Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

MicroMotility: State of the art, recent accomplishments and perspectives on the mathematical modeling of bio-motility at microscopic scales

1 SISSA–International School for Advanced Studies, 34136 Trieste, Italy
2 Dip. Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, 20090 Segrate (MI), Italy
3 Mechanical and Aerospace Engineering Dept., University of California San Diego, 9500 Gilman Drive, La Jolla CA, USA
4 The BioRobotics Institute, Scuola Superiore Sant’Anna, 56127 Pisa, Italy
5 DAMTP, University of Cambridge, UK
6 The Racah Institute of Physics, The Hebrew University of Jerusalem, Israel
7 The Rudolf Peierls Centre for Theoretical Physics, University of Oxford, UK

Mathematical modeling and quantitative study of biological motility (in particular, of motility at microscopic scales) is producing new biophysical insight and is offering opportunities for new discoveries at the level of both fundamental science and technology. These range from the explanation of how complex behavior at the level of a single organism emerges from body architecture, to the understanding of collective phenomena in groups of organisms and tissues, and of how these forms of swarm intelligence can be controlled and harnessed in engineering applications, to the elucidation of processes of fundamental biological relevance at the cellular and sub-cellular level. In this paper, some of the most exciting new developments in the fields of locomotion of unicellular organisms, of soft adhesive locomotion across scales, of the study of pore translocation properties of knotted DNA, of the development of synthetic active solid sheets, of the mechanics of the unjamming transition in dense cell collectives, of the mechanics of cell sheet folding in volvocalean algae, and of the self-propulsion of topological defects in active matter are discussed. For each of these topics, we provide a brief state of the art, an example of recent achievements, and some directions for future research.
  Figure/Table
  Supplementary
  Article Metrics

Keywords cell motility; unicellular swimmers; adhesive locomotion; active matter; knotted DNA; unjamming transition; cell sheet folding; topological defects

Citation: Daniele Agostinelli, Roberto Cerbino, Juan C. Del Alamo, Antonio DeSimone, Stephanie Höhn, Cristian Micheletti, Giovanni Noselli, Eran Sharon, Julia Yeomans. MicroMotility: State of the art, recent accomplishments and perspectives on the mathematical modeling of bio-motility at microscopic scales. Mathematics in Engineering, 2020, 2(2): 230-252. doi: 10.3934/mine.2020011

References

  • 1. Agostinelli D, Alouges F, DeSimone A (2018) Peristaltic waves as optimal gaits in metameric bio-inspired robots. Front in Robot AI 5: 99.    
  • 2. Agostinelli D, Lucantonio A, Noselli G, et al. (2019) Nutations in growing plant shoots: The role of elastic deformations due to gravity loading. J Mech Phys Solids 2019: 103702. DOI: 10.1016/j.jmps.2019.103702.
  • 3. Agostiniani V, DeSimone A, Lucantonio A, et al. (2018) Foldable structures made of hydrogel bilayers. Mathematics in Engineering 1: 204-223.    
  • 4. Aguilar J, Zhang T, Qian F, et al. (2016) A review on locomotion robophysics: The study of movement at the intersection of robotics, soft matter and dynamical systems. Rep Prog Phys 79: 110001.    
  • 5. Alberts B, Watson J, Lewis J, et al. (2014) Molecular Biology of the Cell, New York: Garland Science.
  • 6. Alouges F, DeSimone A, Giraldi L, et al. (2019) Energy-optimal strokes for multi-link microswimmers: Purcell's loops and Taylor's waves reconciled. New J Phys 21: 043050.    
  • 7. Alouges F, DeSimone A, Lefebvre A (2008) Optimal strokes for low reynolds number swimmers: An example. J Nonlinear Sci 18: 277-302.    
  • 8. Armon S, Efrati E, Kupferman R, et al. (2011) Geometry and mechanics in the opening of chiral seed pods. Science 333: 1726-1730.    
  • 9. Armon S, Yanai O, Ori N, et al. (2014) Quantitative phenotyping of leaf margins in three dimensions, demonstrated on knotted and tcp trangenics in arabidopsis. J Exp Bot 65: 2071-2077.    
  • 10. Arsuaga J, Vazquez M, McGuirk P, et al. (2005) Dna knots reveal a chiral organization of dna in phage capsids. P Natl Acad Sci 102: 9165-9169.    
  • 11. Aydin YO, Rieser JM, Hubicki CM, et al. (2019) 6-physics approaches to natural locomotion: Every robot is an experiment, In: Walsh S.M. and Stran M.S., Robotic Systems and Autonomous Platforms, Woodhead Publishing in Materials, 109-127.
  • 12. Bertinetti L, Fischer FD, Fratzl P (2013) Physicochemical basis for water-actuated movement and stress generation in nonliving plant tissues. Phys Rev Lett 111: 238001.    
  • 13. Buskermolen AB, Suresh H, Shishvan SS, et al. (2019) Entropic forces drive cellular contact guidance. Biophys J 116: 1994-2008.    
  • 14. Bustamante C (2017) Molecular machines one molecule at a time. Protein Sci 26: 1245-1248.    
  • 15. Bustamante C, Keller D, Oster G (2001) The physics of molecular motors. Accounts Chem Res 34: 412-420.    
  • 16. Cavagna A, Giardina I, Grigera TS (2018) The physics of flocking: Correlation as a compass from experiments to theory. Phys Rep 728: 1-62.    
  • 17. Charras G, Paluch E (2008) Blebs lead the way: How to migrate without lamellipodia. Nat Rev Mol cell bio 9: 730-736.
  • 18. Chauvet H, Moulia B, Legué V, et al. (2019) Revealing the hierarchy of processes and time-scales that control the tropic response of shoots to gravi-stimulations. J Exp Bot 70: 1955-1967.    
  • 19. Cheung KJ, Gabrielson E, Werb Z, et al. (2013) Collective invasion in breast cancer requires a conserved basal epithelial program. Cell 155: 1639-1651.    
  • 20. Cicconofri G, DeSimone A (2015) A study of snake-like locomotion through the analysis of a flexible robot model. P Roy Soc A Math Phys Eng Sci 471: 20150054.    
  • 21. Cicconofri G, DeSimone A (2019) Modelling biological and bio-inspired swimming at microscopic scales: Recent results and perspectives. Comput Fluids 179: 799-805.    
  • 22. Danson CM, Pocha SM, Bloomberg GB, et al. (2007) Phosphorylation of wave2 by map kinases regulates persistent cell migration and polarity. J Cell Sci 120: 4144-4154.    
  • 23. Darwin C (1880) The Power of Movement in Plants, London: John Murray.
  • 24. Del Alamo JC, Meili R, Alonso-Latorre B, et al. (2007) Spatio-temporal analysis of eukaryotic cell motility by improved force cytometry. P Natl Acad Sci 104: 13343-13348.    
  • 25. Doostmohammadi A, Ignes-Mullol J, Yeomans JM et al. (2018) Active nematics. Nat Commun 9: 3246.    
  • 26. Efrati E, Sharon E, Kupferman R (2009) Buckling transition and boundary layer in non-euclidean plates. Phys Rev E 80: 016602.    
  • 27. Efrati E, Sharon E, Kupferman R (2009) Elastic theory of unconstrained non-euclidean plates. J Mech Phys Solids 57: 762-775.    
  • 28. Frangipane G, Dell'Arciprete D, Petracchini S, et al. (2018) Dynamic density shaping of photokinetic E. coli. Elife 7: e36608.    
  • 29. Fratzl P, Barth FG (2009) Biomaterial systems for mechanosensing and actuation. Nature 462: 442-448.    
  • 30. Geyer VF, Sartori P, Friedrich BM, et al. (2016) Independent control of the static and dynamic components of the chlamydomonas flagellar beat. Curr Biol 26: 1098-1103.    
  • 31. Giavazzi F, Malinverno C, Corallino S, et al. (2017) Giant fluctuations and structural effects in a flocking epithelium. J Phys D Appl Phys 50: 384003.    
  • 32. Giavazzi F, Paoluzzi M, Macchi M, et al. (2018) Flocking transitions in confluent tissues. Soft matter 14: 3471-3477.    
  • 33. Giedroc DP, Cornish PV (2009) Frameshifting rna pseudoknots: Structure and mechanism. Virus Res 139: 193-208.    
  • 34. Giomi L, Bowick MJ, Ma X, et al. (2013) Defect annihilation and proliferation in active nematics. Phys Rev Lett 110: 228101.    
  • 35. Giomi L, Bowick MJ, Mishra P, et al. (2014) Defect dynamics in active nematics. Philos T Roy Soc A 372: 20130365.    
  • 36. Gladman AS, Matsumoto EA, Nuzzo RG, et al. (2016) Biomimetic 4d printing. Nat Mater 15: 413-418.    
  • 37. Goldstein RE, van de Meent JW (2015) A physical perspective on cytoplasmic streaming. Interface Focus 5: 20150030.    
  • 38. Guasto JS, Rusconi R, Stocker R (2012) Fluid mechanics of planktonic microorganisms. Annu Rev Fluid Mech 44: 373-400.    
  • 39. Haas PA, Höhn SS, Honerkamp-Smith AR, et al. (2018) The noisy basis of morphogenesis: Mechanisms and mechanics of cell sheet folding inferred from developmental variability. PLoS Biol 16: e2005536.    
  • 40. Hakim V, Silberzan P (2017) Collective cell migration: A physics perspective. Rep Prog Phys 80: 076601.    
  • 41. Hofhuis H, Moulton D, Lessinnes T, et al. (2016) Morphomechanical innovation drives explosive seed dispersal. Cell 166: 222-233.    
  • 42. Höhn S, Hallmann A (2011) There is more than one way to turn a spherical cellular monolayer inside out: Type B embryo inversion in volvox globator. BMC biol 9: 89.    
  • 43. Höhn S, Hallmann A (2016) Distinct shape-shifting regimes of bowl-shaped cell sheets-embryonic inversion in the multicellular green alga pleodorina. BMC Dev Biol 16: 35.    
  • 44. Höhn S, Honerkamp-Smith AR, Haas PA, et al. (2015) Dynamics of a volvox embryo turning itself inside out. Phys Rev Lett 114: 178101.    
  • 45. Hosoi A, Goldman DI (2015) Beneath our feet: Strategies for locomotion in granular media. Annu Rev Fluid Mech 47: 431-453.    
  • 46. Huss JC, Spaeker O, Gierlinger N, et al. (2018) Temperature-induced self-sealing capability of banksia follicles. J R Soc Interface 15: 20180190.    
  • 47. Ilievski F, Mazzeo AD, Shepherd RF, et al. (2011) Soft robotics for chemists. Angew Chem Int Edit 50: 1890-1895.    
  • 48. Ishimoto K, Gadêlha H, Gaffney EA, et al. (2017) Coarse-graining the fluid flow around a human sperm. Phys Rev Lett 118: 124501.    
  • 49. Kawaguchi K, Kageyama R, Sano M (2009) Topological defects control collective dynamics in neural progenitor cell cultures. Nature 545: 327-331.
  • 50. Keller D, Bustamante C (2000) The mechanochemistry of molecular motors. Biophys J 78: 541-556.    
  • 51. Keller R, Davidson LA, Shook DR (2003) How we are shaped: The biomechanics of gastrulation. Differentiation 71: 171-205.    
  • 52. Khalil AA, Ilina O, Gritsenko PG, et al. (2017) Collective invasion in ductal and lobular breast cancer associates with distant metastasis. Clin Exp Metastas 34: 421-429.    
  • 53. Kim J, Hanna JA, Hayward RC, et al. (2012) Thermally responsive rolling of thin gel strips with discrete variations in swelling. Soft Matter 8: 2375-2381.    
  • 54. Kim J, Hanna JA, Byun M, et al. (2012) Designing responsive buckled surfaces by halftone gel lithography. Science 335: 1201-1205.    
  • 55. Kim S, Laschi C, Trimmer B (2013) Soft robotics: A bioinspired evolution in robotics. Trends Biotechnol 31: 287-294.    
  • 56. Klein Y, Efrati E, Sharon E (2007) Shaping of elastic sheets by prescription of non-euclidean metrics. Science 315: 1116-1120.    
  • 57. Klein Y, Venkataramani S, Sharon E (2011) Experimental study of shape transitions and energy scaling in thin non-euclidean plates. Phys Rev Lett 106: 118303.    
  • 58. Laschi C, Mazzolai B (2016) Lessons from animals and plants: The symbiosis of morphological computation and soft robotics. IEEE Robot Autom Mag 23: 107-114.
  • 59. Latorre E, Kale S, Casares L, et al. (2018) Active superelasticity in three-dimensional epithelia of controlled shape. Nature 563: 203-208.    
  • 60. Lauga E, Powers TR (2009) The hydrodynamics of swimming microorganisms. Rep Prog Phys 72: 096601.    
  • 61. Lewis OL, Zhang S, Guy RD, et al. (2015) Coordination of contractility, adhesion and flow in migrating physarum amoebae. J R Soc Interface 12: 20141359.    
  • 62. Malinverno C, Corallino S, Giavazzi F, et al. (2017) Endocytic reawakening of motility in jammed epithelia. Nat Mater 16: 587-596.    
  • 63. Marchetti MC, Joanny JF, Ramaswamy S, et al. (2013) Hydrodynamics of soft active matter. Rev Mod Phys 85: 1143-1189.    
  • 64. Marenduzzo D, Micheletti C, Orlandini E, et al. (2013) Topological friction strongly affects viral dna ejection. P Natl Acad Sci 110: 20081-20086.    
  • 65. Matt G, Umen J (2016) Volvox: A simple algal model for embryogenesis, morphogenesis and cellular differentiation. Dev Biol 419: 99-113.    
  • 66. Michor F, Liphardt J, Ferrari M, et al. (2011) What does physics have to do with cancer? Nat Rev Cancer 11: 657-670.    
  • 67. Moshe M, Sharon E, Kupferman R (2013) Pattern selection and multiscale behaviour in metrically discontinuous non-euclidean plates. Nonlinearity 26: 3247.    
  • 68. Mueller R, Yeomans JM, Doostmohammadi A (2019) Emergence of active nematic behavior in monolayers of isotropic cells. Phys Rev Lett 122: 048004.    
  • 69. Noselli G, Arroyo M, DeSimone A (2019) Smart helical structures inspired by the pellicle of euglenids. J Mech Phys Solids 123: 234-246.    
  • 70. Noselli G, Beran A, Arroyo M, et al. (2019) Swimming euglena respond to confinement with a behavioural change enabling effective crawling. Nat Phys 15: 496-502.    
  • 71. Olavarrieta L, Hernandez P, Krimer DB, et al (2002) Dna knotting caused by head-on collision of transcription and replication. J Mol biol 322: 1-6.    
  • 72. Palamidessi A, Malinverno C, Frittoli E, et al. (2019) Unjamming overcomes kinetic and proliferation arrest in terminally differentiated cells and promotes collective motility of carcinoma. Nat Mater 18: 1252-1263.    
  • 73. Park JA, Kim JH, Bi D, et al. (2015) Unjamming and cell shape in the asthmatic airway epithelium. Nature Mater 14: 1040-1048.    
  • 74. Peng C, Turiv T, Guo Y, et al. (2016) Command of active matter by topological defects and patterns. Science 354: 882-885.    
  • 75. Plesa C, Verschueren D, Pud S, et al. (2016) Direct observation of dna knots using a solid-state nanopore. Nature Nanotechnol 11: 1093-1097.    
  • 76. Radszuweit M, Alonso S, Engel H, et al. (2013) Intracellular mechanochemical waves in an active poroelastic model. Phys Rev Lett 110: 138102.    
  • 77. Renkawitz J, Kopf A, Stopp J, et al. (2019) Nuclear positioning facilitates amoeboid migration along the path of least resistance. Nature 569: 546-550.    
  • 78. Rosa A, Di Ventra M, Micheletti C (2012) Topological jamming of spontaneously knotted polyelectrolyte chains driven through a nanopore. Phys Rev Lett 109: 118301.    
  • 79. Rossi M, Cicconofri G, Beran A, et al. (2017) Kinematics of flagellar swimming in euglena gracilis: Helical trajectories and flagellar shapes. P Natl Acady Sci 114: 13085-13090.    
  • 80. Sahaf M, Sharon E (2016) The rheology of a growing leaf: Stress-induced changes in the mechanical properties of leaves. J Exp Bot 67: 5509-5515.    
  • 81. Sanchez T, Chen DT, DeCamp SJ, et al. (2012) Spontaneous motion in hierarchically assembled active matter. Nature 491: 431-434.    
  • 82. Sartori P, Geyer VF, Howard J, et al. (2016) Curvature regulation of the ciliary beat through axonemal twist. Phys Rev E 94: 042426.    
  • 83. Sartori P, Geyer VF, Scholich A, et al. (2016) Dynamic curvature regulation accounts for the symmetric and asymmetric beats of Chlamydomonas flagella. eLife 5: e13258.    
  • 84. Saw TB, Doostmohammadi A, Nier V, et al. (2017) Topological defects in epithelia govern cell death and extrusion. Nature 544: 212-216.    
  • 85. Sharon E, Roman B, Marder M, et al. (2002) Mechanics: Buckling cascades in free sheets. Nature 419: 579.
  • 86. Shishvan SS, Vigliotti A, Deshpande VS (2018) The homeostatic ensemble for cells. Biomech Model Mechan 17: 1631-1662.    
  • 87. Steinbock L, Radenovic A (2015) The emergence of nanopores in next-generation sequencing. Nanotechnology 26: 074003.    
  • 88. Suma A, Micheletti C (2017) Pore translocation of knotted dna rings. P Natl Acad Sci 114: E2991-E2997.    
  • 89. Suma A, Rosa A, Micheletti C (2015) Pore translocation of knotted polymer chains: How friction depends on knot complexity. ACS Macro Lett 4: 1420-1424.    
  • 90. Tada M, Heisenberg CP (2012) Convergent extension: Using collective cell migration and cell intercalation to shape embryos. Development 139: 3897-3904.    
  • 91. Thampi SP, Golestanian R, Yeomans JM (2013) Velocity correlations in an active nematic. Phys Rev Lett 111: 118101.    
  • 92. Thampi SP, Yeomans JM (2016) Active turbulence in active nematics. Eur Phys J Spec Top 225: 651-662.    
  • 93. Tovo A, Suweis S, Formentin M, et al. (2017) Upscaling species richness and abundances in tropical forests. Sci Adv 3: e1701438.    
  • 94. Vizsnyiczai G, Frangipane G, Maggi C, et al. (2017) Light controlled 3D micromotors powered by bacteria. Nat Commun 8: 15974.    
  • 95. Wolf K, Mazo I, Leung H, et al. (2003) Compensation mechanism in tumor cell migration: mesenchymal-amoeboid transition after blocking of pericellular proteolysis. J Cell Biol 160: 267-277.    
  • 96. Yeh YT, Serrano R, François J, et al. (2018) Three-dimensional forces exerted by leukocytes and vascular endothelial cells dynamically facilitate diapedesis. P Natl Acad Sci 115: 133-138.    
  • 97. Zhang AT, Montgomery MG, Leslie AGW, et al. (2019) The structure of the catalytic domain of the atp synthase from mycobacterium smegmatis is a target for developing antitubercular drugs. P Natl Acad Sci 116: 4206-4211.    
  • 98. Zhang S, Guy RD, Lasheras JC, et al. (2017) Self-organized mechano-chemical dynamics in amoeboid locomotion of physarum fragments. J Phys D Appl Phys 50: 204004.    
  • 99. Zhang S, Skinner D, Joshi P, et al. (2019) Quantifying the mechanics of locomotion of the schistosome pathogen with respect to changes in its physical environment. J R Soc Interface 16: 20180675.    

 

Reader Comments

your name: *   your email: *  

© 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved