Export file:


  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text


  • Citation Only
  • Citation and Abstract

Effective governing equations for heterogenous porous media subject to inhomogeneous body forces

1 School of Mathematics and Statistics, University of Glasgow, University Place, G128QQ, Glasgow, UK
2 Dipartimento di scienze matematiche “G. L. Lagrange”, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129, Turin, Italy
3 Departamento de Mecanicá de los Medios Continuos y T. Estructuras, E. T. S. de caminos, canales y puertos, Universidad Politécnica de Madrid, Calle Profesor Aranguren S/N, 28040, Madrid, Spain
4 Departamento de Matemáticas, Facultad de Matemática y Computación, Universidad de La Habana, CP 10400, Havana, Cuba

This contribution is part of the Special Issue: Models and Methods for Multiscale Systems
Guest Editor: Giulio Giusteri
Link: www.aimspress.com/mine/article/5814/special-articles

Special Issues: Models and Methods for Multiscale Systems

We derive a new homogenized model for heterogeneous porous media driven by inhomogeneous body forces. We assume that the fine scale, characterizing the heterogeneities in the medium, is larger than the pore scale, but nonetheless much smaller than the size of the material (the coarse scale). We decouple spatial variations and assume periodicity on the fine scale. Fine scale variations are formally reflected in a locally unbounded source for the arising system of partial differential equations. We apply the asymptotic homogenization technique to obtain a well-defined coarse scale Darcy-type model. The resulting problem is driven by an effective source which comprises both the coarse scale divergence of the average body force, and additional contributions which are to be computed solving a well-defined diffusion-type cell problem which is driven solely by fine scale variations of the given force. The present model can be used to predict the effect of externally applied magnetic (or electric) fields on ferrofluids (or electrolytes) flowing in porous media. This work can, in perspective, pave the way for investigations of the effect of applied forces on complex and heterogeneous hierarchical materials, such as systems of fractures or cancerous biological tissues.
  Article Metrics


1. Allaire G (1989) Homogenization of the stokes flow in a connected porous medium. Asymptotic Anal 2: 203-222.    

2. Allaire G, Briane M (1996) Multiscale convergence and reiterated homogenisation. P Roy Soc Edinb A 126: 297-342.    

3. Arbogast T, Lehr HL (2006) Homogenization of a darcy-stokes system modeling vuggy porous media. Computat Geosci 10: 291-302.    

4. Bakhvalov N, Panasenko G (1989) Homogenisation Averaging Processes in Periodic Media, Springer.

5. Bendel P, Bernardo M, Dunsmuir JH, et al. (2003) Electric field driven flow in natural porous media. Magn Reson Imaging 21: 321-332.    

6. Burridge R, Keller J (1981) Poroelasticity equations derived from microstructure. J Acoust Soc Am 70: 1140-1146.    

7. Cioranescu D, Donato P (1999) An Introduction to Homogenization, Oxford University Press.

8. Collis J, Hubbard ME, O'Dea RD (2017) A multi-scale analysis of drug transport and response for a multi-phase tumour model. Eur J Appl Math 28: 499-534.    

9. Collis J, Hubbard ME, O'Dea R (2016) Computational modelling of multiscale, multiphase fluid mixtures with application to tumour growth. Comput Method Appl M 309: 554-578.    

10. El-Amin MF, Brahimi T (2017) Numerical modeling of magnetic nanoparticles transport in a two-phase flow in porous media, In: SPE Reservoir Characterisation and Simulation Conference and Exhibition, Society of Petroleum Engineers.

11. Holmes M (1995) Introduction to Perturbation Method, Springer-Verlag.

12. Hornung U (1997) Homogenization and Porous Media, Springer.

13. Irons L, Collis J, O'Dea RD (2017) Microstructural influences on growth and transport in biological tissue-a multiscale description, In: Modeling of Microscale Transport in Biological Processes, Elsevier, 311-334.

14. Lukkassen D, Milton GW (2002) On hierarchical structures and reiterated homogenization, In: Function Spaces, Interpolation Theory and Related Topics (Lund, 2000), 355-368.

15. Mascheroni P, Penta R (2017) The role of the microvascular network structure on diffusion and consumption of anticancer drugs. Int J Numer Method Biomed Eng, 33: 10.1002/cnm.2857.

16. Nabil M, Zunino P (2016) A computational study of cancer hyperthermia based on vascular magnetic nanoconstructs. Roy Soc Open Sci 3: 160287.    

17. Oldenburg CM, Borglin SE, Moridis GJ (2000) Numerical simulation of ferrofluid flow for subsurface environmental engineering applications. Transport Porous Med 38: 319-344.    

18. Pankhurst QA, Connolly J, Jones SK, et al. (2003) Applications of magnetic nanoparticles in biomedicine. J Phys D Appl Phys 36: R167.    

19. Papanicolau G, Bensoussan A, Lions JL (1978) Asymptotic Analysis for Periodic Structures, Elsevier.

20. Penta R, Ambrosi D (2015) The role of microvascular tortuosity in tumor transport phenomena. J Theor Bio 364: 80-97.    

21. Penta R, Ambrosi D, Quarteroni A (2015) Multiscale homogenization for fluid and drug transport in vascularized malignant tissues. Math Mod Meth Appl S 25: 79-108.    

22. Penta R, Ambrosi D, Shipley RJ (2014) Effective governing equations for poroelastic growing media. Q J Mech Appl Math 67: 69-91.    

23. Penta R, Gerisch A (2015) Investigation of the potential of asymptotic homogenization for elastic composites via a three-dimensional computational study. Comput Vis Sci 17: 185-201.    

24. Penta R, Merodio J (2017) Homogenized modeling for vascularized poroelastic materials. Meccanica 52: 3321-3343.    

25. Penta R, Raum K, Grimal Q, et al. (2016) Can a continuous mineral foam explain the stiffening of aged bone tissue? a micromechanical approach to mineral fusion in musculoskeletal tissues. Bioinspir Biomim 11: 035004.

26. Penta R, Gerisch A (2017) The asymptotic homogenization elasticity tensor properties for composites with material discontinuities. Continuum Mech Therm 29: 187-206.    

27. Preziosi L, Farina A (2002) On darcy's law for growing porous media. Int J NonLin Mech 37: 485-491.    

28. Raj K, Moskowitz R (1990) Commercial applications of ferrofluids. J Magn Magn Mater 85: 233-245.    

29. Rajagopal KR (2007) On a hierarchy of approximate models for flows of incompressible fluids through porous solids. Math Mod Meth Appl S 17: 215-252.    

30. Ramírez-Torres A, Rodríguez-Ramos R, Merodio J, et al. (2015) Action of body forces in tumor growth. Int J Eng Sci 89: 18-34.    

31. Ramírez-Torres A, Penta R, Rodríguez-Ramos R, et al. (2019) Effective properties of hierarchical fiber-reinforced composites via a three-scale asymptotic homogenization approach. Math Mech Solids 24: 3554-3574.    

32. Ramírez-Torres A, Penta R, Rodríguez-Ramos R, et al. (2018) Homogenized out-of-plane shear response of three-scale fiber-reinforced composites. Comput Vis Sci 20: 85-93.

33. Ramírez-Torres A, Penta R, Rodríguez-Ramos R, et al. (2018) Three scales asymptotic homogenization and its application to layered hierarchical hard tissues. Int J Solids Struct 130: 190-198.

34. Rosensweig RE (2013) Ferrohydrodynamics, Courier Corporation.

35. Penta R, Ramírez-Torres A, Merodio J, et al. (2017) Effective balance equations for elastic composites subject to inhomogeneous potentials. Continuum Mech Therm 30: 145-163.

36. Sanchez-Palencia E (1980) Non-Homogeneous Media and Vibration Theory, Springer-Verlag.

37. Shipley RJ, Chapman J (2010) Multiscale modelling of fluid and drug transport in vascular tumors. B Math Bio 72: 1464-1491.    

© 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Article outline

Show full outline
Copyright © AIMS Press All Rights Reserved