Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

Understanding the FPU state in FPU–like models

Università degli Studi di Padova, Dipartimento di Matematica “Tullio Levi-Civita”, Via Trieste 63, 35121 Padova, Italy

This contribution is part of the Special Issue: Modern methods in Hamiltonian perturbation theory
Guest Editors: Marco Sansottera; Ugo Locatelli
Link: www.aimspress.com/mine/article/5514/special-articles

Special Issues: Modern methods in Hamiltonian perturbation theory

Many papers investigated, in a variety of ways, the so-called “FPU state” in the Fermi-Pasta-Ulam model, namely the state, intermediate between the initial state and equipartition, that the system soon reaches if initially one or a few long-wavelength normal modes are excited. The FPU state has been observed, in particular, to obey a few characterizing scalings laws. The aim of this paper is twofold: First, reviewing and commenting the literature on the FPU state, suggesting a possible way to organize it. Second, contributing to a better understanding of the FPU state by studying the similar state in the Toda model, which provides, as is known, the closest integrable approximation to FPU. As a new tool, we analyze the dimensionality of Toda invariant tori in states corresponding to the FPU state, and observe it obeys the main scaling law characterizing the FPU state.
  Figure/Table
  Supplementary
  Article Metrics

References

1. Fermi E, Pasta J, Ulam S (1955) Studies of Non Linear Problems, Los-Alamos Internal Report, Document LA-1940.

2. Lazarus RB, Voorhees EA, Wells MB, et al. (1978) Computing at LASL in the 1949s and 1950s, Los Alamos internal note LA-6943-H, part III.

3. Tuck JL, Menzell MT (1972) The superperiod of the nonlinear weighted string (FPU) problem. Adv Math 9: 399-407.    

4. Campbell DK, Rosenau P, Zaslavsky GM (2005) Introduction: The "Fermi-Pasta-Ulam" problem-the first 50 years. Chaos 15: 015101.    

5. Gallavotti G (2008) The Fermi-Pasta-Ulam Problem: A Status Report, Berlin-Heidelberg: Springer.

6. Zabusky NJ, Kruskal MD (1965) Interaction of solitons in a collisionless plasma and the recurrence of initial states. Phys Rev Lett 15: 240-245.

7. Izrailev FM, Chirikov BV (1966) Statistical properties of a nonlinear string. Sov Phys Dokl 11: 30-34.

8. Manakov SV (1974) Complete integrability and stochastization of discrete dynamical systems. Sov Phys JEPT 40: 269-274.

9. Ferguson WE, Flaschka H, McLaughlin DW (1982) Nonlinear Toda modes for the Toda chain. J Comput Phys 45: 157-209.    

10. Benettin G, Ponno A (2011) Time-scales to equipartition in the Fermi-Pasta-Ulam problem: Finite-size effects and thermodynamic limit. J Stat Phys 144: 793-812.    

11. Fucito E, Marchesoni F, Marinari E, et al. (1982) Approach to equilibrium in a chain of nonlinear oscillators. J Phys 43: 707-713.    

12. Livi R, Pettini M, Ruffo S, et al. (1983) Relaxation to different stationary states in the Fermi-PastaUlam model. Phys Rev A 28: 3544-3552.    

13. Kramer PR, Biello JA, L'vov YV (2003) Application of weak turbulence theory to FPU model, In: Proceedings of the Fourth International Conference on Dynamical Systems and Differential Equations (May 24-27, 2002, Wilmington, NC, USA), AIMS Conference Publications, 482-491.

14. Berchialla L, Galgani L, Giorgilli A (2004) Localization of energy in FPU chains. Discrete Cont Dyn-A 11: 855-866.    

15. Bambusi D, Ponno A (2006) On metastability in FPU. Commun Math Phys 264: 539-561.    

16. Benettin G, Carati A, Galgani L, et al. The Fermi-Pasta-Ulam problem and the metastability perspective, In: The Fermi-Pasta-Ulam Problem, Berlin: Springer, 151-189.

17. Carati A, Galgani L, Giorgilli A, et al. (2007) FPU phenomenon for generic initial data. Phys Rev E 76: 022104/1-4.

18. Carati A, Galgani L, Giorgilli A (2004) The Fermi-Pasta-Ulam problem as a challenge for the foundations of physics. Chaos 15: 015105.

19. Benettin G, Christodoulidi H, Ponno A (2013), The Fermi-Pasta-Ulam problem and its underlying integrable dynamics. J Stat Phys 152: 195-212.

20. Biello JA, Kramer PR, L'vov YV (2003) Stages of energy transfer in the FPU model, In: Proceedings of the Fourth International Conference on Dynamical Systems and Differential Equations (May 24-27, 2002, Wilmington, NC, USA), AIMS Conference Publications, 113-122.

21. Shepelyansky DL (1997) Low-energy chaos in the Fermi-Pasta-Ulam Problem. Nonlinearity 10: 1331-1338.    

22. Benettin G, Livi R, Ponno A (2009) The Fermi-Pasta-Ulam problem: scaling laws vs. initial conditions. J Stat Phys 135: 873-893.

23. Livi R, Pettini M, Ruffo S, et al. (1985) Equipartition threshold in nonlinear large Hamiltonian systems: The Fermi-Pasta-Ulam model. Phys Rev A 31: 1039-1045.    

24. Gardner CS, Green JM, Kruskal MD (1967) Method for solving the Korteweg-de Vries equation. Phys Rev Lett 19: 1095-1097.    

25. Lax PD (1968) Integrals of nonlinear equations of evolution and solitary waves. Commun Pure Appl Math 21: 467-490.    

26. Miura RM, Gardner CS, Kruskal MD (1968) Korteweg-de Vries equation and generalization, II. Existence of conservation laws and constants of motion. J Math Phys 9: 1204-1209.

27. Zakharov VE, Feddeev LD (1971) Korteweg-de Vries equation: A completely integrable Hamiltonian system. Funct Anal Appl 5: 280-286.

28. Zakharov VE (1973) On stochastization of one dimensional chains of nonlinear oscillators. Sov Phys JETP 38: 108-110.

29. Toda M (1967) Vibration of a chain with nonlinear interaction. J Phys Soc Jpn 22: 431-436.    

30. Toda M (1967) Wave propagation in anharmonic lattices. J Phys Soc Jpn 23: 501-506.    

31. Toda M (1969) Mechanics and statistical mechanics of nonlinear chains. J Phys Soc Jpn 26: 109-111.

32. Toda M (1970) Waves in nonlinear lattice. Prog Theor Phys 45: 174-200.    

33. Hénon M (1974) Integrals of the Toda lattice. Phys Rev B 9: 1921-1923.    

34. Flaschka H (1974) The Toda lattice. II. existence of integrals. Phys Rev B 9: 1924-1925.

35. Cecchetto M (2015) Normal modes and actions in the Toda Model, Master thesis of University of Padua, Dept. of Mathematics "Tullio Levi-Civita".

36. Henrici A, Kappeler T (2008) Global action-angle variables for the periodic Toda lattice. Int Math Res Not 2008: 1-52.

37. Henrici A, Kappeler T (2008) Global Birkhoff coordinates for the periodic Toda lattice. Nonlinearity 21: 2731-2758.    

38. Bambusi D, Maspero A (2016) Birkhoff coordinates for the Toda Lattice in the limit of infinitely many particles with an application to FPU. J Funct Anal 270: 1818-1887.    

© 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Article outline

Show full outline
Copyright © AIMS Press All Rights Reserved