Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

Fractional Laplacians on ellipsoids

1 Institut für Mathematik, Goethe-Universität Frankfurt am Main, Robert-Mayer-Straße 10, 60325 Frankfurt am Main, Germany
2 Instituto de Matemáticas, Universidad Autónoma de México, Circuito Exterior, Ciudad Universitaria, 04510 Coyoacán, Ciudad de México, México

This contribution is part of the Special Issue: Partial Differential Equations from theory to applications—Dedicated to Alberto Farina, on the occasion of his 50th birthday
Guest Editors: Serena Dipierro; Luca Lombardini
Link: www.aimspress.com/mine/article/5752/special-articles

Special Issues: Partial Differential Equations from theory to applications—Dedicated to Alberto Farina, on the occasion of his 50th birthday

We show explicit formulas for the evaluation of (possibly higher-order) fractional Laplacians (-△)s of some functions supported on ellipsoids. In particular, we derive the explicit expression of the torsion function and give examples of $s$-harmonic functions. As an application, we infer that the weak maximum principle fails in eccentric ellipsoids for $s\in(1,\sqrt{3}+3/2)$ in any dimension $n\geq 2$. We build a counterexample in terms of the torsion function times a polynomial of degree 2. Using point inversion transformations, it follows that a variety of bounded and unbounded domains do not satisfy positivity preserving properties either and we give some examples.
  Figure/Table
  Supplementary
  Article Metrics

References

1. Abatangelo N, Dipierro S, Fall MM, et al. (2019) Positive powers of the Laplacian in the half-space under Dirichlet boundary conditions. Discrete Contin Dyn Syst 39: 1205-1235.    

2. Abatangelo N, Jarohs S, Saldaña A (2018) Green function and Martin kernel for higher-order fractional Laplacians in balls. Nonlinear Anal 175: 173-190.    

3. Abatangelo N, Jarohs S, Saldaña A (2018) Integral representation of solutions to higher-order fractional Dirichlet problems on balls. Commun Contemp Math 20: 1850002.    

4. Abatangelo N, Jarohs S, Saldaña A (2018) On the loss of maximum principles for higher-order fractional Laplacians. P Am Math Soc 146: 4823-4835.    

5. Abatangelo N, Jarohs S, Saldaña A (2018) Positive powers of the Laplacian: from hypersingular integrals to boundary value problems. Commun Pure Appl Anal 17: 899-922.    

6. Abatangelo N, Valdinoci E (2019) Getting acquainted with the fractional Laplacian, In: Contemporary Research in Elliptic PDEs and Related Topics, Cham: Springer, 1-105.

7. Abramowitz M, Stegun IA (1964) Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, U.S. Government Printing Office, Washington, DC.

8. Brezis H, Mironescu P (2018) Gagliardo-Nirenberg inequalities and non-inequalities: The full story. Ann I H Poincaré Anal Non Linéaire 35: 1355-1376.

9. Bucur C, Valdinoci E (2016) Nonlocal Diffusion and Applications, Cham: Springer.

10. Coffman CV, Duffin RJ (1980) On the structure of biharmonic functions satisfying the clamped plate conditions on a right angle. Adv Appl Math 1: 373-389.    

11. Dall'Acqua A, Sweers G (2005) The clamped-plate equation for the limaçon. Ann Mat Pura Appl 184: 361-374.    

12. Dipierro S, Grunau HC (2017) Boggio's formula for fractional polyharmonic Dirichlet problems. Ann Mat Pura Appl 196: 1327-1344.    

13. Duffin RJ (1949) On a question of Hadamard concerning super-biharmonic functions. J Math Phys 27: 253-258.

14. Dyda B (2012) Fractional calculus for power functions and eigenvalues of the fractional Laplacian. Fract Calc Appl Anal 15: 536-555.

15. Dyda B, Kuznetsov A, Kwaśnicki M (2017) Fractional Laplace operator and Meijer G-function. Constr Approx 45: 427-448.    

16. Garabedian PR (1951) A partial differential equation arising in conformal mapping. Pacific J Math 1: 485-524.    

17. Garofalo M (2019) Fractional thoughts, In: New Developments in the Analysis of Nonlocal Operators, Providence, RI: Amer. Math. Soc., 1-135.

18. Gazzola F, Grunau HC, Sweers G (2010) Polyharmonic Boundary Value Problems, Berlin: Springer-Verlag.

19. Grunau HC, Robert F (2013) Uniform estimates for polyharmonic Green functions in domains with small holes, In: Recent Trends in Nonlinear Partial Differential Equations. Ⅱ. Stationary Problems, Providence, RI: Amer. Math. Soc., 263-272.

20. Grunau HC, Sweers G (2014) A clamped plate with a uniform weight may change sign. Discrete Contin Dyn Syst Ser S 7: 761-766.

21. Grunau HC, Sweers G (2014) In any dimension a "clamped plate" with a uniform weight may change sign. Nonlinear Anal 97: 119-124.    

22. Hedenmalm H, Jakobsson S, Shimorin S (2002) A biharmonic maximum principle for hyperbolic surfaces. J Reine Angew Math 550: 25-75.

23. Jarohs S, Saldaña A, Weth T (2020) A new look at the fractional poisson problem via the logarithmic Laplacian. J Funct Anal 279: 108732.    

24. Keady G, McNabb A (1993) The elastic torsion problem: solutions in convex domains. New Zealand J Math 22: 43-64.

25. Kozlov VA, Kondrat'ev VA, Maz'ya VG (1989) On sign variability and the absence of "strong" zeros of solutions of elliptic equations. Izv Akad Nauk SSSR Ser Mat 53: 328-344.

26. Nakai M, Sario L (1977) On Hadamard's problem for higher dimensions. J Reine Angew Math 291: 145-148.

27. Render H, Ghergu M (2012) Positivity properties for the clamped plate boundary problem on the ellipse and strip. Math Nachr 285: 1052-1062.    

28. Ros-Oton X, Serra J (2015) Local integration by parts and Pohozaev identities for higher order fractional Laplacians. Discrete Contin Dyn Syst 35: 2131-2150.    

29. Saldaña A (2020) On fractional higher-order Dirichlet boundary value problems: between the Laplacian and the bilaplacian. arXiv:1810.08435.

30. Samko SG, Kilbas AA, Marichev OI (1993) Fractional Integrals and Derivatives, Yverdon: Gordon and Breach Science Publishers.

31. Shapiro HS, Tegmark M (1994) An elementary proof that the biharmonic Green function of an eccentric ellipse changes sign. SIAM Rev 36: 99-101.    

32. Sweers G (2016) An elementary proof that the triharmonic Green function of an eccentric ellipse changes sign. Arch Math 107: 59-62.    

33. Sweers G (2019) Correction to: An elementary proof that the triharmonic Green function of an eccentric ellipse changes sign. Arch Math 112: 223-224.    

34. Triebel H (1978) Interpolation Theory, Function Spaces, Differential Operators, Amsterdam-New York: North-Holland Publishing Co.

© 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Article outline

Show full outline
Copyright © AIMS Press All Rights Reserved