
Mathematics in Engineering, 2020, 2(1): 5574. doi: 10.3934/mine.2020004.
Research article Special Issues
Export file:
Format
 RIS(for EndNote,Reference Manager,ProCite)
 BibTex
 Text
Content
 Citation Only
 Citation and Abstract
Histogram tomography
Department of Mathematics, University of Manchester, Manchester, UK
^{†}This contribution is part of the Special Issue: Inverse problems in imaging and engineering science
Guest Editors: Lauri Oksanen; Mikko Salo
Link: https://www.aimspress.com/newsinfo/1270.html
Received: , Accepted: , Published:
Special Issues: Inverse problems in imaging and engineering science
Keywords: tomography; distribution; histogram; spectrum; diffraction; strain; Radon transform; tensor tomography; vector tomography; xray diffraction; Bragg edge; neutron diffraction; Doppler transform
Citation: William R. B. Lionheart. Histogram tomography. Mathematics in Engineering, 2020, 2(1): 5574. doi: 10.3934/mine.2020004
References:
 1. Natterer F (2001) The Mathematics of Computerized Tomography, Philadelphia: Society for Industrial and Applied Mathematics.
 2. Sales M, Strobl M, Shinohara T, et al. (2018) Three dimensional polarimetric neutron tomography of magnetic fields. Sci Rep 8: 2214.
 3. Desai NM, Lionheart WRB, Sales M, et al. (2019) Polarimetric neutron tomography of magnetic fields: Uniqueness of solution and reconstruction. Inverse Probl DOI: https://doi.org/10.1088/13616420/ab44e0.
 4. An X, Kraetschmer T, Takami K, et al. (2011) Validation of temperature imaging by H_{2}O absorption spectroscopy using hyperspectral tomography in controlled experiments. Appl Opt 50: A29A37.
 5. Ma L, Li X, Sanders S, et al. (2013) 50kHzrate 2D imaging of temperature and H_{2}O concentration at the exhaust plane of a J85 engine using hyperspectral tomography. Opt Express 21: 11521162.
 6. Andersson F (2005) The Doppler moment transform in Doppler tomography. Inverse Probl 21: 1249.
 7. Sharafutdinov VA (1994) Integral Geometry of Tensor Fields, Walter de Gruyter.
 8. Lionheart WRB, Withers PJ (2015) Diffraction tomography of strain. Inverse Probl 31: 045005.
 9. Boman J, Sharafutdinov V (2018) Stability estimates in tensor tomography. Inverse Probl Imaging 12: 12451262.
 10. Bogachev VI (2007) Measure Theory, Berlin: Springer Science & Business Media.
 11. Akhiezer NI (1965) The Classical Moment Problem: And Some Related Questions in Analysis, Edinburgh: Oliver & Boyd.
 12. Gardner RJ, McMullen P (1980) On Hammer's XRay Problem. J Lond Math Soc 2: 171175.
 13. Gardner RJ, Gritzmann P (1997) Discrete tomography: Determination of finite sets by Xrays. T Am Math Soc 349: 22712295.
 14. Gardner RJ, Kiderlen M (2007) A solution to Hammer's Xray reconstruction problem. Adv Math 214: 323343.
 15. Gardner RJ (2006) Geometric Tomography, 2 Eds., Cambridge University Press.
 16. Faridani A, Ritman EL, Smith KT (1992) Local tomography. SIAM J Appl Math 52: 459484.
 17. Herman GT, Kuba A (2012) Discrete Tomography: Foundations, Algorithms, and Applications, Springer Science & Business Media.
 18. Batenburg KJ, Sijbers J (2011) DART: A practical reconstruction algorithm for discrete tomography. IEEE T Image Process 20: 25422553.
 19. Bentz C, Costa MC, De Werra D, et al. (2008) On a graph coloring problem arising from discrete tomography. Networks 51: 256267.
 20. Schuster T (2008) 20 years of imaging in vector field tomography: A review, In: Math. Methods in Biomedical Imaging and IntensityModulated Radiation Therapy (IMRT). Ser. Publications of the Scuola Normale Superiore, 7: 389424.
 21. Sparr G, Strahlen K, Lindstrom K, et al. (1995) Doppler tomography for vector fields. Inverse Probl 11: 1051.
 22. Kravtsov YA (1968) "Quasiisotropic" approximation of geometrical optics. Dokl Akad Nauk SSSR 183: 7476.
 23. Aben H, Errapart A, Ainola L, et al. (2005) Photoelastic tomography for residual stress measurement in glass. Opt Eng 44: 093601.
 24. Tomlinson RA, Yang H, Szotten D, et al. (2006) The design and commissioning of a novel tomographic polariscope, In: SEM Annual Conf. and Exposition on Experimental and Applied Mechanics, 11411147.
 25. Lionheart W, Sharafutdinov V (2009) Reconstruction algorithm for the linearized polarization tomography problem with incomplete data. Contemp Math 14: 137.
 26. Johnstone D, van Helvoort A, Midgley P (2017) Nanoscale strain tomography by scanning precession electron diffraction. Microsc Microanal 23: 17101711.
 27. Woracek R, Santisteban J, Fedrigo A, et al. (2018) Diffraction in neutron imagingA review, In: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 878: 141158.
 28. Georgievskii D (2016) Generalized compatibility equations for tensors of high ranks in multidimensional continuum mechanics. Russ J Math Phys 23: 475483.
 29. Sklar M (1959) Fonctions de répartition à n dimensions et leurs marges. Publ Inst Statist Univ Paris 8: 229231.
 30. Nelsen RB (2007) An Introduction to Copulas, Springer Science & Business Media.
 31. Santisteban JR, Edwards L, Fitzpatrick ME, et al. (2002) Strain imaging by Bragg edge neutron transmission, In: Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 481: 765768.
 32. Abbey B, Zhang SY, Vorster WJJ, et al. (2009) Feasibility study of neutron strain tomography. Procedia Eng 1: 185188.
 33. Knops RJ, Payne LE (1971) Modern Uniqueness Theorems in ThreeDimensional Elastostatics, In: Uniqueness Theorems in Linear Elasticity, Berlin: Springer, 3260.
 34. Gregg AWT, Hendriks JN, Wensrich CM, et al. (2017) Tomographic reconstruction of residual strain in axisymmetric systems from Braggedge neutron imaging. Mech Res Commun 85: 96103.
 35. Wensrich CM, Hendriks JN, Gregg A, et al. (2016) Braggedge neutron transmission strain tomography for in situ loadings, In: Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 383: 5258.
 36. Hendriks JN, Gregg AWT, Wensrich CM, et al. (2017) Braggedge elastic strain tomography for in situ systems from energyresolved neutron transmission imaging. Phys Rev Mater 1: 053802.
 37. Desai NM, Lionheart WRB (2016) An explicit reconstruction algorithm for the transverse ray transform of a second rank tensor field from three axis data. Inverse Probl 32: 115009.
This article has been cited by:
 1. Lauri Oksanen, Mikko Salo, Inverse problems in imaging and engineering science, Mathematics in Engineering, 2020, 2, 2, 287, 10.3934/mine.2020014
Reader Comments
© 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)
Associated material
Metrics
Other articles by authors
Related pages
Tools
your name: * your email: *