Export file:


  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text


  • Citation Only
  • Citation and Abstract

Understanding the FPU state in FPU–like models

Università degli Studi di Padova, Dipartimento di Matematica “Tullio Levi-Civita”, Via Trieste 63, 35121 Padova, Italy

This contribution is part of the Special Issue: Modern methods in Hamiltonian perturbation theory
Guest Editors: Marco Sansottera; Ugo Locatelli
Link: www.aimspress.com/mine/article/5514/special-articles

Special Issues: Modern methods in Hamiltonian perturbation theory

Many papers investigated, in a variety of ways, the so-called “FPU state” in the Fermi-Pasta-Ulam model, namely the state, intermediate between the initial state and equipartition, that the system soon reaches if initially one or a few long-wavelength normal modes are excited. The FPU state has been observed, in particular, to obey a few characterizing scalings laws. The aim of this paper is twofold: First, reviewing and commenting the literature on the FPU state, suggesting a possible way to organize it. Second, contributing to a better understanding of the FPU state by studying the similar state in the Toda model, which provides, as is known, the closest integrable approximation to FPU. As a new tool, we analyze the dimensionality of Toda invariant tori in states corresponding to the FPU state, and observe it obeys the main scaling law characterizing the FPU state.
  Article Metrics


1. Fermi E, Pasta J, Ulam S (1955) Studies of Non Linear Problems, Los-Alamos Internal Report, Document LA-1940.

2. Lazarus RB, Voorhees EA, Wells MB, et al. (1978) Computing at LASL in the 1949s and 1950s, Los Alamos internal note LA-6943-H, part III.

3. Tuck JL, Menzell MT (1972) The superperiod of the nonlinear weighted string (FPU) problem. Adv Math 9: 399-407.    

4. Campbell DK, Rosenau P, Zaslavsky GM (2005) Introduction: The "Fermi-Pasta-Ulam" problem-the first 50 years. Chaos 15: 015101.    

5. Gallavotti G (2008) The Fermi-Pasta-Ulam Problem: A Status Report, Berlin-Heidelberg: Springer.

6. Zabusky NJ, Kruskal MD (1965) Interaction of solitons in a collisionless plasma and the recurrence of initial states. Phys Rev Lett 15: 240-245.

7. Izrailev FM, Chirikov BV (1966) Statistical properties of a nonlinear string. Sov Phys Dokl 11: 30-34.

8. Manakov SV (1974) Complete integrability and stochastization of discrete dynamical systems. Sov Phys JEPT 40: 269-274.

9. Ferguson WE, Flaschka H, McLaughlin DW (1982) Nonlinear Toda modes for the Toda chain. J Comput Phys 45: 157-209.    

10. Benettin G, Ponno A (2011) Time-scales to equipartition in the Fermi-Pasta-Ulam problem: Finite-size effects and thermodynamic limit. J Stat Phys 144: 793-812.    

11. Fucito E, Marchesoni F, Marinari E, et al. (1982) Approach to equilibrium in a chain of nonlinear oscillators. J Phys 43: 707-713.    

12. Livi R, Pettini M, Ruffo S, et al. (1983) Relaxation to different stationary states in the Fermi-PastaUlam model. Phys Rev A 28: 3544-3552.    

13. Kramer PR, Biello JA, L'vov YV (2003) Application of weak turbulence theory to FPU model, In: Proceedings of the Fourth International Conference on Dynamical Systems and Differential Equations (May 24-27, 2002, Wilmington, NC, USA), AIMS Conference Publications, 482-491.

14. Berchialla L, Galgani L, Giorgilli A (2004) Localization of energy in FPU chains. Discrete Cont Dyn-A 11: 855-866.    

15. Bambusi D, Ponno A (2006) On metastability in FPU. Commun Math Phys 264: 539-561.    

16. Benettin G, Carati A, Galgani L, et al. The Fermi-Pasta-Ulam problem and the metastability perspective, In: The Fermi-Pasta-Ulam Problem, Berlin: Springer, 151-189.

17. Carati A, Galgani L, Giorgilli A, et al. (2007) FPU phenomenon for generic initial data. Phys Rev E 76: 022104/1-4.

18. Carati A, Galgani L, Giorgilli A (2004) The Fermi-Pasta-Ulam problem as a challenge for the foundations of physics. Chaos 15: 015105.

19. Benettin G, Christodoulidi H, Ponno A (2013), The Fermi-Pasta-Ulam problem and its underlying integrable dynamics. J Stat Phys 152: 195-212.

20. Biello JA, Kramer PR, L'vov YV (2003) Stages of energy transfer in the FPU model, In: Proceedings of the Fourth International Conference on Dynamical Systems and Differential Equations (May 24-27, 2002, Wilmington, NC, USA), AIMS Conference Publications, 113-122.

21. Shepelyansky DL (1997) Low-energy chaos in the Fermi-Pasta-Ulam Problem. Nonlinearity 10: 1331-1338.    

22. Benettin G, Livi R, Ponno A (2009) The Fermi-Pasta-Ulam problem: scaling laws vs. initial conditions. J Stat Phys 135: 873-893.

23. Livi R, Pettini M, Ruffo S, et al. (1985) Equipartition threshold in nonlinear large Hamiltonian systems: The Fermi-Pasta-Ulam model. Phys Rev A 31: 1039-1045.    

24. Gardner CS, Green JM, Kruskal MD (1967) Method for solving the Korteweg-de Vries equation. Phys Rev Lett 19: 1095-1097.    

25. Lax PD (1968) Integrals of nonlinear equations of evolution and solitary waves. Commun Pure Appl Math 21: 467-490.    

26. Miura RM, Gardner CS, Kruskal MD (1968) Korteweg-de Vries equation and generalization, II. Existence of conservation laws and constants of motion. J Math Phys 9: 1204-1209.

27. Zakharov VE, Feddeev LD (1971) Korteweg-de Vries equation: A completely integrable Hamiltonian system. Funct Anal Appl 5: 280-286.

28. Zakharov VE (1973) On stochastization of one dimensional chains of nonlinear oscillators. Sov Phys JETP 38: 108-110.

29. Toda M (1967) Vibration of a chain with nonlinear interaction. J Phys Soc Jpn 22: 431-436.    

30. Toda M (1967) Wave propagation in anharmonic lattices. J Phys Soc Jpn 23: 501-506.    

31. Toda M (1969) Mechanics and statistical mechanics of nonlinear chains. J Phys Soc Jpn 26: 109-111.

32. Toda M (1970) Waves in nonlinear lattice. Prog Theor Phys 45: 174-200.    

33. Hénon M (1974) Integrals of the Toda lattice. Phys Rev B 9: 1921-1923.    

34. Flaschka H (1974) The Toda lattice. II. existence of integrals. Phys Rev B 9: 1924-1925.

35. Cecchetto M (2015) Normal modes and actions in the Toda Model, Master thesis of University of Padua, Dept. of Mathematics "Tullio Levi-Civita".

36. Henrici A, Kappeler T (2008) Global action-angle variables for the periodic Toda lattice. Int Math Res Not 2008: 1-52.

37. Henrici A, Kappeler T (2008) Global Birkhoff coordinates for the periodic Toda lattice. Nonlinearity 21: 2731-2758.    

38. Bambusi D, Maspero A (2016) Birkhoff coordinates for the Toda Lattice in the limit of infinitely many particles with an application to FPU. J Funct Anal 270: 1818-1887.    

© 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Article outline

Show full outline
Copyright © AIMS Press All Rights Reserved