Review

Quick glance at Fanconi anemia and BRCA2/FANCD1

  • Received: 07 November 2019 Accepted: 19 December 2019 Published: 23 December 2019
  • Fanconi anemia (FA) is a rare genetic disorder characterized by multiple congenital malformations, progressive bone marrow failure, and susceptibility to cancer. The FA-D1 subtype is associated with biallelic mutations in the breast cancer 2 genes also known as FANCD1. Patients with this mutation display severe disease phenotype. In addition, different types of cancer other than breast cancer are associated with this mutation, such as leukemia, solid tumors of the central nervous system, etc. In this review, we have surveyed the literature on FA, FA genes, their biological roles, and specifically discussed the current information available on the FA-D1 disease subtype. The observations show that the timing of biallelic loss of BRCA2 can establish the specific cancer spectrum. The knowledge about effects of the FANCD1/BRCA2 mutation on FA and cancer pathogenesis can be used for further understanding the FA-D1 subtype of the disease.

    Citation: Salma M. AlDallal. Quick glance at Fanconi anemia and BRCA2/FANCD1[J]. AIMS Medical Science, 2019, 6(4): 326-336. doi: 10.3934/medsci.2019.4.326

    Related Papers:

  • Fanconi anemia (FA) is a rare genetic disorder characterized by multiple congenital malformations, progressive bone marrow failure, and susceptibility to cancer. The FA-D1 subtype is associated with biallelic mutations in the breast cancer 2 genes also known as FANCD1. Patients with this mutation display severe disease phenotype. In addition, different types of cancer other than breast cancer are associated with this mutation, such as leukemia, solid tumors of the central nervous system, etc. In this review, we have surveyed the literature on FA, FA genes, their biological roles, and specifically discussed the current information available on the FA-D1 disease subtype. The observations show that the timing of biallelic loss of BRCA2 can establish the specific cancer spectrum. The knowledge about effects of the FANCD1/BRCA2 mutation on FA and cancer pathogenesis can be used for further understanding the FA-D1 subtype of the disease.


    加载中

    Acknowledgments



    None

    Conflict of interest



    The author declares no conflicts of interest in this paper.

    [1] Rosenberg PS, Tamary H, Alter BP (2011) How high are carrier frequencies of rare recessive syndromes? Contemporary estimates for Fanconi Anemia in the United States and Israel. Am J Med Genet A 155: 1877–1883.
    [2] Kee Y, D'Andrea AD (2012) Molecular pathogenesis and clinical management of Fanconi Anemia. J Clin Invest 122: 3799–3806. doi: 10.1172/JCI58321
    [3] Romick-Rosendale LE, Hoskins EE, Privette LM, et al. (2016) Defects in the Fanconi Anemia pathway in head and neck cancer cells stimulate tumor cell invasion through DNA-PK and Rac1 signaling. Clin Cancer Res 22: 2062–2073. doi: 10.1158/1078-0432.CCR-15-2209
    [4] Romick-Rosendale LE, Lui VW, Grandis JR, et al. (2013) The Fanconi anemia pathway: Repairing the link between DNA damage and squamous cell carcinoma. Mutat Res 743: 78–88. doi: 10.1016/j.mrfmmm.2013.01.001
    [5] Shimamura A, Alter B (2010) Pathophysiology and management of inherited bone marrow failure syndromes. Blood Rev 24: 101–122. doi: 10.1016/j.blre.2010.03.002
    [6] Alan D, D'Andrea M (2010) The Fanconi anemia and breast cancer susceptibility pathways. N Engl J Med 362: 1909–1919. doi: 10.1056/NEJMra0809889
    [7] Taniguchi T, D'Andrea A (2006) Molecular pathogenesis of Fanconi anemia: recent progress. Blood 107: 4223–4233. doi: 10.1182/blood-2005-10-4240
    [8] Nepal M, Che R, Ma C, et al. (2017) FANCD2 and DNA damage. Int J Mol Sci 18: 1804. doi: 10.3390/ijms18081804
    [9] Che R, Zhang J, Nepal M, et al. (2018) Multifaceted Fanconi anemia signaling. Trends Genet 34: 171–183. doi: 10.1016/j.tig.2017.11.006
    [10] Strathdee CA, Gavish H, Shannon WR, et al. (1992) Cloning of cDNAs for Fanconi's anaemia by functional complementation. Nature 356: 763–767. doi: 10.1038/356763a0
    [11] Chen H, Zhan S, Wu Z (2014) Fanconi anemia pathway defects in inherited and sporadic cancers. Transl Pediatr 3: 300–304.
    [12] Cancer Genome Atlas Research Network (2011) Integrated genomic analyses of ovarian carcinoma. Nature 474: 609–615. doi: 10.1038/nature10166
    [13] Sumpter R, Levine B (2017) Emerging functions of the Fanconi anemia pathway at a glance. J Cell Sci 130: 2657–2662. doi: 10.1242/jcs.204909
    [14] Yamashita T, Wu N, Kupfer G, et al. (1996) Clinical variability of Fanconi anemia (type C) results from expression of an amino terminal truncated Fanconi anemia complementation group C polypeptide with partial activity. Blood 87: 4424–4432. doi: 10.1182/blood.V87.10.4424.bloodjournal87104424
    [15] Whitney MA, Royle G, Low MJ, et al. (1996) Germ cell defects and hematopoietic hypersensitivity to gamma-interferon in mice with a targeted disruption of the Fanconi anemia C gene. Blood 88: 49–58. doi: 10.1182/blood.V88.1.49.49
    [16] Richardson C, Yan S, Vestal CG (2015) Oxidative stress, bone marrow failure, and genome instability in hematopoietic stem cells. Int J Mol Sci 16: 2366–2385. doi: 10.3390/ijms16022366
    [17] Smogorzewska A, Matsuoka S, Vinciguerra P, et al. (2007) Identification of the FANCI protein, a monoubiquitinated FANCD2 paralog required for DNA repair. Cell 129: 289–301. doi: 10.1016/j.cell.2007.03.009
    [18] Garcia-Higuera I, Taniguchi T, Ganesan S, et al. (2001) Interaction of the Fanconi anemia proteins and BRCA1 in a common pathway. Mol Cell 7: 249–262. doi: 10.1016/S1097-2765(01)00173-3
    [19] Sims AE, Spiteri E, Sims RJ 3rd, et al. (2007) FANCI is a second monoubiquitinated member of the Fanconi anemia pathway. Nat Struct Mol Biol 14: 564–567. doi: 10.1038/nsmb1252
    [20] Dorsman JC, Levitus M, Rockx D, et al. (2007) Identification of the Fanconianemiacomplementation group I gene, FANCI. Cell Oncol 29: 211–218.
    [21] Kratz K, Schöpf B, Kaden S, et al. (2010) Deficiency of FANCD2-associated nuclease KIAA1018/ FAN1 sensitizes cells to interstrand crosslinking agents. Cell 142: 77–88. doi: 10.1016/j.cell.2010.06.022
    [22] Liu T, Ghosal G, Yuan J, et al. (2010) FAN1 acts with FANCI-FANCD2 to promote DNA interstrand cross-link repair. Science 329: 693–696. doi: 10.1126/science.1192656
    [23] MacKay C, Déclais AC, Lundin C, et al. (2010) Identification of KIAA1018/FAN1, a DNA repair nuclease recruited to DNA damage by monoubiquitinated FANCD2. Cell 142: 65–76. doi: 10.1016/j.cell.2010.06.021
    [24] Smogorzewska A, Desetty R, Saito TT, et al. (2010) A genetic screen identifies FAN1, a Fanconi anemia-associated nuclease necessary for DNA interstrand crosslink repair. Mol Cell 39: 36–47. doi: 10.1016/j.molcel.2010.06.023
    [25] Howlett NG, Taniguchi T, Olson S, et al. (2002) Biallelic inactivation of BRCA2 in Fanconi anemia. Science 297: 606–609. doi: 10.1126/science.1073834
    [26] Xia B, Dorsman JC, Ameziane N, et al. (2007) Fanconi anemia is associated with a defect in the BRCA2 partner PALB2. Nat Genet 39: 159–161. doi: 10.1038/ng1942
    [27] Reid S, Schindler D, Hanenberg H, et al. (2007) Biallelic mutations in PALB2 cause Fanconi anemia subtype FA-N and predispose to childhood cancer. Nat Genet 39: 162–164. doi: 10.1038/ng1947
    [28] Litman R, Peng M, Jin Z, et al. (2004) BACH1 is critical for homologous recombination and appears to be the Fanconi anemia gene product FANCJ. Cancer Cell 8: 255–265. doi: 10.1016/j.ccr.2005.08.004
    [29] Levran O, Attwooll C, Henry RT, et al. (2005) The BRCA1-interacting helicase BRIP1 is deficient in Fanconi anemia. Nat Genet 37: 931–933. doi: 10.1038/ng1624
    [30] Levitus M, Waisfisz Q, Godthelp BC, et al. (2005) The DNA helicase BRIP1 is defective in Fanconi anemia complementation group. Nat Genet 37: 934–935. doi: 10.1038/ng1625
    [31] Bridge WL, Vandenberg CJ, Franklin RJ, et al. (2005) The BRIP1 helicase functions independently of BRCA1 in the Fanconi anemia pathway for DNA crosslink repair. Nat Genet 37: 953–957. doi: 10.1038/ng1627
    [32] Crossan GP, van der Weyden L, Rosado IV, et al. (2011) Disruption of mouse Slx4, a regulator of structure specific nucleases, phenocopies Fanconi anemia. Nat Genet 43: 147–152. doi: 10.1038/ng.752
    [33] Kim Y, Lach FP, Desetty R, et al. (2011) Mutations of the SLX4 gene in Fanconi anemia. Nat Genet 43: 142–146. doi: 10.1038/ng.750
    [34] Stoepker C, Hain K, Schuster B, et al. (2011) SLX4, a coordinator of structure-specific endonucleases, is mutated in a new Fanconi anemia subtype. Nat Genet 43: 138–141. doi: 10.1038/ng.751
    [35] Fekairi S, Scaglione S, Chahwan C, et al. (2009) Human SLX4 is a Holliday junction resolvase subunit that binds multiple DNA repair/recombination endonucleases. Cell 138: 78–89. doi: 10.1016/j.cell.2009.06.029
    [36] Svendsen JM, Smogorzewska A, Sowa ME, et al. (2009) Mammalian BTBD12/SLX4 assembles a Holliday junction resolvase and is required for DNA repair. Cell 138: 63–77. doi: 10.1016/j.cell.2009.06.030
    [37] Munoz IM, Hain K, Déclais AC, et al. (2009) Coordination of structure-specific nucleases by human SLX4/BTBD12 is required for DNA repair. Mol Cell 35: 116–127. doi: 10.1016/j.molcel.2009.06.020
    [38] Kuraoka I, Kobertz WR, Ariza RR, et al. (2000) Repair of an interstrand DNA cross-link initiated by ERCC1-XPF repair/recombination nuclease. J Biol Chem 275: 26632–26636. doi: 10.1074/jbc.C000337200
    [39] Hanada K, Budzowska M, Modesti M, et al. (2006) The structure-specific endonuclease Mus81-Eme1 promotes conversion of interstrand DNA crosslinks into double-strandsbreaks. EMBO J 25: 4921–4932. doi: 10.1038/sj.emboj.7601344
    [40] Duncan JA, Reeves JR, Cooke TG (1998) BRCA1 and BRCA2 proteins: roles in health and disease. Mol Pathol 51: 237–247. doi: 10.1136/mp.51.5.237
    [41] Yoshida K, Miki Y (2004) Role of BRCA1 and BRCA2 as regulators of DNA repair, transcription, and cell cycle in response to DNA damage. Cancer Sci 95: 866–871. doi: 10.1111/j.1349-7006.2004.tb02195.x
    [42] Mijic S, ZellwegerR, Chappidi N, et al. (2017) Replication fork reversal triggers fork degradation in BRCA2-defective cells. Nat Commun 8: 859–859. doi: 10.1038/s41467-017-01164-5
    [43] O'Donovan PJ, Livingston DM (2010) BRCA1 and BRCA2: breast/ovarian cancer susceptibility gene products and participants in DNA double-strand break repair. Carcinogenesis 31: 961–967. doi: 10.1093/carcin/bgq069
    [44] Alter B, Rosenberg P, Brody L (2007) Clinical and molecular features associated with biallelic mutations in FANCD1/BRCA2. J Med Genet 44: 1–9. doi: 10.1136/jmg.2006.043257
    [45] García MJ, Fernández V, Osorio A, et al. (2009) Mutational analysis of FANCL, FANCM and the recently identified FANCI suggests that among the 13 known Fanconi Anemia genes, only FANCD1/BRCA2 plays a major role in high-risk breast cancer predisposition. Carcinogenesis 30: 1898–1902. doi: 10.1093/carcin/bgp218
    [46] Myers K, Davies S, Harris R, et al. (2012) The clinical phenotype of children with fanconi anemia caused by biallelic FANCD1/BRCA2 mutations. Pediatr Blood Cancer 58: 462–465. doi: 10.1002/pbc.23168
    [47] Petrucelli N, Daly M, Feldman G. (2010) Hereditary breast and ovarian cancer due to mutations in BRCA1 and BRCA2. Genet Med 12: 245–259. doi: 10.1097/GIM.0b013e3181d38f2f
    [48] Bakker S, Vrugt HV, Rooimans M, et al. (2009) Fancm-deficient mice reveal unique features of Fanconi anemia complementation group M. Human Mol Genet 18: 3484–3495. doi: 10.1093/hmg/ddp297
    [49] Dong H, Nebert D, Bruford E, et al. (2015) Update of the human and mouse Fanconi anemia genes. Hum Genomics 9: 2–10. doi: 10.1186/s40246-015-0024-4
    [50] Hirsch B, Shimamura A, Moreau L, et al. (2004) Association of biallelic BRCA2/FANCD1 mutations with spontaneous chromosomal instability and solid tumors of childhood. Blood 103: 2554–2559. doi: 10.1182/blood-2003-06-1970
    [51] Hahn S, Greenhalf B, Ellis I, et al. (2003) BRCA2 germline mutations in familial pancreatic carcinoma. J Natl Cancer Inst 95: 214–221. doi: 10.1093/jnci/95.3.214
    [52] Liede A, Karlan B, Narod S (2004) Cancer risks for male carriers of germline mutations in BRCA1 or BRCA2: A review of the literature. J Clin Oncol 22: 735–742. doi: 10.1200/jco.2004.22.14_suppl.735
    [53] Degrolard-Courcet E, Sokolowska J, Padeano MM, et al. (2014) Development of primary early-onset colorectal cancers due to biallelic mutations of the FANCD1/BRCA2 gene. Eur J Hum Genet 22: 979–987. doi: 10.1038/ejhg.2013.278
    [54] Akbari MR, Malekzadeh R, Lepage P, et al. (2011) Mutations in Fanconi anemia genes and the risk of esophageal cancer. Hum Genet 129: 573–582. doi: 10.1007/s00439-011-0951-7
    [55] Dodgshun AJ, Sexton-Oates A, Saffery R, et al. (2016) Biallelic FANCD1/BRCA2 mutations predisposing to glioblastoma multiforme with multiple oncogenic amplifications. Cancer Genet 209: 53–56. doi: 10.1016/j.cancergen.2015.11.005
    [56] Dewire MD, Ellison DW, Patay Z, et al. (2009) Fanconi anemia and biallelic BRCA2 mutation diagnosed in a young child with an embryonal CNS tumor. Pediatr Blood Cancer 53: 1140–1142. doi: 10.1002/pbc.22139
    [57] Elledge S, Amon A (2002) The BRCA1 suppressor hypothesis: an explanation for the tissue- specific tumor development in BRCA1 patients. Cancer Cell 1: 129–132. doi: 10.1016/S1535-6108(02)00041-7
    [58] Ford D, Easton DF, Bishop DT, et al. (1994) Risks of cancer in BRCA1-mutation carrieirs. Breast cancer linkage consortium. Lancet 343: 692–695.
    [59] Berwick M, Satagopan J, Ben-Porat L, et al. (2007) Genetic heterogeneity among Fanconi anemia heterozygotes and risk of cancer. Cancer Res 67: 9591–9596. doi: 10.1158/0008-5472.CAN-07-1501
    [60] Skvarova KK, Osborn MJ, Webber BR, et al. (2017) CRISPR/Cas9-Mediated Correction of the FANCD1 Gene in Primary Patient Cells. J Mol Med 18: 1269–1269.
    [61] Chen C, Kennedy R, Sidi S (2009) Chk1 inhibition as a strategy for targeting Fanconi anemia (FA) DNA repair pathway defiecient tumors. Mol Cancer 8: 1–24. doi: 10.1186/1476-4598-8-24
    [62] Bryant H, Helleday T (2006) Inhibition of poly (ADP-ribose) polymerase activates ATM which is required for subsequent homologous recombination repair. Nucleic Acids Res 34: 1685–1691. doi: 10.1093/nar/gkl108
    [63] Farmer H, McCabe N, Lord CJ, et al. (2005) Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 434: 917–921. doi: 10.1038/nature03445
    [64] Fong PC, Boss DS, Yap TA, et al. (2009) Inhibition of poly (ADP-ribose) polymerase in tumor from BRCA mutation carriers. N Engl J Med 361: 123–134. doi: 10.1056/NEJMoa0900212
    [65] Chen C, Taniguchi T, D'Andrea A (2007) The Fanconi anemia pathway confers glioma resistance to DNA alkylating agents. J Mol Med 85: 497–509. doi: 10.1007/s00109-006-0153-2
    [66] Levran O, Attwooll C, Henry RT, et al. (2005) The BRCA1-interacting helicase BRIP1 is deficient in Fanconi anemia. Nat Genet 37: 931–933. doi: 10.1038/ng1624
  • Reader Comments
  • © 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3490) PDF downloads(481) Cited by(0)

Article outline

Figures and Tables

Figures(1)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog