
Mathematics in Engineering, 2020, 2(3): 527556. doi: 10.3934/mine.2020024.
Research article Special Issues
Export file:
Format
 RIS(for EndNote,Reference Manager,ProCite)
 BibTex
 Text
Content
 Citation Only
 Citation and Abstract
Connected surfaces with boundary minimizing the Willmore energy
Dipartimento di Matematica, Università di Pisa, Largo Bruno Pontecorvo 5, 56127 Pisa, Italy
^{†}This contribution is part of the Special Issue: Variational Models in Elasticity
Guest Editors: Lucia De Luca; Marcello Ponsiglione
Link: https://www.aimspress.com/newsinfo/1369.html
Received: , Accepted: , Published:
Special Issues: Variational Models in Elasticity
Keywords: Willmore energy; monotonicity formula; varifolds; connectedness; existence
Citation: Matteo Novaga, Marco Pozzetta. Connected surfaces with boundary minimizing the Willmore energy. Mathematics in Engineering, 2020, 2(3): 527556. doi: 10.3934/mine.2020024
References:
 1. Alessandroni R, Kuwert E (2016) Local solutions to a free boundary problem for the Willmore functional. Calc Var Partial Dif 55: 129.
 2. Bauer M, Kuwert E (2003) Existence of minimizing Willmore surfaces of prescribed genus. Int Math Res Notices 10: 553576.
 3. Bergner M, Dall'Acqua A, Fröhlich S (2010) Symmetric Willmore surfaces of revolution satisfying natural boundary conditions. Calc Var Partial Dif 39: 361378.
 4. Bergner M, Dall'Acqua A, Fröhlich S (2013) Willmore surfaces of revolution with two prescribed boundary circles. J Geom Anal 23: 283302.
 5. Bergner M, Jakob R (2014) Sufficient conditions for Willmore immersions in $\mathbb{R}^3$ to be minimal surfaces. Ann Glob Anal Geom 45: 129146.
 6. Dall'Acqua A, Deckelnick K, Grunau H (2008) Classical solutions to the Dirichlet problem for Willmore surfaces of revolution. Adv Calc Var 1: 379397.
 7. Dall'Acqua A, Deckelnick K, Wheeler G (2013) Unstable Willmore surfaces of revolution subject to natural boundary conditions. Calc Var Partial Dif 48: 293313.
 8. Dall'Acqua A, Fröhlich S, Grunau H, et al. (2011) Symmetric Willmore surfaces of revolution satisfying arbitrary Dirichlet boundary data. Adv Calc Var 4: 181.
 9. Deckelnick K, Grunau H (2009) A Navier boundary value problem for Willmore surfaces of revolution. Analysis 29: 229258.
 10. Eichmann S (2016) Nonuniqueness for Willmore surfaces of revolution satisfying Dirichlet boundary data. J Geom Anal 26: 25632590.
 11. Eichmann S (2019) The Helfrich boundary value problem. Calc Var Partial Dif 58: 126.
 12. Elliott CM, Fritz H, Hobbs G (2017) Small deformations of Helfrich energy minimising surfaces with applications to biomembranes. Math Mod Meth Appl Sci 27: 15471586.
 13. Gazzola F, Grunau H, Sweers G (2010) Polyharmonic boundary value problems. Lect Notes Math 1991: xviii+423.
 14. Hutchinson J (1986) Second fundamental form for varifolds and the existence of surfaces minimizing curvature. Indiana U Math J 35: 4571.
 15. Kuwert E, Schätzle R (2004) Removability of point singularities of Willmore surfaces. Ann Math 160: 315357.
 16. Li P, Yau ST (1982) A new conformal invariant and its applications to the Willmore conjecture and the first eigenvalue on compact surfaces. Invent Math 69: 269291.
 17. Mandel R (2018) Explicit formulas, symmetry and symmetry breaking for Willmore surfaces of revolution. Ann Glob Anal Geom 54: 187236.
 18. Mantegazza C (1996) Curvature varifolds with boundary. J Differ Geom 43: 807843.
 19. Marques FC, Neves A (2014) MinMax theory and the Willmore Conjecture. Ann Math 179: 683782.
 20. Morgan F (2008) Geometric Measure Theory: A Beginners's Guide, 4 Eds., Academic Press.
 21. Pozzetta M (2017) Confined Willmore energy and the Area functional. arXiv:1710.07133.
 22. Pozzetta M (2018) On the PlateauDouglas problem for the Willmore energy of surfaces with planar boundary curves. arXiv:1810.07662.
 23. Rivière T (2008) Analysis aspects of Willmore surfaces. Invent Math 174: 145.
 24. Rivière T (2013) Lipschitz conformal immersions from degenerating Riemann surfaces with L^{2}bounded second fundamental forms. Adv Calc Var 6: 131.
 25. Rivière T (2014) Variational principles for immersed surfaces with L^{2}bounded second fundamental form. J Reine Angew Math 695: 4198.
 26. Schätzle R (2010) The Willmore boundary problem. Calc Var 37: 275302.
 27. Schoen R (1983) Uniqueness, symmetry, and embeddedness of minimal surfaces. J. Differ Geom 18: 791809.
 28. Schygulla J (2012) Willmore minimizers with prescribed isoperimetric ratio. Arch Ration Mech Anal 203: 901941.
 29. Seguin B, Fried E (2014) Microphysical derivation of the CanhamHelfrich freeenergy density. J Math Biol 68: 647665.
 30. Simon L (1984) Lectures on Geometric Measure Theory, Proceedings of the Centre for Mathematical Analysis of Australian National University.
 31. Simon L (1993) Existence of surfaces minimizing the Willmore functional. Commun Anal Geom 1: 281326.
 32. Willmore TJ (1965) Note on embedded surfaces. Ann Al Cuza Univ Sect I 11B: 493496.
 33. Willmore TJ (1993) Riemannian Geometry, Oxford Science Publications.
This article has been cited by:
 1. L. De Luca, M. Ponsiglione, Variational models in elasticity, Mathematics in Engineering, 2021, 3, 2, 1, 10.3934/mine.2021015
Reader Comments
© 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)
Associated material
Metrics
Other articles by authors
Related pages
Tools
your name: * your email: *