Review

Promising Gene Therapeutics for Salivary Gland Radiotoxicity

  • Received: 28 August 2016 Accepted: 14 November 2016 Published: 29 November 2016
  • More than 0.5 million new cases of head and neck cancer are diagnosed worldwide each year, and approximately 75% of them are treated with radiation alone or in combination with other cancer treatments. A majority of patients treated with radiotherapy develop significant oral off-target effects because of the unavoidable irradiation of normal tissues. Salivary glands that lie within treatment fields are often irreparably damaged and a decline in function manifests as dry mouth or xerostomia. Limited ability of the salivary glands to regenerate lost acinar cells makes radiation-induced loss of function a chronic problem that affects the quality of life of the patients well beyond the completion of radiotherapy. The restoration of saliva production after irradiation has been a daunting challenge, and this review provides an overview of promising gene therapeutics that either improve the gland’s ability to survive radiation insult, or alternately, restore fluid flow after radiation. The salient features and shortcomings of each approach are discussed.

    Citation: Renjith Parameswaran Nair, Gulshan Sunavala-Dossabhoy. Promising Gene Therapeutics for Salivary Gland Radiotoxicity[J]. AIMS Medical Science, 2016, 3(4): 329-344. doi: 10.3934/medsci.2016.4.329

    Related Papers:

  • More than 0.5 million new cases of head and neck cancer are diagnosed worldwide each year, and approximately 75% of them are treated with radiation alone or in combination with other cancer treatments. A majority of patients treated with radiotherapy develop significant oral off-target effects because of the unavoidable irradiation of normal tissues. Salivary glands that lie within treatment fields are often irreparably damaged and a decline in function manifests as dry mouth or xerostomia. Limited ability of the salivary glands to regenerate lost acinar cells makes radiation-induced loss of function a chronic problem that affects the quality of life of the patients well beyond the completion of radiotherapy. The restoration of saliva production after irradiation has been a daunting challenge, and this review provides an overview of promising gene therapeutics that either improve the gland’s ability to survive radiation insult, or alternately, restore fluid flow after radiation. The salient features and shortcomings of each approach are discussed.


    加载中
    [1] Georgakilas AG, Pavlopoulou A, Louka M, et al. (2015) Emerging molecular networks common in ionizing radiation, immune and inflammatory responses by employing bioinformatics approaches. Cancer Lett 368: 164-172. doi: 10.1016/j.canlet.2015.03.021
    [2] Nikitaki Z, Mavragani IV, Laskaratou DA, et al. (2016) Systemic mechanisms and effects of ionizing radiation: A new 'old' paradigm of how the bystanders and distant can become the players. Semin Cancer Biol 37-38: 77-95. doi: 10.1016/j.semcancer.2016.02.002
    [3] Dirix P, Nuyts S, Van den Bogaert W (2006) Radiation-induced xerostomia in patients with head and neck cancer: a literature review. Cancer 107: 2525-2534. doi: 10.1002/cncr.22302
    [4] Deasy JO, Moiseenko V, Marks L, et al. (2010) Radiotherapy dose-volume effects on salivary gland function. Int J Radiat Oncol Biol Phys 76: S58-63. doi: 10.1016/j.ijrobp.2009.06.090
    [5] Eisbruch A, Ten Haken RK, Kim HM, et al. (1999) Dose, volume, and function relationships in parotid salivary glands following conformal and intensity-modulated irradiation of head and neck cancer. Int J Radiat Oncol Biol Phys 45: 577-587. doi: 10.1016/S0360-3016(99)00247-3
    [6] Coppes RP, Vissink A, Konings AW (2002) Comparison of radiosensitivity of rat parotid and submandibular glands after different radiation schedules. Radiother Oncol 63: 321-328. doi: 10.1016/S0167-8140(02)00129-9
    [7] Vissink A, van Luijk P, Langendijk JA, et al. (2015) Current ideas to reduce or salvage radiation damage to salivary glands. Oral Dis 21: e1-10. doi: 10.1111/odi.12222
    [8] Vissink A, Mitchell JB, Baum BJ, et al. (2010) Clinical management of salivary gland hypofunction and xerostomia in head-and-neck cancer patients: successes and barriers. Int J Radiat Oncol Biol Phys 78: 983-991. doi: 10.1016/j.ijrobp.2010.06.052
    [9] Mastrangeli A, O'Connell B, Aladib W, et al. (1994) Direct in vivo adenovirus-mediated gene transfer to salivary glands. Am J Physiol 266: G1146-1155.
    [10] Nair RP, Zheng C, Sunavala-Dossabhoy G (2016) Retroductal Submandibular Gland Instillation and Localized Fractionated Irradiation in a Rat Model of Salivary Hypofunction. J Vis Exp 110: e53785.
    [11] Samuni Y, Baum BJ (2011) Gene delivery in salivary glands: from the bench to the clinic. Biochim Biophys Acta 1812: 1515-1521. doi: 10.1016/j.bbadis.2011.06.014
    [12] Perez P, Rowzee AM, Zheng C, et al. (2010) Salivary epithelial cells: an unassuming target site for gene therapeutics. Int J Biochem Cell Biol 42: 773-777. doi: 10.1016/j.biocel.2010.02.012
    [13] Adesanya MR, Redman RS, Baum BJ, et al. (1996) Immediate inflammatory responses to adenovirus-mediated gene transfer in rat salivary glands. Hum Gene Ther 7: 1085-1093. doi: 10.1089/hum.1996.7.9-1085
    [14] Hai B, Yan X, Voutetakis A, et al. (2009) Long-term transduction of miniature pig parotid glands using serotype 2 adeno-associated viral vectors. J Gene Med 11: 506-514. doi: 10.1002/jgm.1319
    [15] Timiri Shanmugam PS, Dayton RD, Palaniyandi S, et al. (2013) Recombinant AAV9-TLK1B administration ameliorates fractionated radiation-induced xerostomia. Hum Gene Ther 24: 604-612. doi: 10.1089/hum.2012.235
    [16] Katano H, Kok MR, Cotrim AP, et al. (2006) Enhanced transduction of mouse salivary glands with AAV5-based vectors. Gene Ther 13: 594-601. doi: 10.1038/sj.gt.3302691
    [17] Daya S, Berns KI (2008) Gene therapy using adeno-associated virus vectors. Clin Microbiol Rev 21: 583-593. doi: 10.1128/CMR.00008-08
    [18] Barka T, Van der Noen HM (1996) Retrovirus-mediated gene transfer into salivary glands in vivo. Hum Gene Ther 7: 613-618. doi: 10.1089/hum.1996.7.5-613
    [19] Shai E, Palmon A, Panet A, et al. (2005) Prolonged transgene expression in murine salivary glands following non-primate lentiviral vector transduction. Mol Ther 12: 137-143. doi: 10.1016/j.ymthe.2005.02.022
    [20] Barraza RA, Poeschla EM (2008) Human gene therapy vectors derived from feline lentiviruses. Vet Immunol Immunopathol 123: 23-31. doi: 10.1016/j.vetimm.2008.01.009
    [21] Wanisch K, Yanez-Munoz RJ (2009) Integration-deficient lentiviral vectors: a slow coming of age. Mol Ther 17: 1316-1332. doi: 10.1038/mt.2009.122
    [22] Baum BJ, Goldsmith CM, Kok MR, et al. (2003) Advances in vector-mediated gene transfer. Immunol Lett 90: 145-149. doi: 10.1016/j.imlet.2003.08.006
    [23] Niedzinski EJ, Chen YJ, Olson DC, et al. (2003) Enhanced systemic transgene expression after nonviral salivary gland transfection using a novel endonuclease inhibitor/DNA formulation. Gene Ther 10: 2133-2138. doi: 10.1038/sj.gt.3302125
    [24] Baccaglini L, Shamsul Hoque AT, Wellner RB, et al. (2001) Cationic liposome-mediated gene transfer to rat salivary epithelial cells in vitro and in vivo. J Gene Med 3: 82-90.
    [25] Crook K, Stevenson BJ, Dubouchet M, et al. (1998) Inclusion of cholesterol in DOTAP transfection complexes increases the delivery of DNA to cells in vitro in the presence of serum. Gene Ther 5: 137-143. doi: 10.1038/sj.gt.3300554
    [26] Passineau MJ, Zourelias L, Machen L, et al. (2010) Ultrasound-assisted non-viral gene transfer to the salivary glands. Gene Ther 17: 1318-1324. doi: 10.1038/gt.2010.86
    [27] Sakai T, Kawaguchi M, Kosuge Y (2009) siRNA-mediated gene silencing in the salivary gland using in vivo microbubble-enhanced sonoporation. Oral Dis 15: 505-511. doi: 10.1111/j.1601-0825.2009.01579.x
    [28] Delalande A, Leduc C, Midoux P, et al. (2015) Efficient Gene Delivery by Sonoporation Is Associated with Microbubble Entry into Cells and the Clathrin-Dependent Endocytosis Pathway. Ultrasound Med Biol 41: 1913-1926. doi: 10.1016/j.ultrasmedbio.2015.03.010
    [29] Liu Y, Miyoshi H, Nakamura M (2006) Encapsulated ultrasound microbubbles: therapeutic application in drug/gene delivery. J Control Release 114: 89-99. doi: 10.1016/j.jconrel.2006.05.018
    [30] Newman CM, Bettinger T (2007) Gene therapy progress and prospects: ultrasound for gene transfer. Gene Ther 14: 465-475. doi: 10.1038/sj.gt.3302925
    [31] Wang Z, Zourelias L, Wu C, et al. (2015) Ultrasound-assisted nonviral gene transfer of AQP1 to the irradiated minipig parotid gland restores fluid secretion. Gene Ther 22: 739-749. doi: 10.1038/gt.2015.36
    [32] Wagner E (2014) Polymers for nucleic acid transfer-an overview. Adv Genet 88: 231-261.
    [33] Arany S, Benoit DS, Dewhurst S, et al. (2013) Nanoparticle-mediated gene silencing confers radioprotection to salivary glands in vivo. Mol Ther 21: 1182-1194. doi: 10.1038/mt.2013.42
    [34] Arany S, Xu Q, Hernady E, et al. (2012) Pro-apoptotic gene knockdown mediated by nanocomplexed siRNA reduces radiation damage in primary salivary gland cultures. J Cell Biochem 113: 1955-1965. doi: 10.1002/jcb.24064
    [35] Rettig GR, Behlke MA (2012) Progress toward in vivo use of siRNAs-II. Mol Ther 20: 483-512. doi: 10.1038/mt.2011.263
    [36] Gresz V, Kwon TH, Hurley PT, et al. (2001) Identification and localization of aquaporin water channels in human salivary glands. Am J Physiol Gastrointest Liver Physiol 281: G247-254.
    [37] He X, Tse CM, Donowitz M, et al. (1997) Polarized distribution of key membrane transport proteins in the rat submandibular gland. Pflugers Arch 433: 260-268.
    [38] Delporte C, O'Connell BC, He X, et al. (1997) Increased fluid secretion after adenoviral-mediated transfer of the aquaporin-1 cDNA to irradiated rat salivary glands. Proc Natl Acad Sci U S A 94: 3268-3273. doi: 10.1073/pnas.94.7.3268
    [39] O'Connell AC, Baccaglini L, Fox PC, et al. (1999) Safety and efficacy of adenovirus-mediated transfer of the human aquaporin-1 cDNA to irradiated parotid glands of non-human primates. Cancer Gene Ther 6: 505-513. doi: 10.1038/sj.cgt.7700078
    [40] Shan Z, Li J, Zheng C, et al. (2005) Increased fluid secretion after adenoviral-mediated transfer of the human aquaporin-1 cDNA to irradiated miniature pig parotid glands. Mol Ther 11: 444-451. doi: 10.1016/j.ymthe.2004.11.007
    [41] Zheng C, Goldsmith CM, Mineshiba F, et al. (2006) Toxicity and biodistribution of a first-generation recombinant adenoviral vector, encoding aquaporin-1, after retroductal delivery to a single rat submandibular gland. Hum Gene Ther 17: 1122-1133. doi: 10.1089/hum.2006.17.1122
    [42] Baum BJ, Alevizos I, Zheng C, et al. (2012) Early responses to adenoviral-mediated transfer of the aquaporin-1 cDNA for radiation-induced salivary hypofunction. Proc Natl Acad Sci U S A 109: 19403-19407. doi: 10.1073/pnas.1210662109
    [43] Zheng C, Baum BJ, Liu X, et al. (2015) Persistence of hAQP1 expression in human salivary gland cells following AdhAQP1 transduction is associated with a lack of methylation of hCMV promoter. Gene Ther 22: 758-766. doi: 10.1038/gt.2015.55
    [44] O'Connell BC, Zheng C, Jacobson-Kram D, et al. (2003) Distribution and toxicity resulting from adenoviral vector administration to a single salivary gland in adult rats. J Oral Pathol Med 32: 414-421. doi: 10.1034/j.1600-0714.2003.t01-1-00004.x
    [45] Gao R, Yan X, Zheng C, et al. (2011) AAV2-mediated transfer of the human aquaporin-1 cDNA restores fluid secretion from irradiated miniature pig parotid glands. Gene Ther 18: 38-42. doi: 10.1038/gt.2010.128
    [46] Momot D, Zheng C, Yin H, et al. (2014) Toxicity and biodistribution of the serotype 2 recombinant adeno-associated viral vector, encoding Aquaporin-1, after retroductal delivery to a single mouse parotid gland. PLoS One 9: e92832. doi: 10.1371/journal.pone.0092832
    [47] Voutetakis A, Zheng C, Mineshiba F, et al. (2007) Adeno-associated virus serotype 2-mediated gene transfer to the parotid glands of nonhuman primates. Hum Gene Ther 18: 142-150. doi: 10.1089/hum.2006.154
    [48] Ahlner BH, Lind MG (1994) The effect of irradiation on blood flow through rabbit submandibular glands. Eur Arch Otorhinolaryngol 251: 72-75.
    [49] Cotrim AP, Sowers A, Mitchell JB, et al. (2007) Prevention of irradiation-induced salivary hypofunction by microvessel protection in mouse salivary glands. Mol Ther 15: 2101-2106. doi: 10.1038/sj.mt.6300296
    [50] Beenken A, Mohammadi M (2009) The FGF family: biology, pathophysiology and therapy. Nat Rev Drug Discov 8: 235-253. doi: 10.1038/nrd2792
    [51] Thomas KA (1996) Vascular endothelial growth factor, a potent and selective angiogenic agent. J Biol Chem 271: 603-606. doi: 10.1074/jbc.271.2.603
    [52] Guo L, Gao R, Xu J, et al. (2014) AdLTR2EF1alpha-FGF2-mediated prevention of fractionated irradiation-induced salivary hypofunction in swine. Gene Ther 21: 866-873. doi: 10.1038/gt.2014.63
    [53] Swelam W, Ida-Yonemochi H, Maruyama S, et al. (2005) Vascular endothelial growth factor in salivary pleomorphic adenomas: one of the reasons for their poorly vascularized stroma. Virchows Arch 446: 653-662. doi: 10.1007/s00428-005-1219-1
    [54] Miki T, Fleming TP, Bottaro DP, et al. (1991) Expression cDNA cloning of the KGF receptor by creation of a transforming autocrine loop. Science 251: 72-75. doi: 10.1126/science.1846048
    [55] Farrell CL, Rex KL, Kaufman SA, et al. (1999) Effects of keratinocyte growth factor in the squamous epithelium of the upper aerodigestive tract of normal and irradiated mice. Int J Radiat Biol 75: 609-620. doi: 10.1080/095530099140258
    [56] Finch PW, Rubin JS (2004) Keratinocyte growth factor/fibroblast growth factor 7, a homeostatic factor with therapeutic potential for epithelial protection and repair. Adv Cancer Res 91: 69-136. doi: 10.1016/S0065-230X(04)91003-2
    [57] Zheng C, Cotrim AP, Sunshine AN, et al. (2009) Prevention of radiation-induced oral mucositis after adenoviral vector-mediated transfer of the keratinocyte growth factor cDNA to mouse submandibular glands. Clin Cancer Res 15: 4641-4648. doi: 10.1158/1078-0432.CCR-09-0819
    [58] Zheng C, Cotrim AP, Rowzee A, et al. (2011) Prevention of radiation-induced salivary hypofunction following hKGF gene delivery to murine submandibular glands. Clin Cancer Res 17: 2842-2851. doi: 10.1158/1078-0432.CCR-10-2982
    [59] Li Y, DeFatta R, Anthony C, et al. (2001) A translationally regulated Tousled kinase phosphorylates histone H3 and confers radioresistance when overexpressed. Oncogene 20: 726-738. doi: 10.1038/sj.onc.1204147
    [60] Canfield C, Rains J, De Benedetti A (2009) TLK1B promotes repair of DSBs via its interaction with Rad9 and Asf1. BMC Mol Biol 10: 110. doi: 10.1186/1471-2199-10-110
    [61] Kelly R, Davey SK (2013) Tousled-like kinase-dependent phosphorylation of Rad9 plays a role in cell cycle progression and G2/M checkpoint exit. PLoS One 8: e85859. doi: 10.1371/journal.pone.0085859
    [62] Sillje HH, Nigg EA (2001) Identification of human Asf1 chromatin assembly factors as substrates of Tousled-like kinases. Curr Biol 11: 1068-1073. doi: 10.1016/S0960-9822(01)00298-6
    [63] Sillje HH, Takahashi K, Tanaka K, et al. (1999) Mammalian homologues of the plant Tousled gene code for cell-cycle-regulated kinases with maximal activities linked to ongoing DNA replication. EMBO J 18: 5691-5702. doi: 10.1093/emboj/18.20.5691
    [64] Sunavala-Dossabhoy G, De Benedetti A (2009) Tousled homolog, TLK1, binds and phosphorylates Rad9; TLK1 acts as a molecular chaperone in DNA repair. DNA Repair (Amst) 8: 87-102. doi: 10.1016/j.dnarep.2008.09.005
    [65] Sunavala-Dossabhoy G, Li Y, Williams B, et al. (2003) A dominant negative mutant of TLK1 causes chromosome missegregation and aneuploidy in normal breast epithelial cells. BMC Cell Biol 4: 16. doi: 10.1186/1471-2121-4-16
    [66] Groth A, Lukas J, Nigg EA, et al. (2003) Human Tousled like kinases are targeted by an ATM- and Chk1-dependent DNA damage checkpoint. EMBO J 22: 1676-1687. doi: 10.1093/emboj/cdg151
    [67] Palaniyandi S, Odaka Y, Green W, et al. (2011) Adenoviral delivery of Tousled kinase for the protection of salivary glands against ionizing radiation damage. Gene Ther 18: 275-282. doi: 10.1038/gt.2010.142
    [68] Sunavala-Dossabhoy G, Palaniyandi S, Richardson C, et al. (2012) TAT-mediated delivery of Tousled protein to salivary glands protects against radiation-induced hypofunction. Int J Radiat Oncol Biol Phys 84: 257-265. doi: 10.1016/j.ijrobp.2011.10.064
    [69] Humphries MJ, Limesand KH, Schneider JC, et al. (2006) Suppression of apoptosis in the protein kinase Cdelta null mouse in vivo. J Biol Chem 281: 9728-9737. doi: 10.1074/jbc.M507851200
    [70] Reyland ME, Anderson SM, Matassa AA, et al. (1999) Protein kinase C delta is essential for etoposide-induced apoptosis in salivary gland acinar cells. J Biol Chem 274: 19115-19123. doi: 10.1074/jbc.274.27.19115
    [71] Wie SM, Adwan TS, DeGregori J, et al. (2014) Inhibiting tyrosine phosphorylation of protein kinase Cdelta (PKCdelta) protects the salivary gland from radiation damage. J Biol Chem 289: 10900-10908. doi: 10.1074/jbc.M114.551366
    [72] Schmid TE, Multhoff G (2012) Radiation-induced stress proteins - the role of heat shock proteins (HSP) in anti- tumor responses. Curr Med Chem 19: 1765-1770. doi: 10.2174/092986712800099767
    [73] Soti C, Nagy E, Giricz Z, et al. (2005) Heat shock proteins as emerging therapeutic targets. Br J Pharmacol 146: 769-780. doi: 10.1038/sj.bjp.0706396
    [74] Garrido C, Brunet M, Didelot C, et al. (2006) Heat shock proteins 27 and 70: anti-apoptotic proteins with tumorigenic properties. Cell Cycle 5: 2592-2601. doi: 10.4161/cc.5.22.3448
    [75] Havasi A, Li Z, Wang Z, et al. (2008) Hsp27 inhibits Bax activation and apoptosis via a phosphatidylinositol 3-kinase-dependent mechanism. J Biol Chem 283: 12305-12313. doi: 10.1074/jbc.M801291200
    [76] Sabirzhanov B, Stoica BA, Hanscom M, et al. (2012) Over-expression of HSP70 attenuates caspase-dependent and caspase-independent pathways and inhibits neuronal apoptosis. J Neurochem 123: 542-554. doi: 10.1111/j.1471-4159.2012.07927.x
    [77] Lee HJ, Lee YJ, Kwon HC, et al. (2006) Radioprotective effect of heat shock protein 25 on submandibular glands of rats. Am J Pathol 169: 1601-1611. doi: 10.2353/ajpath.2006.060327
    [78] Varjosalo M, Taipale J (2008) Hedgehog: functions and mechanisms. Genes Dev 22: 2454-2472. doi: 10.1101/gad.1693608
    [79] Riobo NA, Lu K, Ai X, et al. (2006) Phosphoinositide 3-kinase and Akt are essential for Sonic Hedgehog signaling. Proc Natl Acad Sci U S A 103: 4505-4510. doi: 10.1073/pnas.0504337103
    [80] Hai B, Zhao Q, Qin L, et al. (2016) Rescue Effects and Underlying Mechanisms of Intragland Shh Gene Delivery on Irradiation-Induced Hyposalivation. Hum Gene Ther 27: 390-399. doi: 10.1089/hum.2016.005
    [81] Leonard JM, Ye H, Wetmore C, et al. (2008) Sonic Hedgehog signaling impairs ionizing radiation-induced checkpoint activation and induces genomic instability. J Cell Biol 183: 385-391. doi: 10.1083/jcb.200804042
  • Reader Comments
  • © 2016 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4464) PDF downloads(1100) Cited by(4)

Article outline

Figures and Tables

Figures(1)  /  Tables(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog