Export file:


  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text


  • Citation Only
  • Citation and Abstract

Fractional Laplacians on ellipsoids

1 Institut für Mathematik, Goethe-Universität Frankfurt am Main, Robert-Mayer-Straße 10, 60325 Frankfurt am Main, Germany
2 Instituto de Matemáticas, Universidad Autónoma de México, Circuito Exterior, Ciudad Universitaria, 04510 Coyoacán, Ciudad de México, México

This contribution is part of the Special Issue: Partial Differential Equations from theory to applications—Dedicated to Alberto Farina, on the occasion of his 50th birthday
Guest Editors: Serena Dipierro; Luca Lombardini
Link: www.aimspress.com/mine/article/5752/special-articles

Special Issues: Partial Differential Equations from theory to applications—Dedicated to Alberto Farina, on the occasion of his 50th birthday

We show explicit formulas for the evaluation of (possibly higher-order) fractional Laplacians (-△)s of some functions supported on ellipsoids. In particular, we derive the explicit expression of the torsion function and give examples of $s$-harmonic functions. As an application, we infer that the weak maximum principle fails in eccentric ellipsoids for $s\in(1,\sqrt{3}+3/2)$ in any dimension $n\geq 2$. We build a counterexample in terms of the torsion function times a polynomial of degree 2. Using point inversion transformations, it follows that a variety of bounded and unbounded domains do not satisfy positivity preserving properties either and we give some examples.
  Article Metrics


1. Abatangelo N, Dipierro S, Fall MM, et al. (2019) Positive powers of the Laplacian in the half-space under Dirichlet boundary conditions. Discrete Contin Dyn Syst 39: 1205-1235.    

2. Abatangelo N, Jarohs S, Saldaña A (2018) Green function and Martin kernel for higher-order fractional Laplacians in balls. Nonlinear Anal 175: 173-190.    

3. Abatangelo N, Jarohs S, Saldaña A (2018) Integral representation of solutions to higher-order fractional Dirichlet problems on balls. Commun Contemp Math 20: 1850002.    

4. Abatangelo N, Jarohs S, Saldaña A (2018) On the loss of maximum principles for higher-order fractional Laplacians. P Am Math Soc 146: 4823-4835.    

5. Abatangelo N, Jarohs S, Saldaña A (2018) Positive powers of the Laplacian: from hypersingular integrals to boundary value problems. Commun Pure Appl Anal 17: 899-922.    

6. Abatangelo N, Valdinoci E (2019) Getting acquainted with the fractional Laplacian, In: Contemporary Research in Elliptic PDEs and Related Topics, Cham: Springer, 1-105.

7. Abramowitz M, Stegun IA (1964) Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, U.S. Government Printing Office, Washington, DC.

8. Brezis H, Mironescu P (2018) Gagliardo-Nirenberg inequalities and non-inequalities: The full story. Ann I H Poincaré Anal Non Linéaire 35: 1355-1376.

9. Bucur C, Valdinoci E (2016) Nonlocal Diffusion and Applications, Cham: Springer.

10. Coffman CV, Duffin RJ (1980) On the structure of biharmonic functions satisfying the clamped plate conditions on a right angle. Adv Appl Math 1: 373-389.    

11. Dall'Acqua A, Sweers G (2005) The clamped-plate equation for the limaçon. Ann Mat Pura Appl 184: 361-374.    

12. Dipierro S, Grunau HC (2017) Boggio's formula for fractional polyharmonic Dirichlet problems. Ann Mat Pura Appl 196: 1327-1344.    

13. Duffin RJ (1949) On a question of Hadamard concerning super-biharmonic functions. J Math Phys 27: 253-258.

14. Dyda B (2012) Fractional calculus for power functions and eigenvalues of the fractional Laplacian. Fract Calc Appl Anal 15: 536-555.

15. Dyda B, Kuznetsov A, Kwaśnicki M (2017) Fractional Laplace operator and Meijer G-function. Constr Approx 45: 427-448.    

16. Garabedian PR (1951) A partial differential equation arising in conformal mapping. Pacific J Math 1: 485-524.    

17. Garofalo M (2019) Fractional thoughts, In: New Developments in the Analysis of Nonlocal Operators, Providence, RI: Amer. Math. Soc., 1-135.

18. Gazzola F, Grunau HC, Sweers G (2010) Polyharmonic Boundary Value Problems, Berlin: Springer-Verlag.

19. Grunau HC, Robert F (2013) Uniform estimates for polyharmonic Green functions in domains with small holes, In: Recent Trends in Nonlinear Partial Differential Equations. Ⅱ. Stationary Problems, Providence, RI: Amer. Math. Soc., 263-272.

20. Grunau HC, Sweers G (2014) A clamped plate with a uniform weight may change sign. Discrete Contin Dyn Syst Ser S 7: 761-766.

21. Grunau HC, Sweers G (2014) In any dimension a "clamped plate" with a uniform weight may change sign. Nonlinear Anal 97: 119-124.    

22. Hedenmalm H, Jakobsson S, Shimorin S (2002) A biharmonic maximum principle for hyperbolic surfaces. J Reine Angew Math 550: 25-75.

23. Jarohs S, Saldaña A, Weth T (2020) A new look at the fractional poisson problem via the logarithmic Laplacian. J Funct Anal 279: 108732.    

24. Keady G, McNabb A (1993) The elastic torsion problem: solutions in convex domains. New Zealand J Math 22: 43-64.

25. Kozlov VA, Kondrat'ev VA, Maz'ya VG (1989) On sign variability and the absence of "strong" zeros of solutions of elliptic equations. Izv Akad Nauk SSSR Ser Mat 53: 328-344.

26. Nakai M, Sario L (1977) On Hadamard's problem for higher dimensions. J Reine Angew Math 291: 145-148.

27. Render H, Ghergu M (2012) Positivity properties for the clamped plate boundary problem on the ellipse and strip. Math Nachr 285: 1052-1062.    

28. Ros-Oton X, Serra J (2015) Local integration by parts and Pohozaev identities for higher order fractional Laplacians. Discrete Contin Dyn Syst 35: 2131-2150.    

29. Saldaña A (2020) On fractional higher-order Dirichlet boundary value problems: between the Laplacian and the bilaplacian. arXiv:1810.08435.

30. Samko SG, Kilbas AA, Marichev OI (1993) Fractional Integrals and Derivatives, Yverdon: Gordon and Breach Science Publishers.

31. Shapiro HS, Tegmark M (1994) An elementary proof that the biharmonic Green function of an eccentric ellipse changes sign. SIAM Rev 36: 99-101.    

32. Sweers G (2016) An elementary proof that the triharmonic Green function of an eccentric ellipse changes sign. Arch Math 107: 59-62.    

33. Sweers G (2019) Correction to: An elementary proof that the triharmonic Green function of an eccentric ellipse changes sign. Arch Math 112: 223-224.    

34. Triebel H (1978) Interpolation Theory, Function Spaces, Differential Operators, Amsterdam-New York: North-Holland Publishing Co.

© 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Article outline

Show full outline
Copyright © AIMS Press All Rights Reserved