
Mathematics in Engineering, 2020, 2(4): 680697. doi: 10.3934/mine.2020031
Research article Special Issues
Export file:
Format
 RIS(for EndNote,Reference Manager,ProCite)
 BibTex
 Text
Content
 Citation Only
 Citation and Abstract
Harnack inequality and Liouvilletype theorems for OrnsteinUhlenbeck and Kolmogorov operators
1 Dipartimento di Scienze Pure e Applicate (DiSPeA), Università degli Studi di Urbino Carlo Bo, Piazza della Repubblica 13, 61029 Urbino (PU), Italy
2 Dipartimento di Matematica, Alma Mater Studiorum Università di Bologna, Piazza di Porta San Donato 5, 40126 Bologna, Italy
3 Dipartimento di Matematica, Università degli Studi di Pavia, Via Adolfo Ferrata 5, 27100 Pavia, Italy
^{†}This contribution is part of the Special Issue: Contemporary PDEs between theory and modeling—Dedicated to Sandro Salsa, on the occasion of his 70th birthday
Guest Editor: Gianmaria Verzini
Link: https://www.aimspress.com/newsinfo/1429.html
Received: , Accepted: , Published:
Special Issues: Contemporary PDEs between theory and modeling—Dedicated to Sandro Salsa, on the occasion of his 70th birthday
References
1. Bonfiglioli A, Lanconelli E, Uguzzoni F (2007) Stratified Lie Groups and Potential Theory for Their SubLaplacians, Berlin: Springer.
2. Cupini G, Lanconelli E (2020) On mean value formulas for solutions to second order linear PDEs. Ann Scuola Norm Sci, in press.
3. Cranston M, Orey S, Rösler U (1983) The Martin boundary of twodimensional OrnsteinUhlenbeck processes, In: Probability, Statistics and Analysis, CambridgeNew York: Cambridge University Press, 6378.
4. Da Prato G, Zabczyk J (1996) Ergodicity for InfiniteDimensional Systems, Cambridge: Cambridge University Press.
5. Dym H (1966) Stationary measures for the flow of a linear differential equation driven by white noise. T Am Math Soc 123: 130164.
6. Dynkin EB (1965) Markov Processes Vols. I & II, BerlinGöttingenHeidelberg: SpringerVerlag.
7. Erickson RV (1971) Constant coefficient linear differential equations driven by white noise. Ann Math Statist 42: 820823.
8. Garofalo N, Lanconelli E (1989) Asymptotic behavior of fundamental solutions and potential theory of parabolic operators with variable coefficients. Math Ann 283: 211239.
9. Getoor RK (1980) Transience and recurrence of Markov processes, In: Seminar on Probability, XIV (Paris, 1978/1979) (French), Berlin: Springer, 397409.
10. Kogoj AE, Lanconelli E (2007) Liouville theorems for a class of linear secondorder operators with nonnegative characteristic form. Bound Value Probl 2007: 16.
11. Kupcov LP (1972) The fundamental solutions of a certain class of ellipticparabolic second order equations. Differ Uravn 8: 16491660.
12. Lanconelli E, Polidoro S (1994) On a class of hypoelliptic evolution operators. Rend Semin Mat U Pad 52: 2963.
13. Priola E, Wang FY (2006) Gradient estimates for diffusion semigroups with singular coefficients. J Funct Anal 236: 244264.
14. Priola E, Zabczyk J (2004) Liouville theorems for nonlocal operators. J Funct Anal 216: 455490.
15. Zabczyk J (1981/82) Controllability of stochastic linear systems. Syst Control Lett 1: 2531.
© 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)