Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

Inverse problems in imaging and engineering science

1 Department of Mathematics, University College London
2 Department of Mathematics and Statistics, University of Jyväskylä

This contribution is part of the Special Issue: Inverse problems in imaging and engineering science
Guest Editors: Lauri Oksanen; Mikko Salo
Link: https://www.aimspress.com/newsinfo/1270.html

Special Issues: Inverse problems in imaging and engineering science

  Figure/Table
  Supplementary
  Article Metrics

Citation: Lauri Oksanen, Mikko Salo. Inverse problems in imaging and engineering science. Mathematics in Engineering, 2020, 2(2): 287-289. doi: 10.3934/mine.2020014

References

  • 1. Alberti G, Capdeboscq Y, Privat Y (2020) On the randomised stability constant for inverse problems. Mathematics in Engineering 2: 264-286.
  • 2. Blåsten E, Zouari F, Louati M, et al. (2019) Blockage detection in networks: the area reconstruction method. Mathematics in Engineering 1: 849-880.    
  • 3. Chen Y, Cheng J, Floridia G, et al. (2020) Conditional stability for an inverse source problem and an application to the estimation of air dose rate radioactive substances by drone data. Mathematics in Engineering 2: 26-33.    
  • 4. García-Ferrero MÁ, Rüland A (2019) Strong unique continuation for the higher order fractional Laplacian. Mathematics in Engineering 1: 715-774.    
  • 5. Li J, Liu H, Tsui W-Y, et al. (2019) An inverse scattering approach for geometric body generation: a machine learning perspective. Mathematics in Engineering 1: 800-823.    
  • 6. Lionheart WRB (2020) Histogram tomography. Mathematics in Engineering 2: 55-74.    
  • 7. Nguyen H-M, Nguyen T (2019) Approximate cloaking for the heat equation via transformation optics. Mathematics in Engineering 1: 775-788.    
  • 8. Stefanov P (2020) Conditionally stable unique continuation and applications to thermoacoustic tomography. Mathematics in Engineering 2: 26-33.    
  • 9. Bardos C, Lebeau G, Rauch J (1992) Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary. SIAM J Control Optim 30: 1024-1065.    
  • 10. Calderón A-P (1980) On an inverse boundary value problem. Soc Brasil Mat 65-73.
  • 11. Carleman T (1939) Sur un problème d'unicité pur les systèmes d'équations aux dérivées partielles à deux variables indépendantes. Ark Mat Astr Fys 26: 17.
  • 12. Greenleaf A, Lassas M, Uhlmann G (2003) On nonuniqueness for Calderon's inverse problem. Math Res Lett 10: 685-693.    
  • 13. Hörmander L (1985) The analysis of linear partial differential operators. IV, Berlin: SpringerVerlag.
  • 14. John F (1960) Continuous dependence on data for solutions of partial differential equations with a presribed bound. Commun Pure Appl Math 13: 551-585.    
  • 15. Leonhardt U (2006) Optical conformal mapping. Science 312: 1777-1780.    
  • 16. Pendry JB, Schurig D, Smith DR (2006) Controlling electromagnetic fields. Science 321: 1780-1782.
  • 17. Radon J (1917) On the determination of functions from their integrals along certain manifolds. Ber Verh Sachs Akad Wiss 69: 262-277.

 

Reader Comments

your name: *   your email: *  

© 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved