Export file:


  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text


  • Citation Only
  • Citation and Abstract

Three-dimensional physics-based earthquake ground motion simulations for seismic risk assessment in densely populated urban areas

1 MOX–Laboratory for Modelling and Scientific Computing, Department of Mathematics, Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milano, Italy
2 Department of Civil and Environmental Engineering, Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milano, Italy
3 Institute of Mathematics, École Polytechnique Fédérale de Lausanne (EPFL), Station 8, 1015 Lausanne, Switzerland
4 Munich RE, Geo Risks Königinstr. 107, 80802 Munich, Germany

In this paper we describe a mathematical and numerical approach that combines physics-based simulated ground motion caused by earthquakes with fragility functions to model the structural damages induced to buildings. To simulate earthquake ground motion we use the discontinuous Galerkin spectral element method to solve a three-dimensional differential model at regional scale describing the propagation of seismic waves through the earth layers up to the surface. Selected intensity measures, retrieved from the synthetic time histories, are then employed as input for a vulnerability model based on fragility functions, in order to predict building damage scenarios at urban scale. The main features and effectiveness of the proposed numerical approach are tested on the Beijing metropolitan area.
  Article Metrics
Download full text in PDF

Export Citation

Article outline

Copyright © AIMS Press All Rights Reserved