. Sajbidor J (1997) Effect of some environmental factors on the content and composition of microbial membrane lipids. Crit Rev Biotechnol 17: 87–103.    
  • 69. Goldstein DB (1984) The effects of drugs on membrane fluidity. Annu Rev Pharmacol Toxicol 24: 43–64.    
  • 70. Begley TP, Guschina IA, Harwood JL (2008) Lipids: chemical diversity. In: Begley, T.P. Editor, Wiley Encyclopedia of Chemical Biology.
  • 71. Yagüe G, Segovia M, Valero-Guillén PL (1997) Acyl phosphatidylglycerol: a major phospholipid of Corynebacterium amycolatum. FEMS Microbiol Lett 151: 125–130.    
  • 72. Mazzella N, Molinet J, Syakti AD, et al. (2004) Bacterial phospholipid molecular species analysis by ion-pair reversed-phase HPLC/ESI/MS. J Lipid Res 45: 1355–1363.    
  • 73. Niepel MTH, Wray V, Abraham WR (2006) Intraspecific variation of unusual phospholipids from Corynebacterium spp. containing a Novel Fatty acid. J Bacteriol 180: 4650–4657.
  • 74. Pluschke G, Hirota Y, Overath P (1978) Function of phospholipids in Escherichia coli. characterization of a mutant deficient in cardiolipin synthesis. J Biol Chem 253: 5048–5055.
  • 75. Albelo ST, Domenech CE (1997) Carbons from choline present in the phospholipids of Pseudomonas aeruginosa. FEMS microbiol lett 156: 271–274.    
  • 76. Wang XG, Scagliotti JP, Hu LT (2004) Phospholipid synthesis in Borrelia burgdorferi BB0249 and BB0721 encode functional phosphatidylcholine synthase phosphatidylglycerol phosphate synthase proteins. Microbiol 150: 391–397.    
  • 77. Burgdorfer W, Barbour AG, Hayes SF, et al. (1982) Lyme disease-a tick-borne spirochetosis? Science 216: 1317–1319.    
  • 78. Oliver JD, Colwell R (1973) Extractable lipids of Gram-negative marine bacteria: phospholipid composition. J Bacteriol 114: 897–908.
  • 79. Yakimov MM, Golyshin PN, Lang S, et al. (1998) Alcanivorax borkurnensis gen. now., sp. nov., a new, hydrocarbon-degrading and surfactant-producing marine bacterium. Int J Sys Bacteriol 48: 339–348.
  • 80. Rottet S, Besagni C, Kessler F (2015) The role of plastoglobules in thylakoid lipid remodeling during plant development. Biochim Biophys Acta-Bioenerg 1847: 889–899.    
  • 81. Gao QM, Yu K, Xia Y, Shine MB, et al. (2014) Mono- and digalactosyldiacylglycerol lipids function non-redundantly to regulate systemic acquired resistance in plants. Cell Rep 9: 1681–1691.    
  • 82. Dubots E, Botté C, Boudière L, et al. (2012) Role of phosphatidic acid in plant galactolipid synthesis. Biochimie 94: 86–93.    
  • 83. Kobayashi K, Awai K, Nakamura M, et al. (2009) Type-B Monogalactosyl diacylglycerol synthases are involved in phosphate starvation-induced lipid remodeling, and are crucial for low-phosphate adaptation. Plant J 57: 322–331.    
  • 84. Lassègue B, Alexander RW, Clark M, et al. (1993) Phosphatidylcholine is a major source of phosphatidic acid and diacylglycerol in angiotensin II-stimulated vascular smooth-muscle cells. Biochem J 292: 509–517.    
  • 85. Harwood JL, Nicholls RG (1979) The plant sulpholipid-a major component of the sulphur cycle. Biochem Soc T 7: 440–447.    
  • 86. Joyard J, Teyssier E, Miege C, et al. (1998) The biochemical machinery of plastid envelope membranes. Plant Physiol 118: 715–723.    
  • 87. Damnjanovic J, Iwasaki Y (2013) Phospholipase D as a catalyst: application in phospholipid synthesis, molecular structure, and protein engineering. J Biosci Bioeng 116: 271–280.    
  • 88. Zhao P (2015) Phospholipase D and phosphatidic acid in plant defense response: from protein-protein and lipid-protein interaction to hormone signaling. J Exp Bot 66: 1721–1736.    
  • 89. Bodin S, Giuriato S, Ragab J, et al. (2001) Production of phosphatidylinositol 3,4,5-trisphosphate and phosphatidic acid in platelet rafts: evidence for a critical role of cholesterol enriched domains in human platelet activation. Biochemistry 40, 50: 15290–15299.
  • 90. Meijer HG, Munnik T (2003) Phospholipid-based signaling in plants. Annu Rev Plant Biol 54: 265–306.    
  • 91. Takashi T, Thomas L (2017) Intra-mitochondrial phospholipid trafficking. Biochim Biophys Acta-Mol Cell Biol Lipids 1862: 81–89.    
  • 92. Cowan KA (2006) Phospholipids as plant growth regulators. J Plant Growth Regul 48: 97–109.    
  • 93. Munnik T (2001) Phosphatidic acid: an emerging plant lipid second messenger. Trends Plant Sci 6: 227–233.    
  • 94. Testerink C, Munnik T (2005) Phosphatidic acid: a multifunctional stress signaling lipid in plants. Trends Plant Sci 10: 368–375.    
  • 95. Lodish H, Berk A, Zipursky SL, et al. (2000) Molecular cell Biology. 4Eds., New York: W. H. Freeman. Available from: https://www.ncbi.nlm.nih.gov/books/NBK21583/.
  • 96. Penno A, Hackenbroich G, Thiele C (2013) Phospholipids and lipid droplets. Biochim Biophys Acta-Mol Cell Biol Lipids 1831: 589–594.    
  • 97. Gupta G, Surolia A (2010) Glycosphingolipids in microdomain formation and their spatial organization. FEBS Lett 584: 1634–1641.    
  • 98. Alberts B, Johnson A, Lewis J (2002) Molecular biology of the cell. 4Eds., NewYork: Garland Science.
  • 99. Dufourc EJ (2008) Sterols and membrane dynamics. J Chem Biol 1: 63–77.    
  • 100. Singer SJ (2004) Some early history of membrane molecular biology. Annu Rev Physiol 66: 1–27.    
  • 101. Stoeckenius W, Engelman DM (1969) Current models for the structure of biological membranes. J Cell Biol 42: 613–646.    
  • 102. Simons K, Sampaio JL (2011) Membrane organization and lipid rafts. Cold Spring Harb Perspect Biol 3: a004697.
  • 103. Kim SH, Song HE, Kim SJ, et al. (2017) Quantitative structural characterization of phosphatidylinositol phosphates from biological samples. J Lipid Res 58: 469–478.    
  • 104. Kim Y, Shanta SR, Zhou LH, et al. (2010) Mass spectrometry-based cellular phosphoinositides profiling and phospholipid analysis: a brief review. Exp Mol Med 42: 1–11.    
  • 105. Berridge MJ (1993) Inositol trisphosphate and calcium signaling. Nature 361: 315–325.    
  • 106. Pronk JT, De BJC, Bos P (1992) Anaerobic growth of Thiobacillus ferrooxidans. Appl Environ Microbiol 58: 2227–2230.
  • 107. Rawlings DE (2002) Heavy metal mining using microbes. Annu Rev Microbiol 56: 65–91.    
  • 108. Rampelotto PH (2010) Resistance of microorganisms to extreme environmental conditions and its contribution to astrobiology. Sustainability 2: 1602–1623.    
  • 109. Haruta S, Kanno N (2015) Survivability of microbes in natural environments and their ecological impacts. Microbes Environ 30: 123–125.    
  • 110. Bloem J, de Ruiter P, Bouwman LA (1997) Soil Food webs and nutrient cycling in agroecosystems. In: van Elsas, JD., Trevors, J.T., Willington, E. Editors, Modern Soil Microbiology. New York: Marcel Dekker, 245–278.
  • 111. Kaur A, Kaur A, Choudhary R, et al. (2005) Phospholipid fatty acid-a bioindicator of environment monitoring and assessment in soil ecosystem. Curr Sci 89: 1103–1112.
  • 112. Hosokawa M, Minami K, Kohno H, et al. (1999) Differentiation- and apoptosis-inducing activities of phospholipids containing docosahexaenoic acid for mouse myeloid leukemia M1 cells. Fish Sci 65: 789–799.
  • 113. Chaurio RA, Janko C, Muñoz LE, et al. (2009) Phospholipids: key players in apoptosis and immune regulation. Molecules 14: 4892–4914.    
  • 114. Hoy CE, Xu X (2001) Structured triacylglycerols. In: Gunstone FD. Editor, Structured and Modified Lipid. New York: Marcel Dekker, 209–240.
  • 115. Willers C, Jansen VRPJ, Claassens S (2015) Phospholipid fatty acid profiling of microbial communities-a review of interpretations and recent applications. J App Microbiol 119: 1207–1218.    
  • 116. Ashraf MZ, Kar NS, Podrez EA (2009) Oxidized phospholipids: biomarker for cardiovascular diseases. Int J Biochem Cell B 4: 1241–1244.
  • 117. van Hoogevest P, Wendel A (2014) The use of natural and synthetic phospholipids as pharmaceutical excipients. Eur J Lipid Sci Tech 116: 1088–1107.    
  • 118. Diehl BWK, Ockels W (1995) Phospholipids: characterization, metabolism, and novel biological applications. In: Cevc, G., Paltauf, F. Editors, Proceedings of the 6th International Colloquium, USA: AOCS Press, 29–32.
  • 119. Descalzo AM, Insani EM, Pense NA (2003) Light-scattering detection of phospholipids resolved by HPLC. Lipids 38: 999–1003.    
  • 120. Campbell NA, Williamson B, Heyden RJ (2015) Biology Exploring Life. Boston, Massachusetts: Pearson Prentice Hall.
  • 121. Zachowski A (1993) Phospholipids in animal eukaryotic membranes: transverse asymmetry and movement. Biochem J 294: 1–14.    

 

Reader Comments

your name: *   your email: *  

© 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved