Review Topical Sections

Approaches in biotechnological applications of natural polymers

  • Received: 16 May 2016 Accepted: 08 August 2016 Published: 25 January 2016
  • Natural polymers, such as gums and mucilage, are biocompatible, cheap, easily available and non-toxic materials of native origin. These polymers are increasingly preferred over synthetic materials for industrial applications due to their intrinsic properties, as well as they are considered alternative sources of raw materials since they present characteristics of sustainability, biodegradability and biosafety. As definition, gums and mucilages are polysaccharides or complex carbohydrates consisting of one or more monosaccharides or their derivatives linked in bewildering variety of linkages and structures. Natural gums are considered polysaccharides naturally occurring in varieties of plant seeds and exudates, tree or shrub exudates, seaweed extracts, fungi, bacteria, and animal sources. Water-soluble gums, also known as hydrocolloids, are considered exudates and are pathological products; therefore, they do not form a part of cell wall. On the other hand, mucilages are part of cell and physiological products. It is important to highlight that gums represent the largest amounts of polymer materials derived from plants. Gums have enormously large and broad applications in both food and non-food industries, being commonly used as thickening, binding, emulsifying, suspending, stabilizing agents and matrices for drug release in pharmaceutical and cosmetic industries. In the food industry, their gelling properties and the ability to mold edible films and coatings are extensively studied. The use of gums depends on the intrinsic properties that they provide, often at costs below those of synthetic polymers. For upgrading the value of gums, they are being processed into various forms, including the most recent nanomaterials, for various biotechnological applications. Thus, the main natural polymers including galactomannans, cellulose, chitin, agar, carrageenan, alginate, cashew gum, pectin and starch, in addition to the current researches about them are reviewed in this article.

    Citation: Priscilla B.S. Albuquerque, Luana C.B.B. Coelho, José A. Teixeira, Maria G. Carneiro-da-Cunha. Approaches in biotechnological applications of natural polymers[J]. AIMS Molecular Science, 2016, 3(3): 386-425. doi: 10.3934/molsci.2016.3.386

    Related Papers:

  • Natural polymers, such as gums and mucilage, are biocompatible, cheap, easily available and non-toxic materials of native origin. These polymers are increasingly preferred over synthetic materials for industrial applications due to their intrinsic properties, as well as they are considered alternative sources of raw materials since they present characteristics of sustainability, biodegradability and biosafety. As definition, gums and mucilages are polysaccharides or complex carbohydrates consisting of one or more monosaccharides or their derivatives linked in bewildering variety of linkages and structures. Natural gums are considered polysaccharides naturally occurring in varieties of plant seeds and exudates, tree or shrub exudates, seaweed extracts, fungi, bacteria, and animal sources. Water-soluble gums, also known as hydrocolloids, are considered exudates and are pathological products; therefore, they do not form a part of cell wall. On the other hand, mucilages are part of cell and physiological products. It is important to highlight that gums represent the largest amounts of polymer materials derived from plants. Gums have enormously large and broad applications in both food and non-food industries, being commonly used as thickening, binding, emulsifying, suspending, stabilizing agents and matrices for drug release in pharmaceutical and cosmetic industries. In the food industry, their gelling properties and the ability to mold edible films and coatings are extensively studied. The use of gums depends on the intrinsic properties that they provide, often at costs below those of synthetic polymers. For upgrading the value of gums, they are being processed into various forms, including the most recent nanomaterials, for various biotechnological applications. Thus, the main natural polymers including galactomannans, cellulose, chitin, agar, carrageenan, alginate, cashew gum, pectin and starch, in addition to the current researches about them are reviewed in this article.


    加载中
    [1] Rana V, Rai P, Tiwary AK, et al. (2011) Modified gums: Approaches and applications in drug delivery. Carbohydr Polym 83: 1031-1047. doi: 10.1016/j.carbpol.2010.09.010
    [2] Clifford SC, Arndt SK, Popp M, et al. (2002) Mucilages and polysaccharides in Ziziphus species (Rhamnaceae): Localization, composition and physiological roles during drought-stress. J Exp Bot 53: 131-138.
    [3] Prajapati VD, Jani GK, Moradiya NG, et al. (2013) Pharmaceutical applications of various natural gums, mucilages and their modified forms. Carbohydr Polym 92: 1685-1699. doi: 10.1016/j.carbpol.2012.11.021
    [4] Ghanem ME, Hana RM, Classen B (2010) Mucilage and polysaccharides in the halophyte plant species Kosteletzkya virginica: Localization and composition in relation to salt stress. J Plant Physiol 167: 382-392. doi: 10.1016/j.jplph.2009.10.012
    [5] Franz G (1979) Metabolism of reserve polysaccharides in tubers of Orchis morio L. Planta Med 36: 68-73. doi: 10.1055/s-0028-1097242
    [6] Mirhosseini H, Amid BT (2012) A review study on chemical composition and molecular structure of newly plant gum exudates and seed gums. Food Res Int 46: 387-398. doi: 10.1016/j.foodres.2011.11.017
    [7] Gupta S, Saurabh CK, Variyar PS, et al. (2015) Comparative analysis of dietary fiber activities of enzymatic and gamma depolymerized guar gum. Food Hydrocoll 48: 149-154. doi: 10.1016/j.foodhyd.2015.02.013
    [8] Hosseini-Parvar SH, Osano JP, Matia-Merino L. (2016) Emulsifying properties of basil seed gum: Effect of pH and ionic strength. Food Hydrocoll 52: 838-847. doi: 10.1016/j.foodhyd.2015.09.002
    [9] Buriti FCA, Freitas SC, Egito AS, et al. (2014) Effects of tropical fruit pulps and partially hydrolysed galactomannan from Caesalpinia pulcherrima seeds on the dietary fibre content, probiotic viability, texture and sensory features of goat dairy beverages. LWT Food Sci Technol 59: 196-203. doi: 10.1016/j.lwt.2014.04.022
    [10] Pang Z, Deeth H, Prakash S, et al. (2016) Development of rheological and sensory properties of combinations of milk proteins and gelling polysaccharides as potential gelatin replacements in the manufacture of stirred acid milk gels and yogurt. J Food Eng 169: 27-37. doi: 10.1016/j.jfoodeng.2015.08.007
    [11] Cho HM, Yoo B (2015) Rheological characteristics of cold thickened beverages containing xanthan gum-based food thickeners used for dysphagia diets. J Acad Nutr Diet 115: 106-111. doi: 10.1016/j.jand.2014.08.028
    [12] Bouaziz F, Koubaa M, Neifar M, et al. (2016) Feasibility of using almond gum as coating agent to improve the quality of fried potato chips: Evaluation of sensorial properties. LWT Food Sci Technol 65: 800-807. doi: 10.1016/j.lwt.2015.09.009
    [13] Yu L, Li J, Ding S, et al. (2016) Effect of guar gum with glycerol coating on the properties and oil absorption of fried potato chips. Food Hydrocoll 54: 211-219. doi: 10.1016/j.foodhyd.2015.10.003
    [14] Ma Q, Hu D, Wang H, et al. (2016) Tara gum edible film incorporated with oleic acid. Food Hydrocoll 56: 127-133. doi: 10.1016/j.foodhyd.2015.11.033
    [15] Engler A (1964) Syllabus der Pflanzenfamilien. Berlin: Gerbruder Borntraeger, 193.
    [16] Hegnauer R, Grayer-Barkmeuer RJ (1994) Relevance of seed polysaccharides and flavonoids for the classification of the Leguminosae: A chemotaxonomic approach. Phytochemistry 34: 3-16.
    [17] Nishinari K, Zhang H, Ikeda S (2000) Hydrocolloid gels of polysaccharides and proteins. Curr Opin Colloid Interface Sci 5: 195-201. doi: 10.1016/S1359-0294(00)00053-4
    [18] McClements DJ (2005) Food emulsions: Principles, practices, and techniques (2nd ed.). Boca Raton, FL: CRC Press.
    [19] Williams PA, Phillips GO (2000) Introduction to food hydrocolloids, In: Phillips GO, Williams PA, Handbook of hydrocolloids. New York: CRC Press, 1-19.
    [20] Fiszman S, Varela P (2013) The role of gums in satiety/satiation. A review. Food Hydrocoll 32: 147-154. doi: 10.1016/j.foodhyd.2012.12.010
    [21] Deogade UM, Deshmukh VN, Sakarkar DM. (2012) Natural gums and mucilage's in NDDS: applications and recent approaches. Int J PharmTech Res 4: 799-814.
    [22] Vasile FC, Martinez MJ, Ruiz-Henestrosa VMP, et al. (2016) Physicochemical, interfacial and emulsifying properties of a non-conventional exudate gum (Prosopis alba) in comparison with gum Arabic. Food Hydrocoll 56: 245-253. doi: 10.1016/j.foodhyd.2015.12.016
    [23] Martínez M, Beltrán O, Rincón F, et al. (2015) New structural features of Acacia tortuosa gum exudate. Food Chem 182: 105-110. doi: 10.1016/j.foodchem.2015.02.124
    [24] Rezaei A, Nasirpour A, Tavanai H (2016) Fractionation and some physicochemical properties of almond gum (Amygdalus communis L.) exudates. Food Hydrocoll 60: 461-469. doi: 10.1016/j.foodhyd.2016.04.027
    [25] Thanzamia K, Malsawmtluangia C, Lalhlenmawia H, et al. (2015) Characterization and in vitro antioxidant activity of Albizia stipulata Boiv. gum exudates. Int J Biol Macromol 80: 231-239. doi: 10.1016/j.ijbiomac.2015.06.043
    [26] Gashua IB, Williams PA, Yadav MP, et al. (2015) Characterisation and molecular association of Nigerian and Sudanese Acacia gum exudates. Food Hydrocoll 51: 405-413. doi: 10.1016/j.foodhyd.2015.05.037
    [27] Souza MP, Cerqueira MA, Souza BWS, et al. (2010) Polysaccharide from Anarcadium occidentale L. tree gum (Policaju) as a coating for Tommy atkins mangoes. Chem Pap 64: 475-481.
    [28] Lefsih K, Delattre C, Pierre G, et al. (2016) Extraction, characterization and gelling behavior enhancement of pectins from the cladodes of Opuntia ficus indica. Int J Biol Macromol 82: 645-652. doi: 10.1016/j.ijbiomac.2015.10.046
    [29] Kapoor VP, Taravel FR, Joseleau JP, et al. (1998) Cassia spectabilis DC seed galactomannan: structural, crystallographical and rheological studies. Carbohydr Res 306: 231-241. doi: 10.1016/S0008-6215(97)00241-3
    [30] McCleary BV, Amado R, Waibel R, et al. (1981) Effect of galactose content on the solution and interaction properties of guar and carob galactomannans. Carbohyd Res 92: 269-285. doi: 10.1016/S0008-6215(00)80398-5
    [31] Kapoor VP (1994) Rheological properties of seed galactomannan from Cassia nodosa buch.-hem. Carbohyd. Polym 25: 79-84. doi: 10.1016/0144-8617(94)90142-2
    [32] Albuquerque PBS, Barros Júnior W, Santos GRC, et al. (2014) Characterization and rheological study of the galactomannan extracted from seeds of Cassia grandis. Carbohyd Polym 104: 127-134. doi: 10.1016/j.carbpol.2014.01.010
    [33] Brummer Y, Cui W, Wang Q (2003) Extraction, purification, and physicochemical characterization of fenugreek gum. Food Hydrocoll 17: 229-236. doi: 10.1016/S0268-005X(02)00054-1
    [34] Dakia PA, Blecker C, Robert C, et al. (2008) Composition and physicochemical properties of locust bean gum extracted from whole seeds by acid or water dehulling pre-treatment. Food Hydrocoll 22: 807-818. doi: 10.1016/j.foodhyd.2007.03.007
    [35] Liu J, Willför S, Xu C (2014) A review of bioactive plant polysaccharides: Biological activities, functionalizatison, and biomedical applications. Bioact Carbohydr Diet Fibre 5: 31-61.
    [36] Arruda IRS, Albuquerque PBS, Santos GRC, et al. (2015) Structure and rheological properties of a xyloglucan extracted from Hymenaea courbaril var. courbaril seeds. Int J Biol Macromol 73: 31-38. doi: 10.1016/j.ijbiomac.2014.11.001
    [37] Yarnpakdee S, Benjakul S, Kingwascharapong P (2015) Physico-chemical and gel properties of agar from Gracilaria tenuistipitata from the lake of Songkhla, Thailand. Food Hydrocoll 51: 217-226. doi: 10.1016/j.foodhyd.2015.05.004
    [38] Prajapati VD, Maheriya PM, Jani GK, et al. (2014) Carrageenan: A natural seaweed polysaccharide and its applications. Carbohydr Polym 105: 97-112. doi: 10.1016/j.carbpol.2014.01.067
    [39] Rinaudo M (2007) Seaweed polysaccharides, In: Kamerling JP, Comprehensive Glycoscience, vol. 4, Amsterdam: Elsevier, 2: 691-735.
    [40] Silva MF, Fornari RCG, Mazutti M, et al. (2009) Production and characterization of xantham gum by Xanthomonas campestris using cheese whey as sole carbon source. J Food Eng 90: 119-123. doi: 10.1016/j.jfoodeng.2008.06.010
    [41] Kumari S, Rath PK (2014) Extraction and Characterization of Chitin and Chitosan from (Labeo rohit) Fish Scales. Procedia Mat Sci 6: 482-489. doi: 10.1016/j.mspro.2014.07.062
    [42] Sadhasivam G, Muthuvel A (2014) Isolation and characterization of hyaluronic acid from marine organisms. Adv Food Nutr Res 72: 61-77. doi: 10.1016/B978-0-12-800269-8.00004-X
    [43] Vázquez JA, Rodríguez-Amado I, Montemayor MI, et al. (2013) Chondroitin sulfate, hyaluronic acid and chitin/chitosan production using marine waste sources: Characteristics, applications and eco-friendly processes: A review. Mar Drugs 11: 747-774. doi: 10.3390/md11030747
    [44] Ström A, Boers HM, Koppert R, et al. (2009) Physico-chemical properties of hydrocolloids determine their appetite effects, In Williams PA, Phillips GO, Gums and stabilisers for the food industry. Cambridge: Royal Society of Chemistry, 341-355.
    [45] Rinaudo M, Moroni A (2009) Rheological behavior of binary and ternary mixtures of polysaccharides in aqueous medium. Food Hydrocoll 23: 1720-1728. doi: 10.1016/j.foodhyd.2009.01.012
    [46] Priya MV, Sabitha M, Jayakumar R (2016) Colloidal chitin nanogels: A plethora of applications under one shell. Carbohydr Polym 136: 609-617. doi: 10.1016/j.carbpol.2015.09.054
    [47] Rinaudo M (2008) Main properties and current applications of some polysaccharides as biomaterials. Polym Int 57: 397-430.
    [48] Dea ICM, Morrison A (1975) Chemistry and interactions of seed galactomannans. Adv Carbohydr Chem 31: 241-312.
    [49] Srivastava M, Kapoor VP (2005) Seed galactomannans: An overview. Chem Biodivers 2: 295-317. doi: 10.1002/cbdv.200590013
    [50] Prado BM, Kim S, Ozen BF, et al. (2005) Differentiation of carbohydrate gums and mixtures using Fourier transform infrared spectroscopy and chemometrics. J Agric Food Chem 53: 2823-2829. doi: 10.1021/jf0485537
    [51] Dakia PA, Blecker C, Robert C, et al. (2008) Composition and physicochemical properties of locust bean gum extracted from whole seeds by acid or water dehulling pre-treatment. Food Hydrocoll 22: 807-818. doi: 10.1016/j.foodhyd.2007.03.007
    [52] Vendruscolo CW, Andreazza IF, Ganter JLMS, et al. Xanthan and galactomannan (from M. scabrella) matrix tablets for oral controlled delivery of theophylline. Int J Pharm 296:1-11.
    [53] Daas P, Grolle K, Vliet T, et al. (2002) Toward the recognition of structure–function relationships in galactomannans. J Agric Food Chem 50: 4282-4289. doi: 10.1021/jf011399t
    [54] Pollard MA, Eder B, Fischer P, et al. (2010) Characterization of galactomannans isolated from legume endosperms of Caesalpinioideae and Faboideae subfamilies by multidetection aqueous SEC. Carbohydr Polym 79: 70-84.
    [55] Jiang J-X, Jian H-l, Cristhian C (2011) Structural and thermal characterization of galactomannans from genus Gleditsia seeds as potential food gum substitutes. J Sci Food Agric 91: 732-737. doi: 10.1002/jsfa.4243
    [56] Reid JSG, Edwards ME (1995) Galactomannans and other cell wall storage polysaccharides in seeds, In Stephen AM, Food Polysaccharides and Their Applications, New York: Marcel Dekker, Inc.
    [57] Singh VK, Banerjee I, Agarwal T, et al. (2014) Guar gum and sesame oil based novel bigels for controlled drug delivery. Colloids Surf B Biointerfaces 123: 582-592. doi: 10.1016/j.colsurfb.2014.09.056
    [58] Soares PAG, Seixas JRPC, Albuquerque JRPC, et al. (2015) Development and characterization of a new hydrogel based on galactomannan and k-carrageenan. Carbohydr Polym 134: 673-679. doi: 10.1016/j.carbpol.2015.08.042
    [59] Antoniou J, Liu F, Majeed H, et al. (2014) Physicochemical and thermomechanical characterization of tara gum edible films: Effect of polyols as plasticizers. Carbohydr Polym 111: 359-365. doi: 10.1016/j.carbpol.2014.04.005
    [60] Antoniou J, Liu F, Majeed H, et al. (2015) Characterization of tara gum edible films incorporated with bulk chitosan and chitosan nanoparticles: A comparative study. Food Hydrocoll 44: 309-319. doi: 10.1016/j.foodhyd.2014.09.023
    [61] Rodrigues DC, Cunha AP, Brito ES, et al. (2016) Mesquite seed gum and palm fruit oil emulsion edible films: Influence of oil content and sonication. Food Hydrocoll 56: 227-235.
    [62] Sandolo C, Bulone D, Mangione MR, et al. (2010) Synergistic interaction of Locust Bean Gum and Xanthan investigated by rheology and light scattering. Carbohyd Polym 82: 733-741. doi: 10.1016/j.carbpol.2010.05.044
    [63] Grisel M, Aguni Y, Renou F, et al. (2015) Impact of fine structure of galactomannans on their interactions with xanthan: Two co-existing mechanisms to explain the synergy. Food Hydrocoll 51: 449-458. doi: 10.1016/j.foodhyd.2015.05.041
    [64] Koop HS, Freitas RA, Souza MM, et al. (2015) Topical curcumin-loaded hydrogels obtained using galactomannan from Schizolobium parahybae and xanthan. Carbohydr Polym 116: 229-236. doi: 10.1016/j.carbpol.2014.07.043
    [65] Sousa AMM, Gonçalves MP (2015) The influence of locust bean gum on native and alkali-modified agar gels. Food Hydrocoll 44: 451-470.
    [66] Martins JT, Cerqueira MA, Bourbon AI, et al. (2012) Synergistic effects between k-carrageenan and locust bean gum on physicochemical properties of edible films made thereof. Food Hydrocoll 29: 280-289. doi: 10.1016/j.foodhyd.2012.03.004
    [67] Albuquerque PBS, Silva CS, Soares PAG, et al. (2016) Investigating a galactomannan gel obtained from Cassia grandis seeds as immobilizing matrix for Cramoll lectin. Int J Biol Macromol 86: 454-461. doi: 10.1016/j.ijbiomac.2016.01.107
    [68] Almeida RR, Magalhúes HS, Souza JRR, et al. (2015) Exploring the potential of Dimorphandra gardneriana galactomannans as drug delivery systems. Ind Crops Prod 69: 284-289. doi: 10.1016/j.indcrop.2015.02.041
    [69] Klemm D, Heublein B, Fink HP (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44: 3358-3393. doi: 10.1002/anie.200460587
    [70] Lee T-W, Jeong YG (2015) Regenerated cellulose/multiwalled carbon nanotube composite films with efficient electric heating performance. Carbohydr Polym 133: 456-463.
    [71] Ullah MW, Ul-Islam M, Khan S, et al. (2016) Structural and physico-mechanical characterization of bio-cellulose produced by a cell-free system. Carbohydr Polym 136: 908-916. doi: 10.1016/j.carbpol.2015.10.010
    [72] Dayal MS, Catchmark JM (2016) Mechanical and structural property analysis of bacterial cellulose composites. Carbohydr Polym 144: 447-453. doi: 10.1016/j.carbpol.2016.02.055
    [73] Chen P, Cho SY, Jin HJ (2010) Modification and applications of bacterial celluloses in polymer science. Macromol Res 18: 309-320. doi: 10.1007/s13233-010-0404-5
    [74] Keshk SM (2014) Bacterial cellulose production and its industrial applications. J Bioprocess Biotech 4: 1-10.
    [75] Nobles DR, Romanovicz DK, Brown Jr RM (2001) Cellulose in Cyanobacteria. Origin of Vascular Plant Cellulose Synthase?. Plant Physiol 127: 529-542.
    [76] Castro C, Cordeiro N, Faria M, et al. (2015) In-situ glyoxalization during biosynthesis of bacterial cellulose. Carbohydr Polym 126: 32-39. doi: 10.1016/j.carbpol.2015.03.014
    [77] Kiziltas EE, Kiziltas A, Blumentritt M, et al. (2015) )Biosynthesis of bacterial cellulose in the presence of different nanoparticles to create novel hybrid materials. Carbohydr Polym 129: 148-155. doi: 10.1016/j.carbpol.2015.04.039
    [78] Römling U, Galperin MY (2015) Bacterial cellulose biosynthesis: Diversity of operons, subunits, products, and functions. Trends Microbiol 23: 545-557. doi: 10.1016/j.tim.2015.05.005
    [79] Brinchi L, Cotana F, Fortunati E, et al. (2013) Production of nanocrystalline cellulose from lignocellulosic biomass: Technology and applications. Carbohydr Polym 94: 154-169. doi: 10.1016/j.carbpol.2013.01.033
    [80] Moon RJ, Martini A, Nairn J, et al. (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40: 3941-3994. doi: 10.1039/c0cs00108b
    [81] Peng BL, Dhar N, Liu HL, et al. (2011) Chemistry and applications of nanocrystalline cellulose and its derivatives: A nanotechnology perspective. Can J Chem Eng 89: 1191-1206. doi: 10.1002/cjce.20554
    [82] Fujisawa S, Okita Y, Fukuzumi H, et al. (2011) Preparation and characterization of TEMPO-oxidized cellulose nanofibril films with free carboxyl groups. Carbohydr Polym 84: 579-583. doi: 10.1016/j.carbpol.2010.12.029
    [83] Zhang Q, Lin D, Yao S (2015) Review on biomedical and bioengineering applications of cellulose sulfate. Carbohydr Polym 132: 311-322. doi: 10.1016/j.carbpol.2015.06.041
    [84] Pérez S, Samain D (2010) Structure and engineering of celluloses, In: Derek H, Advances in carbohydrate chemistry and biochemistry, Vol 64, New York: Academic Press, 25-116.
    [85] Kono H, Fujita S (2012) Biodegradable superabsorbent hydrogels derived from cellulose by esterification crosslinking with 1,2,3,4-butanetetracarboxylic dianhydride. Carbohydr Polym 87: 2582-2588.
    [86] Ramírez JAA, Suriano CJ, Cerrutti P, et al. (2014) Surface esterification of cellulose nanofibers by a simple organocatalytic methodology. Carbohydr Polym 114: 416-423. doi: 10.1016/j.carbpol.2014.08.020
    [87] Littunen K, De Castro JS, Samoylenko A, et al. (2016) Synthesis of cationized nanofibrillated cellulose and its antimicrobial properties. Eur Polym J 75: 116-124.
    [88] Genyk Y, Kato T, Pomposelli JJ, et al. (2016) Fibrin sealant patch (TachoSil) vs oxidized regenerated cellulose patch (Surgicel Original) for the secondary treatment of local bleeding in patients undergoing hepatic resection: a randomized controlled trial. J Am Coll Surg 222: 261-268. doi: 10.1016/j.jamcollsurg.2015.12.007
    [89] Wu YD, He JM, Huang YD, et al. (2012) Oxidation of regenerated cellulose with nitrogen dioxide/carbon tetrachloride. Fibers Polym 13: 576-581.
    [90] Zacharias T, Ferreira N (2012) Carrier-bound fibrin sealant compared to oxidized cellulose application after liver resection. HPB 14: 839-347. doi: 10.1111/j.1477-2574.2012.00560.x
    [91] Bedane AH, Eić M, Farmahini-Farahani M, et al. (2015) Water vapor transport properties of regenerated cellulose and nanofibrillated cellulose films. J Memb Sci 493: 46-57. doi: 10.1016/j.memsci.2015.06.009
    [92] Stevanic JS, Bergström EM, Gatenholm P, et al. (2012) Arabinoxylan/nanofibrillated cellulose composite films. J Mater Sci 47: 6724-6732. doi: 10.1007/s10853-012-6615-8
    [93] Biliuta G, Fras L, Drobota M, et al. (2013) Comparison study of TEMPO and phthalimide-N-oxyl (PINO) radicals on oxidation efficiency toward cellulose. Carbohydr Polym 91: 502-507. doi: 10.1016/j.carbpol.2012.08.047
    [94] Liu P, Oksman K, Mathew AP (2016) Surface adsorption and self-assembly of Cu(II) ions on TEMPO-oxidized cellulose nanofibers in aqueous media. J Colloid Interface Sci 464:175-182. doi: 10.1016/j.jcis.2015.11.033
    [95] Huang M, Chen F, Jiang Z, et al. (2013) Preparation of TEMPO-oxidized cellulose/amino acid/nanosilver biocomposite film and its antibacterial activity. Int J Biol Macromol 62:608-613. doi: 10.1016/j.ijbiomac.2013.10.018
    [96] Hakalahti M, Salminen A, Seppälä J, et al. (2015) Effect of interfibrillar PVA bridging on water stability and mechanical properties of TEMPO/NaClO2 oxidized cellulosic nanofibril films. Carbohydr Polym 126: 78-82. doi: 10.1016/j.carbpol.2015.03.007
    [97] Barsbay M, Güven O, Kodama Y. (2015) Amine functionalization of cellulose surface grafted with glycidyl methacrylate by γ -initiated RAFT polymerization. Radiat Phys Chem 124: 140-144.
    [98] Carlmark A, Larsson E, Malmström E. (2012) Grafting of cellulose by ring-opening polymerisation - A review. Eur Polym J 48: 1646-1659. doi: 10.1016/j.eurpolymj.2012.06.013
    [99] Lizundia E, Fortunati E, Dominici F, et al. (2016) PLLA-grafted cellulose nanocrystals: Role of the CNC content and grafting on the PLA bionanocomposite film properties. Carbohydr Polym 142: 105-113. doi: 10.1016/j.carbpol.2016.01.041
    [100] Madrid JF, Abad LV (2015) Modification of microcrystalline cellulose by gamma radiation-induced grafting. Radiat Phys Chem 115: 143-147. doi: 10.1016/j.radphyschem.2015.06.025
    [101] Kang H, Liu R, Huang Y (2015) Graft modification of cellulose: Methods, properties and applications. Polymer 70: A1-A16. doi: 10.1016/j.polymer.2015.05.041
    [102] Oksman K, Aitomäki Y, Mathew AP, et al. (2016) Review of the recent developments in cellulose nanocomposite processing. Compos Part A 83: 2-18. doi: 10.1016/j.compositesa.2015.10.041
    [103] Fu L, Liu B, Meng L (2016) Comparative study of cellulose/Ag nanocomposites using four cellulose types. Mater Lett 171: 277-280. doi: 10.1016/j.matlet.2016.02.118
    [104] Li S, Fu L, Ma M, et al. (2012) Simultaneous microwave-assisted synthesis, characterization, thermal stability, and antimicrobial activity of cellulose/AgCl nanocomposites. Biomass Bioenergy 47: 516-521. doi: 10.1016/j.biombioe.2012.10.012
    [105] Deng F, Dong Y, Liu S, et al. (2016) Revealing the influences of cellulose on cellulose/SrF2 nanocomposites synthesized by microwave-assisted method. Ind Crops Prod 85: 258-265. doi: 10.1016/j.indcrop.2016.03.018
    [106] Deng F, Fu L-H, Ma M-G (2015) Microwave-assisted rapid synthesis and characterization of CaF2 particles-filled cellulose nanocomposites in ionic liquid. Carbohydr Polym 121: 163-168. doi: 10.1016/j.carbpol.2014.12.033
    [107] Jia N, Li SM, Ma MG, et al. (2012) Rapid microwave-assisted fabrication of cellulose/F-substituted hydroxyapatite nanocomposites using green ionic liquids as additive. Mater Lett 68: 44-56. doi: 10.1016/j.matlet.2011.10.027
    [108] Huang W, Wang Y, Chen C, et al. (2016) Fabrication of flexible self-standing all-cellulose nanofibrous composite membranes for virus removal. Carbohydr Polym 143: 9-17. doi: 10.1016/j.carbpol.2016.02.011
    [109] Luo X, Zhang H, Cao Z, et al. (2016) A simple route to develop transparent doxorubicin-loaded nanodiamonds/cellulose nanocomposite membranes as potential wound dressings. Carbohydr Polym 143: 231-238.
    [110] Kiyazar S, Aghazadeh J, Sadeghi A, et al. (2016) In vitro evaluation for apatite-forming ability of cellulose-based nanocomposite scaffolds for bone tissue engineering. Int J Biol Macromol 86: 434-442.
    [111] Blank CE, Hinman NW (2016) Cyanobacterial and algal growth on chitin as a source of nitrogen; ecological, evolutionary, and biotechnological implications. Algal Res 15: 152-163. doi: 10.1016/j.algal.2016.02.014
    [112] Giji S, Arumugam M (2014) Isolation and characterization of hyaluronic acid from marine organisms. Adv Food Nutr Res 72: 61-77. doi: 10.1016/B978-0-12-800269-8.00004-X
    [113] Jiang Y, Meng X, Wu Z, et al. (2016) Modified chitosan thermosensitive hydrogel enables sustained and efficient anti-tumor therapy via intratumoral injection. Carbohydr Polym 144: 245-253. doi: 10.1016/j.carbpol.2016.02.059
    [114] Younes I, Hajji S, Frachet V, et al. (2014) Chitin extraction from shrimp shell using enzymatic treatment. Antitumor, antioxidant and antimicrobial activities of chitosan. Int J Biol Macromol 69: 489-498.
    [115] Shankar S, Reddy JP, Rhim J-W, et al. (2015) Preparation, characterization, and antimicrobial activity of chitin nanofibrils reinforced carrageenan nanocomposite films. Carbohydr Polym 117: 468-475. doi: 10.1016/j.carbpol.2014.10.010
    [116] Ilnicka A, Walczyk M, Lukaszewicz JP (2015) The fungicidal properties of the carbon materials obtained from chitin and chitosan promoted by copper salts. Mater Sci Eng C 52: 31-36. doi: 10.1016/j.msec.2015.03.037
    [117] Hoseini MHM, Moradi M, Alimohammadian MH, et al. (2016) Immunotherapeutic effects of chitin in comparison with chitosan against Leishmania major infection. Parasitol Int 65: 99-104. doi: 10.1016/j.parint.2015.10.007
    [118] Munster JM, Sanders P, Kate GA, et al. (2015) Kinetic characterization of Aspergillus niger chitinase CfcI using a HPAEC-PAD method for native chitin oligosaccharides. Carbohydr Res 407: 73-78. doi: 10.1016/j.carres.2015.01.014
    [119] Usman A, Zia KM, Zuber M, et al. (2016) Chitin and chitosan based polyurethanes: A review of recent advances and prospective biomedical applications. Int J Biol Macromol 86: 630-645. doi: 10.1016/j.ijbiomac.2016.02.004
    [120] Tomihata K, Ikada Y (1997) In vitro and in vivo degradation of films of chitin and its deacetylated derivatives. Biomaterials 18: 567-575. doi: 10.1016/S0142-9612(96)00167-6
    [121] Naseri N, Algan C, Jacobs V, et al. (2014) Electrospun chitosan-based nanocomposite mats reinforced with chitin nanocrystals for wound dressing. Carbohydr Polym 109: 7-15. doi: 10.1016/j.carbpol.2014.03.031
    [122] Xia G, Lang X, Kong M, et al. (2016) Surface fluid-swellable chitosan fiber as the wound dressing material. Carbohydr Polym 136: 860-866. doi: 10.1016/j.carbpol.2015.09.074
    [123] Busilacchi A, Gigante A, Mattioli-Belmonte M, et al. (2013) Chitosan stabilizes platelet growth factors and modulates stem cell differentiation toward tissue regeneration. Carbohydr Polym 98: 665-676. doi: 10.1016/j.carbpol.2013.06.044
    [124] Kanimozhi K, Basha SK, Kumari VS (2016) Processing and characterization of chitosan/PVA and methylcellulose porous scaffolds for tissue engineering. Mater Sci Eng C 61: 484-491. doi: 10.1016/j.msec.2015.12.084
    [125] Morgado PI, Aguiar-Ricardo A, Correia IJ (2015) Asymmetric membranes as ideal wound dressings: An overview on production methods, structure, properties and performance relationship. J Membr Sci 490: 139-151. doi: 10.1016/j.memsci.2015.04.064
    [126] Chen K-Y, Liao W-J, Kuo S-M, et al. (2009) Asymmetric Chitosan Membrane Containing Collagen I Nanospheres for Skin Tissue Engineering. Biomacromolecules 10: 1642-1649. doi: 10.1021/bm900238b
    [127] Lih E, Lee JS, Park KM, et al. (2012) Rapidly curable chitosan-PEG hydrogels as tissue adhesives for hemostasis and wound healing. Acta Biomater 8: 3261-3269. doi: 10.1016/j.actbio.2012.05.001
    [128] Ferraro V, Cruz IB, Jorge RF, et al. (2010) Valorisation of natural extracts from marine source focused on marine by-products: a review. Food Res Int 43: 2221-2233. doi: 10.1016/j.foodres.2010.07.034
    [129] Medeiros BGDS, Pinheiro AC, Carneiro-da-cunha MG, et al. (2012) Development and characterization of a nanomultilayer coating of pectin and chitosan - Evaluation of its gas barrier properties and application on ‘Tommy atkins' mangoes. J Food Eng 110: 457-464. doi: 10.1016/j.jfoodeng.2011.12.021
    [130] Souza MP, Vaz AFM, Silva HD, et al. (2015) Development and characterization of an active chitosan-based film containing quercetin. Food Bioprocess Technol 8: 2183-2219. doi: 10.1007/s11947-015-1580-2
    [131] Min SH, Park KC, Yeom Y (2014) Chitosan-mediated non-viral gene delivery with improved serum stability and reduced cytotoxicity. Biotechnol Bioprocess Eng 19: 1077-1082. doi: 10.1007/s12257-014-0450-5
    [132] Wan ACA, Tai BCU (2013) CHITIN - A promising biomaterial for tissue engineering and stem cell technologies. Biotechnol Adv 31: 1776-1785. doi: 10.1016/j.biotechadv.2013.09.007
    [133] Pangon A, Saesoo S, Saengkrit N, et al. (2016) Hydroxyapatite-hybridized chitosan/chitin whisker bionanocomposite fibers for bone tissue engineering applications. Carbohydr Polym 144: 419-427. doi: 10.1016/j.carbpol.2016.02.053
    [134] Kumar PTS, Ramya C, Jayakumar R, et al. (2013) Drug delivery and tissue engineering applications of biocompatible pectin - chitin / nano CaCO3 composite scaffolds. Colloids Surf B Biointerfaces 106:109-116. doi: 10.1016/j.colsurfb.2013.01.048
    [135] Kanimozhi K, Basha SK, Kumari VS (2016) Processing and characterization of chitosan/PVA and methylcellulose porous scaffolds for tissue engineering. Mater Sci Eng C 61: 484-491. doi: 10.1016/j.msec.2015.12.084
    [136] Zhao L, Wu Y, Chen S, et al. (2015) Preparation and characterization of cross-linked carboxymethyl chitin porous membrane scaffold for biomedical applications. Carbohydr Polym 126:150-155. doi: 10.1016/j.carbpol.2015.02.050
    [137] Smitha KT, Nisha N, Maya S, et al. (2015) Delivery of rifampicin-chitin nanoparticles into the intracellular compartment of polymorphonuclear leukocytes. Int J Biol Macromol 74:36-43. doi: 10.1016/j.ijbiomac.2014.11.006
    [138] Geetha P, Sivaram AJ, Jayakumar R, et al. (2016) Integration of in silico modeling, prediction by binding energy and experimental approach to study the amorphous chitin nanocarriers for cancer drug delivery. Carbohydr Polym 142: 240-249. doi: 10.1016/j.carbpol.2016.01.059
    [139] Smitha KT, Anitha A, Furuike T, et al. (2013) In vitro evaluation of paclitaxel loaded amorphous chitin nanoparticles for colon cancer drug delivery. Colloids Surf B Biointerfaces 104: 245-253.
    [140] Dev A, Mohan JC, Sreeja V, et al. (2010) Novel carboxymethyl chitin nanoparticles for cancer drug delivery applications. Carbohydr Polym 79: 1073-1079. doi: 10.1016/j.carbpol.2009.10.038
    [141] Chang PR, Jian R, Yu J, et al. (2010) Starch-based composites reinforced with novel chitin nanoparticles. Carbohydr Polym 80: 420-425.
    [142] Dhananasekaran S, Palanivel R, Pappu S (2016) Adsorption of Methylene Blue, Bromophenol Blue, and Coomassie Brilliant Blue by α-chitin nanoparticles. J Adv Res 7: 113-124. doi: 10.1016/j.jare.2015.03.003
    [143] Hamed I, Özogul F, Regenstein JM (2016) Industrial applications of crustacean by-products (chitin, chitosan, and chitooligosaccharides): A review. Trends Food Sci Technol 48: 40-50. doi: 10.1016/j.tifs.2015.11.007
    [144] Chantarasataporn P, Tepkasikul P, Kingcha Y, et al. (2014) Water-based oligochitosan and nanowhisker chitosan as potential food preservatives for shelf-life extension of minced pork. Food Chem 159: 463-470. doi: 10.1016/j.foodchem.2014.03.019
    [145] Farajzadeh F, Motamedzadegan A, Shahidi S-A, et al. (2016) The Effect of Chitosan-Gelatin Coating on the Quality of Shrimp (Litopenaeus vannamei) under Refrigerated Condition. Food Control 67: 163-170. doi: 10.1016/j.foodcont.2016.02.040
    [146] Caro N, Medina E, Díaz-Dosque M, et al. (2016) Novel active packaging based on films of chitosan and chitosan/quinoa protein printed with chitosan-tripolyphosphate-thymol nanoparticles via thermal ink-jet printing. Food Hydrocoll 52: 520-532. doi: 10.1016/j.foodhyd.2015.07.028
    [147] Carvalho RL, Cabral MF, Germano TA, et al. (2016) Chitosan coating with transcinnamaldehyde improves structural integrity and antioxidant metabolism of fresh-cut melon. Postharvest Biol Technol 113: 29-39. doi: 10.1016/j.postharvbio.2015.11.004
    [148] Genskowsky E, Puente LA, Pèrez-Álvarez JA, et al. (2015) Assessment of antibacterial and antioxidant properties of chitosan edible films incorporated with maqui berry (Aristotelia chilensis). LWT Food Sci Technol 64: 1057-1062. doi: 10.1016/j.lwt.2015.07.026
    [149] Sun Q, Si F, Xiong L, et al. (2013) Effect of dry heating with ionic gums on physicochemical properties of starch. Food Chem 136: 1421-145. doi: 10.1016/j.foodchem.2012.09.061
    [150] Vieira JM, Flores-López ML, de Rodríguez DJ, et al. (2016) Effect of chitosan-Aloe vera coating on postharvest quality of blueberry (Vaccinium corymbosum) fruit. Postharvest Biol Technol 116: 88-97.
    [151] Hernández-Valdepeña MA, Pedraza-Chaverri J, Gracia-Mora I, et al. (2016) Suppression of the tert-butylhydroquinone toxicity by its grafting onto chitosan and further cross-linking to agavin toward a novel antioxidant and prebiotic material. Food Chem 199: 485-491. doi: 10.1016/j.foodchem.2015.12.042
    [152] Stenner R, Matubayasi N, Shimizu S (2016) Gelation of carrageenan: Effects of sugars and polyols. Food Hydrocoll 54: 284-292. doi: 10.1016/j.foodhyd.2015.10.007
    [153] Tavassoli-Kafrani E, Shekarchizadeh H, Masoudpour-Behabadi M (2016) Development of edible films and coatings from alginates and carrageenans. Carbohydr Polym 137: 360-374. doi: 10.1016/j.carbpol.2015.10.074
    [154] Liang W, Mao X, Peng X, et al. (2014) Effects of sulfate group in red seaweed polysaccharides on anticoagulant activity and cytotoxicity. Carbohydr Polym 101: 776-785. doi: 10.1016/j.carbpol.2013.10.010
    [155] Sudharsan S, Subhapradha N, Seedevi P, et al. (2015) Antioxidant and anticoagulant activity of sulfated polysaccharide from Gracilaria debilis (Forsskal). Int J Biol Macromol 81:1031-1038. doi: 10.1016/j.ijbiomac.2015.09.046
    [156] Chiu YH, Chan YL, Tsai LW, et al. (2012) Prevention of human enterovirus 71 infection by kappa carrageenan. Antiviral Res 95: 128-134.
    [157] Cosenza VA, Navarro DA, Pujol CA, et al. (2015) Partial and total C-6 oxidation of gelling carrageenans. Modulation of the antiviral activity with the anionic character. Carbohydr Polym 128: 199-206.
    [158] El-Shitany NA, El-Bastawissy EA, El-Desoky K (2014) Ellagic acid protects against carrageenan-induced acute inflammation through inhibition of nuclear factor kappa B, inducible cyclooxygenase and proinflammatory cytokines and enhancement of interleukin-10 via an antioxidant mechanism. Int Immunopharmacol 19: 290-299. doi: 10.1016/j.intimp.2014.02.004
    [159] Yao Z, Wu H, Zhang S, et al. (2014) Enzymatic preparation of kappa-carrageenan oligosaccharides and their anti-angiogenic activity. Carbohydr Polym 101: 359-367. doi: 10.1016/j.carbpol.2013.09.055
    [160] Yermak IM, Barabanova AO, Aminin DL, et al. (2012) Effects of structural peculiarities of carrageenans on their immunomodulatory and anticoagulant activities. Carbohydr Polym 87: 713-720. doi: 10.1016/j.carbpol.2011.08.053
    [161] Bao X, Hayashi K, Li Y, et al. (2010) Novel agarose and agar fibers: Fabrication and characterization. Mater Lett 64: 2435-2437. doi: 10.1016/j.matlet.2010.08.008
    [162] Hu J, Zhu Y, Tong H, et al. (2016) A detailed study of homogeneous agarose / hydroxyapatite nanocomposites for load-bearing bone tissue. Int J Biol Macromol 82: 134-143. doi: 10.1016/j.ijbiomac.2015.09.077
    [163] Miguel SP, Ribeiro MP, Brancal H, et al. (2014) Thermoresponsive chitosan-agarose hydrogel for skin regeneration. Carbohydr Polym 111: 366-373. doi: 10.1016/j.carbpol.2014.04.093
    [164] Varoni E, Tschon M, Palazzo B, et al. (2012) Agarose gel as biomaterial or scaffold for implantation surgery: characterization, histological and histomorphometric study on soft tissue response. Connect Tissue Res 53: 548-554. doi: 10.3109/03008207.2012.712583
    [165] Gonzalez JS, Ludueña LN, Ponce A, et al. (2014) Poly(vinyl alcohol)/cellulose nanowhiskers nanocomposite hydrogels for potential wound dressings. Mater Sci Eng C 34: 54-61. doi: 10.1016/j.msec.2013.10.006
    [166] Wang J, Hu H, Yang Z, et al. (2016) IPN hydrogel nanocomposites based on agarose and ZnO with antifouling and bactericidal properties. Mater Sci Eng C 61: 376-386. doi: 10.1016/j.msec.2015.12.023
    [167] Yi Y, Neufeld RJ, Poncelet D (2005) Immobilization of cells in Polysaccharide gels, In: Dumitriu S., Polysacharides. Structural diversity and functional versatility, 2d ed., New York: Marcel Dekker, 867-891.
    [168] Li XQ, Li Q, Gong FL, et al. (2015) Preparation of large-sized highly uniform agarose beads by novel rotating membrane emulsification. J Membr Sci 476: 30-39. doi: 10.1016/j.memsci.2014.11.017
    [169] Droce A, Sørensen JL, Giese H, et al. (2013) Glass bead cultivation of fungi: Combining the best of liquid and agar media. J Microbiol Methods 94: 343-346. doi: 10.1016/j.mimet.2013.07.005
    [170] Ganesan M, Reddy CRK, Jha B (2015) Impact of cultivation on growth rate and agar content of Gelidiella acerosa (Gelidiales, Rhodophyta). Algal Res 12: 398-404. doi: 10.1016/j.algal.2015.10.001
    [171] Griffitt KJ, Grimes DJ (2013) A novel agar formulation for isolation and direct enumeration of Vibrio vulnificus from oyster tissue. J Microbiol Methods 94: 98-102. doi: 10.1016/j.mimet.2013.04.012
    [172] Seo BY, Park J, Huh IY, et al. (2016) Agarose hydrolysis by two-stage enzymatic process and bioethanol production from the hydrolysate. Process Biochem In press.
    [173] Giménez B, López de Lacey A, Pérez-Santín E, et al. (2013) Release of active compounds from agar and agar-gelatin films with green tea extract. Food Hydrocoll 30: 264-271. doi: 10.1016/j.foodhyd.2012.05.014
    [174] Sousa AMM, Souza HKS, Latona N, et al. (2014) Choline chloride based ionic liquid analogues as tool for the fabrication of agar films with improved mechanical properties. Carbohydr Polym 111: 206-214.
    [175] Sousa AMM, Gonçalves MP (2015) The influence of locust bean gum on native and alkali-modified agar gels. Food Hydrocoll 44: 461-470. doi: 10.1016/j.foodhyd.2014.10.020
    [176] Oun AA, Rhim J-W (2015) Effect of post-treatments and concentration of cotton linter cellulose nanocrystals on the properties of agar-based nanocomposite films. Carbohydr Polym 134: 20-29.
    [177] Shankar S, Rhim JW (2016) Preparation of nanocellulose from micro-crystalline cellulose: The effect on the performance and properties of agar-based composite films. Carbohydr Polym 135: 18-26. doi: 10.1016/j.carbpol.2015.08.082
    [178] Vejdan A, Ojagh SM, Adeli A, et al. (2016) Effect of TiO2 nanoparticles on the physico-mechanical and ultraviolet light barrier properties of fish gelatin/agar bilayer film. LWT Food Sci Technol 71: 88-95.
    [179] Madera-Santana TJ, Freile-Pelegrín Y, Azamar-Barrios JA (2014) Physicochemical and morphological properties of plasticized poly(vinyl alcohol)-agar biodegradable films. Int J Biol Macromol 69:176-184.
    [180] Tian H, Xu G, Yang B, et al. (2011) Microstructure and mechanical properties of soy protein/agar blend films: Effect of composition and processing methods. J Food Eng 107: 21-26. doi: 10.1016/j.jfoodeng.2011.06.008
    [181] Kestwal RM, Bagal-Kestwal D, Chiang B-H (2015) Fenugreek hydrogel-agarose composite entrapped gold nanoparticles for acetylcholinesterase based biosensor for carbamates detection. Anal Chim Acta 886: 143-150. doi: 10.1016/j.aca.2015.06.004
    [182] Rhim JW, Wang LF (2013) Mechanical and water barrier properties of agar/k-carrageenan/konjac glucomannan ternary blend biohydrogel films. Carbohydr Polym 96: 71-81. doi: 10.1016/j.carbpol.2013.03.083
    [183] Le Goff KJ, Gaillard C, Helbert W, et al. (2015) Rheological study of reinforcement of agarose hydrogels by cellulose nanowhiskers. Carbohydr Polym 116: 117-123. doi: 10.1016/j.carbpol.2014.04.085
    [184] Campo VL, Kawano DF, Silva DB, et al. (2009) Carrageenans: Biological properties, chemical modifications and structural analysis - A review. Carbohydr Polym 77: 167-180. doi: 10.1016/j.carbpol.2009.01.020
    [185] Weiner ML (2016) Parameters and pitfalls to consider in the conduct of food additive research, Carrageenan as a case study. Food Chem Toxicol 87: 31-44. doi: 10.1016/j.fct.2015.11.014
    [186] Zhang Z, Zhang R, Chen L, et al. (2016) Encapsulation of lactase (b-galactosidase) into k-carrageenan-based hydrogel beads: Impact of environmental conditions on enzyme activity. Food Chem 200: 69-75. doi: 10.1016/j.foodchem.2016.01.014
    [187] Pinheiro AC, Bourbon AI, Medeiros BGDS, et al. (2012) Interactions between κ-carrageenan and chitosan in nanolayered coatings - Structural and transport properties. Carbohydr Polym 87: 1081-1090. doi: 10.1016/j.carbpol.2011.08.040
    [188] Pinheiro AC, Bourbon AI, Quintas MAC, et al. (2012) k-carrageenan/chitosan nanolayered coating for controlled release of a model bioactive compound. Innov Food Sci Emerg 16:227-232. doi: 10.1016/j.ifset.2012.06.004
    [189] Rhim J (2013) Effect of PLA lamination on performance characteristics of agar/κ-carrageenan/clay bio-nanocomposite film. Food Res Int 51: 714-722.
    [190] Rhim J, Wang L (2014) Preparation and characterization of carrageenan-based nanocomposite films reinforced with clay mineral and silver nanoparticles. Appl Clay Sci 98: 174-181.
    [191] Benard C, Cultrone A, Michel C (2010) Degraded carrageenan causing colitis in rats induces TNF secretion and ICAM-1 upregulation in monocytes through NF-kB activation. Plos One 5: e8666. doi: 10.1371/journal.pone.0008666
    [192] Mckim JM, Wilga PC, Pregenzer JF, et al. (2015) The common food additive carrageenan is not a ligand for Toll-Like-Receptor 4 (TLR4) in an HEK293-TLR4 reporter cell-line model. Food Chem Toxicol 78: 153-158. doi: 10.1016/j.fct.2015.01.003
    [193] Weiner ML (2014) Food additive carrageenan: Part II: A critical review of carrageenan in vivo safety studies. Crit Rev Toxicol 44: 244-269. doi: 10.3109/10408444.2013.861798
    [194] De Souza RR, Bretanha LC, Dalmarco EM, et al. (2015) Modulatory effect of Senecio brasiliensis (Spreng) Less. in a murine model of inflammation induced by carrageenan into the pleural cavity. J Ethnopharmacol 168: 373-379.
    [195] Matsumoto K, Obara S, Kuroda Y, et al. (2015) Anti-inflammatory effects of linezolid on carrageenan-induced paw edema in rats. J Infect Chemother 21: 889-891. doi: 10.1016/j.jiac.2015.08.004
    [196] Shalini V, Jayalekshmi A, Helen A (2015) Mechanism of anti-inflammatory effect of tricin, a flavonoid isolated from Njavara rice bran in LPS induced hPBMCs and carrageenan induced rats. Mol Immunol 66: 229-239. doi: 10.1016/j.molimm.2015.03.004
    [197] Singh V, Tiwari S, Sharma AK, et al. (2007) Removal of lead from aqueous solutions using Cassia grandis seed gum-graft-poly(methylmethacrylate). J Colloid Interface Sci 316: 224-232. doi: 10.1016/j.jcis.2007.07.061
    [198] Solanki HK, Shah DA, Maheriya PM, et al. (2015) Evaluation of anti-inflammatory activity of probiotic on carrageenan-induced paw edema in Wistar rats. Int J Biol Macromol 72: 1277-1282. doi: 10.1016/j.ijbiomac.2014.09.059
    [199] Sokolova EV, Bogdanovich LN, Ivanova TB, et al. (2014) Effect of carrageenan food supplement on patients with cardiovascular disease results in normalization of lipid profile and moderate modulation of immunity system markers. Pharmanutrition 2: 33-37. doi: 10.1016/j.phanu.2014.02.001
    [200] Ngo DH, Kim SK (2013) Sulfated polysaccharides as bioactive agents from marine algae. Int J Biol Macromol 62: 70-75.
    [201] Abad LV, Relleve LS, Racadio CDT, et al. (2013) Antioxidant activity potential of gamma irradiated carrageenan. Appl Radiat Isot 79: 73-79.
    [202] Relleve L, Abad L (2015) Characterization and antioxidant properties of alcoholic extracts from gamma irradiated k-carrageenan. Radiat Phys Chem 112: 40-48. doi: 10.1016/j.radphyschem.2015.02.028
    [203] Sun Y, Yang B, Wu Y, et al. (2015) Structural characterization and antioxidant activities of k-carrageenan oligosaccharides degraded by different methods. Food Chem 178: 311-318. doi: 10.1016/j.foodchem.2015.01.105
    [204] Niu T, Zhang D, Chen H, et al. (2015) Modulation of the binding of basic fibroblast growth factor and heparanase activity by purified l-carrageenan oligosaccharides. Carbohydr Polym 125: 76-84. doi: 10.1016/j.carbpol.2015.02.069
    [205] Yao Z, Wu H, Zhang S (2014) Enzymatic preparation of k-carrageenan oligosaccharides and their anti-angiogenic activity. Carbohydr Polym 101: 359-367. doi: 10.1016/j.carbpol.2013.09.055
    [206] De Araújo CA, Noseda MD, Cipriani TR, et al. (2013) Selective sulfation of carrageenans and the influence of sulfate regiochemistry on anticoagulant properties. Carbohydr Polym 91: 483-491. doi: 10.1016/j.carbpol.2012.08.034
    [207] Selvakumaran S, Muhamad II (2015) Evaluation of kappa carrageenan as potential carrier for floating drug delivery system: Effect of cross linker. Int J Pharm 496: 323-331. doi: 10.1016/j.ijpharm.2015.10.005
    [208] Sun W, Saldaña MDA, Zhao Y, et al. (2016) Hydrophobic lappaconitine loaded into iota-carrageenan by one step self-assembly. Carbohydr Polym 137: 231-238.
    [209] Pairatwachapun S, Paradee N, Sirivat A. (2016) Controlled release of acetylsalicylic acid from polythiophene/carrageenan hydrogel via electrical stimulation. Carbohydr Polym 137: 214-221.
    [210] Lohani A, Singh G, Sankar S, et al. (2016) Tailored-interpenetrating polymer network beads of k -carrageenan and sodium carboxymethyl cellulose for controlled drug delivery. J Drug Deliv Sci Tec 31: 53-64. doi: 10.1016/j.jddst.2015.11.005
    [211] Carneiro-da-Cunha MG, Cerqueira MA, Souza BWS, et al. (2010) Physical and thermal properties of a chitosan/alginate nanolayered PET film. Carbohydr Polym 82: 153-159. doi: 10.1016/j.carbpol.2010.04.043
    [212] Dange-Delbaere C, Buron CC, Euvrard M, et al. (2016) Stability and cathodic electrophoretic deposition of polystyrene particles pre-coated with chitosan-alginate multilayer. Colloids Surfaces A Physicochem Eng Asp 493: 1-8. doi: 10.1016/j.colsurfa.2016.01.003
    [213] Belscak-Cvitanovic A, Komes D, Karlović S, et al. (2015) Improving the controlled delivery formulations of caffeine in alginate hydrogel beads combined with pectin, carrageenan, chitosan and psyllium. Food Chem 167: 378-386.
    [214] Wang Z, Zhang X, Gu J, et al. (2014) Electrodeposition of alginate/chitosan layer-by-layer composite coatings on titanium substrates. Carbohydr Polym 103: 38-45. doi: 10.1016/j.carbpol.2013.12.007
    [215] Seth A, Lafargue D, Poirier C, et al. (2014) Performance of magnetic chitosan-alginate core-shell beads for increasing the bioavailability of a low permeable drug. Eur J Pharm Biopharm 88: 374-381. doi: 10.1016/j.ejpb.2014.05.017
    [216] Cheng HC, Chang CY, Hsieh FI, et al. (2011) Effects of tremella-alginate-liposome encapsulation on oral delivery of inactivated H5N3 vaccine. J Microencapsul 28: 55-61.
    [217] Shin GH, Chung SK, Kim JT, et al. (2013) Preparation of chitosan-coated nanoliposomes for improving the mucoadhesive property of curcumin using the ethanol injection method. J Agric Food Chem 61: 11119-11126. doi: 10.1021/jf4035404
    [218] Liu W, Liu J, Li T, et al. (2013) Improved physical and in vitro digestion stability of a polyelectrolyte delivery system based on layer-by-layer self-assembly alginate-chitosan-coated nanoliposomes. J Agric Food Chem 61: 4133-4144. doi: 10.1021/jf305329n
    [219] Haidar ZS, Hamdy RC, Tabrizian M (2008) Protein release kinetics for core-shell hybrid nanoparticles based on the layer-by-layer assembly of alginate and chitosan on liposomes. Biomaterials 29: 1207-1215. doi: 10.1016/j.biomaterials.2007.11.012
    [220] Liu W, Liu W, Ye A, et al. (2016) Environmental stress stability of microencapsules based on liposomes decorated with chitosan and sodium alginate. Food Chem 196: 396-404. doi: 10.1016/j.foodchem.2015.09.050
    [221] Martins AF, Monteiro JP, Bonafé EG, et al. (2015) Bactericidal activity of hydrogel beads based on N,N,N-trimethyl chitosan/alginate complexes loaded with silver nanoparticles. Chinese Chem Lett 26: 1129-1132.
    [222] Jaikumar D, Sajesh KM, Soumya S, et al. (2015) Injectable alginate-O-carboxymethyl chitosan/nano fibrin composite hydrogels for adipose tissue engineering. Int J Biol Macromol 74: 318-326.
    [223] Algul D, Sipahi H, Aydin A, et al. (2015) Biocompatibility of biomimetic multilayered alginate-chitosan/β-TCP scaffold for osteochondral tissue. Int J Biol Macromol 79: 363-369.
    [224] Rivera MC, Pinheiro AC, Bourbon AI, et al. (2015) Hollow chitosan/alginate nanocapsules for bioactive compound delivery. Int J Biol Macromol 79: 95-102. doi: 10.1016/j.ijbiomac.2015.03.003
    [225] Wang J-Z, Zhu Y-X, Ma H-C, et al. (2016) Developing multi-cellular tumor spheroid model (MCTS) in the chitosan/collagen/alginate (CCA) fibrous scaffold for anticancer drug screening. Mater Sci Eng C 62: 215-225. doi: 10.1016/j.msec.2016.01.045
    [226] Trabelsi I, Ayadi D, Bejar W, et al. (2014) Effects of Lactobacillus plantarum immobilization in alginate coated with chitosan and gelatin on antibacterial activity. Int J Biol Macromol 64: 84-89.
    [227] Gandomi H, Abbaszadeh S, Misaghi A, et al. (2016) Effect of chitosan-alginate encapsulation with inulin on survival of Lactobacillus rhamnosus GG during apple juice storage and under simulated gastrointestinal conditions. LWT Food Sci Technol 69: 365-371. doi: 10.1016/j.lwt.2016.01.064
    [228] Sáez MI, Barros AM, Vizcaíno AJ, et al. (2015) Effect of alginate and chitosan encapsulation on the fate of BSA protein delivered orally to gilthead sea bream (Sparus aurata). Anim Feed Sci Technol 210: 114-124.
    [229] Ren Y, Xie H, Liu X, et al. (2016) Comparative investigation of the binding characteristics of poly-l-lysine and chitosan on alginate hydrogel. Int J Biol Macromol 84: 135-141.
    [230] Lin J-H, Chen C-K, Wen S-P, et al. (2015) Poly-l-lactide/sodium alginate/chitosan microsphere hybrid scaffolds made with braiding manufacture and adhesion technique: Solution to the incongruence between porosity and compressive strength. Mater Sci Eng C 52: 111-120. doi: 10.1016/j.msec.2015.03.034
    [231] Kim H-L, Jung G-Y, Yoon J-H, et al. (2015) Preparation and characterization of nano-sized hydroxyapatite/alginate/chitosan composite scaffolds for bone tissue engineering. Mater Sci Eng C 54: 20-25. doi: 10.1016/j.msec.2015.04.033
    [232] García-Ceja A, Mani-López E, Palou E, et al. (2015) Viability during refrigerated storage in selected food products and during simulated gastrointestinal conditions of individual and combined lactobacilli encapsulated in alginate or alginate-chitosan. LWT Food Sci Technol 63: 482-489. doi: 10.1016/j.lwt.2015.03.071
    [233] Strobel SA, Scher HB, Nitin N, et al. (2016) In situ cross-linking of alginate during spray-drying to microencapsulate lipids in powder. Food Hydrocoll 58: 141-149. doi: 10.1016/j.foodhyd.2016.02.031
    [234] De'Nobili MD, Soria M, Martinefski MR, et al. (2016) Stability of L-(+)-ascorbic acid in alginate edible films loaded with citric acid for antioxidant food preservation. J Food Eng 175: 1-7.
    [235] Salvia-Trujillo L, Decker EA, McClements DJ (2016) Influence of an anionic polysaccharide on the physical and oxidative stability of omega-3 nanoemulsions: Antioxidant effects of alginate. Food Hydrocoll 52: 690-698.
    [236] Da Cunha PLR, De Paula RCM, Feitosa JPA (2009) Polysaccharides from brazilian biodiversity: an opportunity to change knowledge into economic value. Quim Nova 32: 649-660. doi: 10.1590/S0100-40422009000300009
    [237] Kumar A (2012) Cashew Gum a versatile hydrophyllic polymer: a review. Curr Drug Ther 7: 2-12.
    [238] Kumar R, Patil MB, Patil SR, et al. (2009) Evaluation of Anacardium occidentale gum as gelling agent in aceclofenac gel. Int J PharmTech Res 1: 695-704.
    [239] Ribeiro AJ, de Souza FRL, Bezerra JMNA, et al. (2016) Gums' based delivery systems: review on cashew gum and its derivatives. Carbohydr Polym 147: 188-200. doi: 10.1016/j.carbpol.2016.02.042
    [240] Paula RCM, Heatley F, Budd PM (1998) Characterization of Anacardium occidentale exudate polysaccharide. Polym Int 45: 27-35.
    [241] Porto BC, Augusto PED, Terekhov A, et al. (2015) Effect of dynamic high pressure on technological properties of cashew tree gum (Anacardium occidentale L.). Carbohydr Polym 129: 187-193. doi: 10.1016/j.carbpol.2015.04.052
    [242] Das B, Dutta S, Nayak AK, et al. (2014) Zinc alginate-carboxymethyl cashew gum microbeads for prolonged drug release: development and optimization. Int J Biol Macromol 70: 506-515.
    [243] Oliveira EF, Paula HCB, Paula RCM. (2014) Alginate/cashew gum nanoparticles for essential oil encapsulation. Colloids Surf B Biointerfaces 113: 146-151.
    [244] Abreu FOMS, Oliveira EF, Paula HCB, et al. (2012) Chitosan/cashew gum nanogels for essential oil encapsulation. Carbohydr Polym 89: 1277-1282. doi: 10.1016/j.carbpol.2012.04.048
    [245] Moreira BR, Batista KA, Castro EG, et al. (2015) A bioactive film based on cashew gum polysaccharide for wound dressing applications. Carbohydr Polym 122: 69-76. doi: 10.1016/j.carbpol.2014.12.067
    [246] Silva FEF, Batista KA, Di-Medeiros MCB, et al. (2016) A stimuli-responsive and bioactive film based on blended polyvinyl alcohol and cashew gum polysaccharide. Mater Sci Eng C 58: 927-234. doi: 10.1016/j.msec.2015.09.064
    [247] Barros SBA, Leite CMDS, de Brito ACF, et al. (2012) Multilayer films electrodes consisted of Cashew Gum and polyaniline assembled by the Layer-by-Layer technique: electrochemical characterization and its use for dopamine determination. Int J Anal Chem 2012: 1-10.
    [248] Pinto AMB, Santos TM, Caceres CA, et al. (2015) Starch-cashew tree gum nanocomposite films and their application for coating cashew nuts. LWT Food Sci Technol 62: 549-554.
    [249] Soares PAG, Bourbon AI, Vicente AA, et al.(2014) Development and characterization of hydrogels based on natural polysaccharides: Policaju and chitosan. Mater Sci Eng C 42: 219-226.
    [250] Paula HCB, Sombra FM, Cavalcante RDF, et al. (2011) Preparation and characterization of chitosan/cashew gum beads loaded with Lippia sidoides essential oil. Mater Sci Eng C 31: 173-178. doi: 10.1016/j.msec.2010.08.013
    [251] Paula HCB, Rodrigues MLL, Ribeiro WLC, et al. (2012) Protective effect of Cashew Gum nanoparticles on natural larvicide from Moringa oleifera seeds. J Appl Polym Sci 124:1778-1784. doi: 10.1002/app.35230
    [252] Forato LA, de Britto D, de Rizzo JS, et al. (2015) Effect of cashew gum-carboxymethylcellulose edible coatings in extending the shelf-life of fresh and cut guavas. Food Packag Shelf Life 5: 68-74. doi: 10.1016/j.fpsl.2015.06.001
    [253] Gowthamarajan K, Kumar GKP, Gaikwad NB, et al. (2011) Preliminary study of Anacardium occidentale gum as binder in formulation of paracetamol tablets. Carbohydr Polym 83: 506-511. doi: 10.1016/j.carbpol.2010.08.010
    [254] Carneiro-da-Cunha MG, Cerqueira MA, Souza BWS, et al. (2009) Physical properties of edible coatings and films made with a polysaccharide from Anacardium occidentale L. J Food Eng 95: 379-385. doi: 10.1016/j.jfoodeng.2009.05.020
    [255] Dias SFL, Nogueira SS, Dourado FF, et al. (2016) Acetylated cashew gum-based nanoparticles for transdermal delivery of diclofenac diethyl amine. Carbohydr Polym 143: 254-261. doi: 10.1016/j.carbpol.2016.02.004
    [256] Bittencourt CR, Farias EAO, Bezerra KC, et al. (2016) Immobilization of cationic antimicrobial peptides and natural cashew gum in nanosheet systems for the investigation of anti-leishmanial activity. Mater Sci Eng C 59: 549-555. doi: 10.1016/j.msec.2015.10.059
    [257] Pitombeira NAO, Veras Neto JG, Silva DA, et al. (2015) Self-assembled nanoparticles of acetylated cashew gum: Characterization and evaluation as potential drug carrier. Carbohydr Polym 117: 610-615. doi: 10.1016/j.carbpol.2014.09.087
    [258] Porto BC, Cristianini M (2014) Evaluation of cashew tree gum (Anacardium occidentale L.) emulsifying properties. LWT Food Sci Technol 59: 1325-1331. doi: 10.1016/j.lwt.2014.03.033
    [259] Babbar N, Dejonghe W, Gatti M, et al. (2015) Pectic oligosaccharides from agricultural by-products: production, characterization and health benefits. Crit Rev Biotechnol 36: 594-606.
    [260] Munarin F, Tanzi MC, Petrini P (2012) Advances in biomedical applications of pectin gels. Int J Biol Macromol 51: 681-689.
    [261] Marras-Marquez T, Peña J, Veiga-Ochoa MD (2015) Robust and versatile pectin-based drug delivery systems. Int J Pharm 479: 265-276. doi: 10.1016/j.ijpharm.2014.12.045
    [262] Müller-Maatsch J, Bencivenni M, Caligiani A, et al. (2016) Pectin content and composition from different food waste streams. Food Chem 201: 37-45. doi: 10.1016/j.foodchem.2016.01.012
    [263] Hua X, Wang K, Yang R, et al. (2015) Edible coatings from sun flower head pectin to reduce lipid uptake in fried potato chips. LWT Food Sci Technol 62: 1220-1225.
    [264] Krivorotova T, Cirkovas A, Maciulyte S, et al. (2016) Nisin-loaded pectin nanoparticles for food preservation. Food Hydrocoll 54: 49-56.
    [265] Guerreiro AC, Gago CML, Faleiro ML, et al. (2015) Raspberry fresh fruit quality as affected by pectin- and alginate-based edible coatings enriched with essential oils. Sci Hortic 194: 138-146. doi: 10.1016/j.scienta.2015.08.004
    [266] Gullón B, Gullón P, Sanz Y, et al. (2011) Prebiotic potential of a refined product containing pectic oligosaccharides. LWT Food Sci Technol 44: 1687-1696. doi: 10.1016/j.lwt.2011.03.006
    [267] Lama-Muñoz A, Rodríguez-Gutiérrez G, Rubio-Senent F, et al. (2012) Production, characterization and isolation of neutral and pectic oligosaccharides with low molecular weights from olive by-products thermally treated. Food Hydrocoll 28: 92-104. doi: 10.1016/j.foodhyd.2011.11.008
    [268] Chen H, Qiu S, Gan J, et al. (2016) New insights into the functionality of protein to the emulsifying properties of sugar beet pectin. Food Hydrocoll 57: 262-270. doi: 10.1016/j.foodhyd.2016.02.005
    [269] Schmidt US, Pietsch VL, Rentschler C, et al. (2016) Influence of the degree of esterification on the emulsifying performance of conjugates formed between whey protein isolate and citrus pectin. Food Hydrocoll 56: 1-8. doi: 10.1016/j.foodhyd.2015.11.015
    [270] Tamnak S, Mirhosseini H, Ping C, et al. (2016) Physicochemical properties, rheological behavior and morphology of pectin-pea protein isolate mixtures and conjugates in aqueous system and oil in water emulsion. Food Hydrocoll 56: 405-416. doi: 10.1016/j.foodhyd.2015.12.033
    [271] Meneguin AB, Cury BSF, Evangelista RC (2014) Films from resistant starch-pectin dispersions intended for colonic drug delivery. Carbohydr Polym 99: 140-149. doi: 10.1016/j.carbpol.2013.07.077
    [272] Jung J, Arnold RD, Wicker L (2013) Pectin and charge modified pectin hydrogel beads as a colon-targeted drug delivery carrier. Colloids Surf B Biointerfaces 104: 116-121. doi: 10.1016/j.colsurfb.2012.11.042
    [273] Elisangela P, Sitta DLA, Fragal VH, et al. (2014) Covalent TiO2/pectin microspheres with Fe3O4 nanoparticles for magnetic field-modulated drug delivery. Int J Biol Macromol 67: 43-52.
    [274] Zhang Y, Chen T, Yuan P, et al. (2015) Encapsulation of honokiol into self-assembled pectin nanoparticles for drug delivery to HepG2 cells. Carbohydr Polym 133: 31-38. doi: 10.1016/j.carbpol.2015.06.102
    [275] Zhou M, Wang T, Hu Q, et al. (2016) Low density lipoprotein/pectin complex nanogels as potential oral delivery vehicles for curcumin. Food Hydrocoll 57: 20-29. doi: 10.1016/j.foodhyd.2016.01.010
    [276] Mashingaidze F, Choonara YE, Kumar P, et al. (2016) Poly (ethylene glycol) enclatherated pectin-mucin submicron matrices for intravaginal anti-HIV-1 drug delivery. Int J Pharm 503: 16-28. doi: 10.1016/j.ijpharm.2016.02.046
    [277] Alvarez-Lorenzo C, Blanco-Fernandez B, Puga AM, et al. (2013) Crosslinked ionic polysaccharides for stimuli-sensitive drug delivery. Adv Drug Deliv Rev 65: 1148-1171. doi: 10.1016/j.addr.2013.04.016
    [278] Auriemma G, Mencherini T, Russo P, et al. (2013) Prilling for the development of multi-particulate colon drug delivery systems: Pectin vs. pectin-alginate beads. Carbohydr Polym 92: 367-373. doi: 10.1016/j.carbpol.2012.09.056
    [279] Fares MM, Assaf SM, Abul-Haija YM (2010). Pectin grafted poly(N-vinylpyrrolidone): Optimization and in vitro controllable theophylline drug release. J Appl Polym Sci 117: 1945-1954. doi: 10.1002/app.32172
    [280] van der Gronde T, Hartog A, van Hees C, et al. (2016) Systematic review of the mechanisms and evidence behind the hypocholesterolaemic effects of HPMC, pectin and chitosan in animal trials. Food Chem 199: 746-759. doi: 10.1016/j.foodchem.2015.12.050
    [281] Zhu RG, Sun Y Di, Li TP, et al. (2015) Comparative effects of hawthorn (Crataegus pinnatifida Bunge) pectin and pectin hydrolyzates on the cholesterol homeostasis of hamsters fed high-cholesterol diets. Chem Biol Interact 238: 42-47. doi: 10.1016/j.cbi.2015.06.006
    [282] Zhu R, Li T, Dong Y, et al. (2013) Pectin pentasaccharide from hawthorn (Crataegus pinnatifida Bunge. Var. major) ameliorates disorders of cholesterol metabolism in high-fat diet fed mice. Food Res Int 54: 261-268.
    [283] Austarheim I, Christensen BE, Hegna IK, et al. (2012) Chemical and biological characterization of pectin-like polysaccharides from the bark of the Malian medicinal tree Cola cordifolia. Carbohydr Polym 89: 259-268.
    [284] Le Normand M, Mélida H, Holmbom B, et al. (2014) Hot-water extracts from the inner bark of Norway spruce with immunomodulating activities. Carbohydr Polym 101: 699-704. doi: 10.1016/j.carbpol.2013.09.067
    [285] Zou YF, Zhang BZ, Inngjerdingen KT, et al. (2014) Polysaccharides with immunomodulating properties from the bark of Parkia biglobosa. Carbohydr Polym 101: 457-463. doi: 10.1016/j.carbpol.2013.09.082
    [286] Fan L, Sun Y, Xie W, et al. (2011) Oxidized pectin cross-linked carboxymethyl chitosan: a new class of hydrogels. J Biomater Sci Polym Ed 5063: 2119-2132.
    [287] Tummalapalli M, Berthet M, Verrier B, et al. (2016) Drug loaded composite oxidized pectin and gelatin networks for accelerated wound healing. Int J Pharm 505: 234-245. doi: 10.1016/j.ijpharm.2016.04.007
    [288] Tummalapalli M, Berthet M, Verrier B, et al. (2016) Composite wound dressings of pectin and gelatin with aloe vera and curcumin as bioactive agents. Int J Biol Macromol 82: 104-113. doi: 10.1016/j.ijbiomac.2015.10.087
    [289] Pérez S, Bertoft E (2010) The molecular structures of starch components and their contribution to the architecture of starch granules: A comprehensive review. Starch/Staerke 62: 389-420. doi: 10.1002/star.201000013
    [290] Le Corre D, Angellier-Coussy H (2014) Preparation and application of starch nanoparticles for nanocomposites: A review. React Funct Polym 85: 97-120. doi: 10.1016/j.reactfunctpolym.2014.09.020
    [291] Grote C, Heinze T (2005) Starch derivatives of high degree of functionalization 11: Studies on alternative acylation of starch with long-chain fatty acids homogeneously in N,N-dimethyl acetamide/LiCl. Cellulose 12: 435-444. doi: 10.1007/s10570-005-2178-z
    [292] Xie W, Wang Y (2011) Synthesis of high fatty acid starch esters with 1-butyl-3-methylimidazolium chloride as a reaction medium. Starch/Stärke 63: 190-197. doi: 10.1002/star.201000126
    [293] Tupa M, Maldonado L, Vazquez A, et al. (2013). Simple organocatalytic route for the synthesis of starch esters. Carbohydr Polym 98: 349-357. doi: 10.1016/j.carbpol.2013.05.094
    [294] Rutkaite R, Bendoraitiene J, Klimaviciute R, et al. (2012) Cationic starch nanoparticles based on polyelectrolyte complexes. Int J Biol Macromol 50: 687-693. doi: 10.1016/j.ijbiomac.2012.01.037
    [295] Baier G, Baumann D, Siebert JM, et al. (2012) Suppressing unspecific cell uptake for targeted delivery using hydroxyethyl starch nanocapsules. Biomacromolecules 13: 2704-2715. doi: 10.1021/bm300653v
    [296] Wei B, Zhang B, Sun B (2016) Aqueous re-dispersibility of starch nanocrystal powder improved by sodium hypochlorite oxidation. Food Hydrocoll 52: 29-37. doi: 10.1016/j.foodhyd.2015.06.006
    [297] Amini AM, Mohammad S, Razavi A (2016) A fast and efficient approach to prepare starch nanocrystals from normal corn starch. Food Hydrocoll 57: 132-138. doi: 10.1016/j.foodhyd.2016.01.022
    [298] Kim HY, Park SS, Lim ST (2015) Preparation, characterization and utilization of starch nanoparticles. Colloids Surf B Biointerfaces 126: 607-620. doi: 10.1016/j.colsurfb.2014.11.011
    [299] Lin N, Huang J, Chang PR, et al. (2011) Preparation, modification, and application of starch nanocrystals in nanomaterials: A review. J Nanomater 2011.
    [300] Lin N, Huang J, Dufresne A (2012) Preparation, properties and applications of polysaccharide nanocrystals in advanced functional nanomaterials: a review. Nanoscale 4: 3274-3294. doi: 10.1039/c2nr30260h
    [301] Angellier H, Molina-Boisseau S, Dufresne A (2005) Mechanical properties of waxy maize starch nanocrystal reinforced natural rubber. Macromolecules 38: 9161-9170. doi: 10.1021/ma0512399
    [302] Jiang S, Liu C, Han Z, et al. (2016) Evaluation of rheological behavior of starch nanocrystals by acid hydrolysis and starch nanoparticles by self-assembly: A comparative study. Food Hydrocoll 52: 914-922. doi: 10.1016/j.foodhyd.2015.09.010
    [303] Rajisha KR, Maria HJ, Pothan LA, et al. (2014) Preparation and characterization of potato starch nanocrystal reinforced natural rubber nanocomposites. Int J Biol Macromol 67: 147-153. doi: 10.1016/j.ijbiomac.2014.03.013
    [304] Sessini V, Arrieta MP, Kenny JM, et al. (2016) Processing of edible films based on nanoreinforced gelatinized starch. Polym Degrad Stabil In Press.305. Condés MC, Añón MC, Mauri AN, et al. (2015) Amaranth protein films reinforced with maize starch nanocrystals. Food Hydrocoll 47: 146-157. doi: 10.1016/j.foodhyd.2015.01.026
  • Reader Comments
  • © 2016 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(16307) PDF downloads(2289) Cited by(37)

Article outline

Figures and Tables

Figures(8)  /  Tables(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog