Export file:


  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text


  • Citation Only
  • Citation and Abstract

Polar tangential angles and free elasticae

Department of Mathematics, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8551, Japan

This contribution is part of the Special Issue: Geometric Partial Differential Equations in Engineering
Guest Editor: James McCoy
Link: www.aimspress.com/mine/article/5820/special-articles

Special Issues: Geometric Partial Differential Equations in Engineering

In this note we investigate the behavior of the polar tangential angle of a general plane curve, and in particular prove its monotonicity for certain curves of monotone curvature. As an application we give (non)existence results for an obstacle problem involving free elasticae.
  Article Metrics


1. Dall'Acqua A, Deckelnick K (2018) An obstacle problem for elastic graphs. SIAM J Math Anal 50: 119-137.    

2. Dayrens F, Masnou S, Novaga M (2018) Existence, regularity and structure of confined elasticae. ESAIM Contr Optim Ca 24: 25-43.    

3. Ghys E, Tabachnikov S, Timorin V (2013) Osculating curves: Around the Tait-Kneser theorem. Math Intell 35: 61-66.

4. Kneser A (1912) Bemerkungen über die anzahl der extreme der krümmung auf geschlossenen kurven und über verwandte fragen in einer nicht-euklidischen geometrie. Festschrift H Weber 170-180.

5. Linnér A (1993) Existence of free nonclosed Euler-Bernoulli elastica. Nonlinear Anal 21: 575-593.    

6. Linnér A (1998) Curve-straightening and the Palais-Smale condition. T Am Math Soc 350: 3743-3765.    

7. Linnér A (1998) Explicit elastic curves. Ann Global Anal Geom 16: 445-475.    

8. Miura T (2016) Singular perturbation by bending for an adhesive obstacle problem. Calc Var Partial Dif 55: 19.    

9. Miura T (2017) Overhanging of membranes and filaments adhering to periodic graph substrates. Phys D 355: 34-44.    

10. Miura T (2020) Elastic curves and phase transitions. Math Ann 376: 1629-1674.    

11. Müller M (2019) An obstacle problem for elastic curves: existence results. Interface Free Bound 21: 87-129.    

12. Sachkov YL (2008) Maxwell strata in the Euler elastic problem. J Dyn Control Syst 14: 169-234.    

13. Singer DA (2008) Lectures on elastic curves and rods, In: Curvature and Variational Modeling in Physics and Biophysics, AIP Conference Proceedings, 3-32.

14. Tait PG (1896) Note on the circles of curvature of a plane curve. P Edinburgh Math Soc 14: 403.

15. Watanabe K (2014) Planar p-elastic curves and related generalized complete elliptic integrals. Kodai Math J 37: 453-474.    

16. Yoshizawa K, A remark on elastic graphs with the symmetric cone obstacle. preprint (personal communication with the author).

© 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Article outline

Show full outline
Copyright © AIMS Press All Rights Reserved