Citation: Tyler C. Smith, Besa Smith. Consistency in Physical Activity and Increase in Mental Health in Elderly over a Decade: Are We Achieving Better Population Health?[J]. AIMS Medical Science, 2016, 3(1): 147-161. doi: 10.3934/medsci.2016.1.147
[1] | Alberto Gambaruto, João Janela, Alexandra Moura, Adélia Sequeira . Shear-thinning effects of hemodynamics in patient-specific cerebral aneurysms. Mathematical Biosciences and Engineering, 2013, 10(3): 649-665. doi: 10.3934/mbe.2013.10.649 |
[2] | Yuqian Mei, Debao Guan, Xinyu Tong, Qian Liu, Mingcheng Hu, Guangxin Chen, Caijuan Li . Association of cerebral infarction with vertebral arterial fenestration using non-Newtonian hemodynamic evaluation. Mathematical Biosciences and Engineering, 2022, 19(7): 7076-7090. doi: 10.3934/mbe.2022334 |
[3] | Yan Wang, Yonghui Qiao, Yankai Mao, Chenyang Jiang, Jianren Fan, Kun Luo . Numerical prediction of thrombosis risk in left atrium under atrial fibrillation. Mathematical Biosciences and Engineering, 2020, 17(3): 2348-2360. doi: 10.3934/mbe.2020125 |
[4] | Benchawan Wiwatanapataphee, Yong Hong Wu, Thanongchai Siriapisith, Buraskorn Nuntadilok . Effect of branchings on blood flow in the system of human coronary arteries. Mathematical Biosciences and Engineering, 2012, 9(1): 199-214. doi: 10.3934/mbe.2012.9.199 |
[5] | B. Wiwatanapataphee, D. Poltem, Yong Hong Wu, Y. Lenbury . Simulation of Pulsatile Flow of Blood in Stenosed Coronary Artery Bypass with Graft. Mathematical Biosciences and Engineering, 2006, 3(2): 371-383. doi: 10.3934/mbe.2006.3.371 |
[6] | Nattawan Chuchalerm, Wannika Sawangtong, Benchawan Wiwatanapataphee, Thanongchai Siriapisith . Study of Non-Newtonian blood flow - heat transfer characteristics in the human coronary system with an external magnetic field. Mathematical Biosciences and Engineering, 2022, 19(9): 9550-9570. doi: 10.3934/mbe.2022444 |
[7] | Huu Thuan Nguyen, Tu Anh Do, Benoît Cosson . Numerical simulation of submerged flow bridge scour under dam-break flow using multi-phase SPH method. Mathematical Biosciences and Engineering, 2019, 16(5): 5395-5418. doi: 10.3934/mbe.2019269 |
[8] | Meiyuan Du, Chi Zhang, Sheng Xie, Fang Pu, Da Zhang, Deyu Li . Investigation on aortic hemodynamics based on physics-informed neural network. Mathematical Biosciences and Engineering, 2023, 20(7): 11545-11567. doi: 10.3934/mbe.2023512 |
[9] | Scott R. Pope, Laura M. Ellwein, Cheryl L. Zapata, Vera Novak, C. T. Kelley, Mette S. Olufsen . Estimation and identification of parameters in a lumped cerebrovascular model. Mathematical Biosciences and Engineering, 2009, 6(1): 93-115. doi: 10.3934/mbe.2009.6.93 |
[10] | Oualid Kafi, Nader El Khatib, Jorge Tiago, Adélia Sequeira . Numerical simulations of a 3D fluid-structure interaction model for blood flow in an atherosclerotic artery. Mathematical Biosciences and Engineering, 2017, 14(1): 179-193. doi: 10.3934/mbe.2017012 |
[1] | Armstrong GL, Conn LA, Pinner RW (1999) Trends in infectious disease mortality in the United States during the 20th century. JAMA 281: 61-66. |
[2] | Hamlin C, Sheard S (1998) Revolutions in public health: 1848, and 1998? BMJ 317: 587-591. |
[3] | Leading Causes of Death, 1900-1998. |
[4] |
Breslow L (1999) From disease prevention to health promotion. JAMA 281: 1030-1033. doi: 10.1001/jama.281.11.1030
![]() |
[5] | Institute of Medicine. Committee on Quality Care in America. (2001) CROSSING THE QUALITY CHASM: A New Health System for the 21st Century. Washington, DC: Institute of Medicine. |
[6] | Winslow CE (1920) The Untilled Fields of Public Health. Science 51: 23-33. |
[7] | Centers for Disease C, Prevention. (2011) Ten great public health achievements--United States, 2001-2010. MMWR. Morbidity and mortality weekly report 60: 619-623. |
[8] | Centers for Disease C, Prevention. (1999) Ten great public health achievements--United States, 1900-1999. MMWR. Morbidity and mortality weekly report 48: 241-243. |
[9] | Arias E (2015) United States Life Tables, 2011. National vital statistics reports : from the Centers for Disease Control and Prevention, National Center for Health Statistics, National Vital Statistics System. 64: 1-63. |
[10] | Olshansky SJ, Passaro DJ, Hershow RC, et al. (2005) A potential decline in life expectancy in the United States in the 21st century. The New England Journal of Medicine 352: 1138-1145. |
[11] | Oeppen J, Vaupel JW (2002) Demography. Broken limits to life expectancy. Science 296: 1029-1031. |
[12] | Medicine IIo. A Nationwide Framework for Surveillance of Cardiovascular and Chronic Lung Disease. Washington, DC2011. |
[13] | Nelson DE, Holtzman D, Bolen J, et al. (2001) Reliability and validity of measures from the Behavioral Risk Factor Surveillance System (BRFSS). Sozial- und Praventivmedizin 46: S3-42. |
[14] | Stein AD, Lederman RI, Shea S (1993) The Behavioral Risk Factor Surveillance System questionnaire: its reliability in a statewide sample. Am J Public Health 83: 1768-1772. |
[15] | Li C, Balluz LS, Ford ES, et al. (2012) A comparison of prevalence estimates for selected health indicators and chronic diseases or conditions from the Behavioral Risk Factor Surveillance System, the National Health Interview Survey, and the National Health and Nutrition Examination Survey, 2007-2008. Prev Med 54: 381-387. |
[16] | Arday DR, Tomar SL, Nelson DE, et al. (1987) State smoking prevalence estimates: a comparison of the Behavioral Risk Factor Surveillance System and current population surveys. Am J Public Health 87: 1665-1669. |
[17] |
Hu SS, Balluz L, Battaglia MP, et al. (2011) Improving public health surveillance using a dual-frame survey of landline and cell phone numbers. Am J Epidemiol 173: 703-711. |
[18] | A Nationwide Framework for Surveillance of Cardiovascular and Chronic Lung Diseases. Washington (DC) 2011. |
[19] | Carlson SA, Densmore D, Fulton JE, et al. (2009) Differences in physical activity prevalence and trends from 3 U.S. surveillance systems: NHIS, NHANES, and BRFSS. J Physi Act Health 6: S18-27. |
[20] | Aging. USDoHaHSAo. Aging statistics. http://www.aoa.acl.gov/aging_statistics/index.aspx. Accessed January 13, 2016. |
[21] |
Nelson ME, Rejeski WJ, Blair SN, et al. (2007) Physical activity and public health in older adults: recommendation from the American College of Sports Medicine and the American Heart Association. Circulation 116: 1094-1105. doi: 10.1161/CIRCULATIONAHA.107.185650
![]() |
[22] | 2008 Physical Activity Guidelines for Americans. US Department of Health and Human Services; 2008. |
[23] | Larson EB, Wang L, Bowen JD, et al. (2006) Exercise is associated with reduced risk for incident dementia among persons 65 years of age and older. An Int Med 144: 73-81. |
[24] | DiPietro L (2001) Physical activity in aging: changes in patterns and their relationship to health and function. The journals of gerontology. Series A, Biological sciences and medical sciences. 56: 13-22. |
[25] |
Jones DW, Peterson ED, Bonow RO, et al. (2008) Translating research into practice for healthcare providers: the American Heart Association's strategy for building healthier lives, free of cardiovascular diseases and stroke. Circulation 118: 687-696. doi: 10.1161/CIRCULATIONAHA.108.189934
![]() |
[26] | Clays E, Lidegaard M, De Bacquer D, et al. (2014) The combined relationship of occupational and leisure-time physical activity with all-cause mortality among men, accounting for physical fitness. Am J Epidemiol 179: 559-566. |
[27] | Kampert JB, Blair SN, Barlow CE, et al. (1996) Physical activity, physical fitness, and all-cause and cancer mortality: a prospective study of men and women. Ann Epidemiol 6: 452-457. |
[28] | Blair SN, Kohl HW, Paffenbarger RS, et al. (1989) Physical fitness and all-cause mortality. A prospective study of healthy men and women. JAMA 262: 2395-2401. |
[29] | Smith TC, Wingard DL, Smith B, et al. (2007) Walking decreased risk of cardiovascular disease mortality in older adults with diabetes. J Clin Epidemiol 60: 309-317. |
[30] | Prohaska T, Belansky E, Belza B, et al. (2006) Physical activity, public health, and aging: critical issues and research priorities. The journals of gerontology. Series B, Psychological sciences and social sciences 61: S267-273. |
[31] | Slingerland AS, van Lenthe FJ, Jukema JW, et al. (2007) Aging, retirement, and changes in physical activity: prospective cohort findings from the GLOBE study. Am J Epidemiol 165 :1356-1363. |
[32] | Littman A, Jacobson IG, Boyko EJ, et al. (2015) Changes in Meeting Vigorous Physical Activity Guidelines After Discharge From the Military. J Physi Act Health 12: 666-674. |
[33] | Reilly T, Waterhouse J, Atkinson G. (1997) Aging, rhythms of physical performance, and adjustment to changes in the sleep-activity cycle. Occu Envir Med 54: 812-816. |
[34] | Reuter I (2012) Aging, physical activity, and disease prevention. J Aging Res 2012: 373294. |
[35] | Martin LG, Schoeni RF, Andreski PM (2010) Trends in health of older adults in the United States: past, present, future. Demography 47: S17-40. |
[36] |
Seeman TE, Merkin SS, Crimmins EM, et al. (2010) Disability trends among older Americans: National Health And Nutrition Examination Surveys, 1988-1994 and 1999-2004. Am J Public Health 100: 100-107. doi: 10.2105/AJPH.2008.157388
![]() |
[37] | Lim K, Taylor L (2005) Factors associated with physical activity among older people—a population-based study. Prev Med 40: 33-40. |
[38] | Florindo AA, Guimaraes VV, Cesar CL, et al. (2009) Epidemiology of leisure, transportation, occupational, and household physical activity: prevalence and associated factors. J Physi Act Health 6: 625-632. |
[39] | Todt K, Skargren E, Jakobsson P, et al. (2015) Factors associated with low physical activity in patients with chronic obstructive pulmonary disease: a cross-sectional study. Scandinavian J Caring Scie 29: 697-707. |
[40] | Healthy People 2020 Washington, DC: U.S. Department of Health and Human Services, Office of Disease Prevention and Health Promotion. |
[41] | Piane GM, Smith TC (2014) Building an evidence base for the co-occurrence of chronic disease and psychiatric distress and impairment. Prevent Chronic Dis11: E188. |
[42] |
Kessler RC, Chiu WT, Demler O, et al. (2005) Prevalence, severity, and comorbidity of 12-month DSM-IV disorders in the National Comorbidity Survey Replication. Arch General Psychiatry 62: 617-627. |
[43] | Kessler RC, Berglund P, Demler O, et al. (2005) Lifetime prevalence and age-of-onset distributions of DSM-IV disorders in the National Comorbidity Survey Replication. Arch General Psychiatry 62: 593-602. |
[44] | Karel MJ, Gatz M, Smyer MA (2012) Aging and mental health in the decade ahead: what psychologists need to know. The Am Psycholo 67: 184-198. |
[45] | Institute of Medicine (IOM). The Mental Health and Substance Use Workforce for Older Adults: In Whose Hands? 2012. |
[46] | U.S. Department of Health and Human Services. Healthy People 2010: Understanding and Improving Health. 2nd ed. Vol 2005. Washington, DC: U.S. Government Printing Office; November 2000. |
[47] | Koh HK, Piotrowski JJ, Kumanyika S, et al. (2011) Healthy people: a 2020 vision for the social determinants approach. Health education & behavior: the official publication of the Society for Public Health Education 38: 551-557. |
[48] | Koh HK (2010) A 2020 vision for healthy people. Eng J Med 362: 1653-1656. |
[49] | Checkoway H, Pearce N, Kriebel D (2007) Selecting appropriate study designs to address specific research questions in occupational epidemiology. Occu Envir Med 64: 633-638. |
[50] | Pearce N (2012) Classification of epidemiological study designs. Int J Epide 41: 393-397. |
[51] | Rothman K, Greenland S (1998) Modern Epidemiology. Second ed. Philadelphia, PA: Lippincott-Raven. |
[52] |
Bowling A (2005) Mode of questionnaire administration can have serious effects on data quality. J Pub Health 27: 281-291. doi: 10.1093/pubmed/fdi031
![]() |
[53] | Krebs NF, Himes JH, Jacobson D, et al. (2007) Assessment of child and adolescent overweight and obesity. Pediatrics 120: S193-228. |
1. | Julia Mikhal, Bernard J. Geurts, Development and application of a volume penalization immersed boundary method for the computation of blood flow and shear stresses in cerebral vessels and aneurysms, 2013, 67, 0303-6812, 1847, 10.1007/s00285-012-0627-5 | |
2. | Øyvind Evju, Kristian Valen-Sendstad, Kent-André Mardal, A study of wall shear stress in 12 aneurysms with respect to different viscosity models and flow conditions, 2013, 46, 00219290, 2802, 10.1016/j.jbiomech.2013.09.004 | |
3. | Telma Guerra, Jorge Tiago, Adélia Sequeira, Optimal control in blood flow simulations, 2014, 64, 00207462, 57, 10.1016/j.ijnonlinmec.2014.04.005 | |
4. | Jorge Tiago, Numerical simulations for the stabilization and estimation problem of a semilinear partial differential equation, 2015, 98, 01689274, 18, 10.1016/j.apnum.2015.08.003 | |
5. | Julia Mikhal, Bernard J. Geurts, Immersed boundary method for pulsatile transitional flow in realistic cerebral aneurysms, 2014, 91, 00457930, 144, 10.1016/j.compfluid.2013.12.009 | |
6. | J. Pavlova, A. Fasano, J. Janela, A. Sequeira, Numerical validation of a synthetic cell-based model of blood coagulation, 2015, 380, 00225193, 367, 10.1016/j.jtbi.2015.06.004 | |
7. | S. V. Sindeev, S. V. Frolov, Modeling the hemodynamics of the cardiovascular system with cerebral aneurysm, 2017, 9, 2070-0482, 108, 10.1134/S2070048217010148 | |
8. | Adélia Sequeira, Jorge Tiago, Telma Guerra, 2018, Chapter 3, 978-3-319-91091-8, 27, 10.1007/978-3-319-91092-5_3 | |
9. | Hernán G. Morales, Odile Bonnefous, Unraveling the relationship between arterial flow and intra-aneurysmal hemodynamics, 2015, 48, 00219290, 585, 10.1016/j.jbiomech.2015.01.016 | |
10. | N. El Khatib, O. Kafi, A. Sequeira, S. Simakov, Yu. Vassilevski, V. Volpert, Vitaly Volpert, Mathematical modelling of atherosclerosis, 2019, 14, 0973-5348, 603, 10.1051/mmnp/2019050 | |
11. | J. Tiago, T. Guerra, A. Sequeira, A velocity tracking approach for the data assimilation problem in blood flow simulations, 2017, 33, 20407939, e2856, 10.1002/cnm.2856 | |
12. | O. Kafi, A. Sequeira, 2019, Chapter 17, 978-3-030-23432-4, 255, 10.1007/978-3-030-23433-1_17 | |
13. | A.M. Robertson, P.N. Watton, Computational Fluid Dynamics in Aneurysm Research: Critical Reflections, Future Directions, 2012, 33, 0195-6108, 992, 10.3174/ajnr.A3192 | |
14. | Olivia Miraucourt, Stéphanie Salmon, Marcela Szopos, Marc Thiriet, Blood flow in the cerebral venous system: modeling and simulation, 2017, 20, 1025-5842, 471, 10.1080/10255842.2016.1247833 | |
15. | Alexandru M. Morega, Cristina Savastru, Mihaela Morega, 2013, Numerical simulation of flow dynamics in the Brachial-Ulnar-Radial arterial system, 978-1-4799-2373-1, 1, 10.1109/EHB.2013.6707352 | |
16. | Ziya Isiksacan, Mohammad Asghari, Caglar Elbuken, A microfluidic erythrocyte sedimentation rate analyzer using rouleaux formation kinetics, 2017, 21, 1613-4982, 10.1007/s10404-017-1878-7 | |
17. | S. Boujena, O. Kafi, N. El Khatib, A. Sequeira, V. Volpert, A 2D Mathematical Model of Blood Flow and its Interactions in an Atherosclerotic Artery, 2014, 9, 0973-5348, 46, 10.1051/mmnp/20149605 | |
18. | Zhibin Zhou, Xi Chen, Xue Zhou, Xiaoyu Yang, Dihan Lu, Wenbin Kang, Xia Feng, Effects of Intraoperative Gelatin on Blood Viscosity and Oxygenation Balance, 2019, 34, 10899472, 1274, 10.1016/j.jopan.2019.05.136 | |
19. | L Achab, Numerical simulations of the pulsatile blood flow in narrowing small vessels using different rheological models, 2019, 1294, 1742-6588, 022028, 10.1088/1742-6596/1294/2/022028 | |
20. | S. V. FROLOV, S. V. SINDEEV, D. LIEPSCH, A. BALASSO, P. ARNOLD, J. S. KIRSCHKE, S. PROTHMANN, A. YU. POTLOV, NEWTONIAN AND NON-NEWTONIAN BLOOD FLOW AT A 90∘-BIFURCATION OF THE CEREBRAL ARTERY: A COMPARATIVE STUDY OF FLUID VISCOSITY MODELS, 2018, 18, 0219-5194, 1850043, 10.1142/S0219519418500434 | |
21. | Denesh Sooriamoorthy, Audrey Li-Huey Wee, Anandan Shanmugam, Khor Jeen Ghee, Pei Cheng Ooi, Marwan Nafea, 2020, A Study on the Effect of Electrical Parameters of Zero-Dimensional Cardiovascular System on Aortic Waveform, 978-1-7281-9317-5, 374, 10.1109/SCOReD50371.2020.9250931 | |
22. | J. Mikhal, D.J. Kroon, C.H. Slump, B.J. Geurts, Flow prediction in cerebral aneurysms based on geometry reconstruction from 3D rotational angiography, 2013, 29, 20407939, 777, 10.1002/cnm.2558 | |
23. | Frank Weichert, Lars Walczak, Denis Fisseler, Tobias Opfermann, Mudassar Razzaq, Raphael Münster, Stefan Turek, Iris Grunwald, Christian Roth, Christian Veith, Mathias Wagner, Simulation of Intra-Aneurysmal Blood Flow by Different Numerical Methods, 2013, 2013, 1748-670X, 1, 10.1155/2013/527654 | |
24. | J. Tiago, A. Gambaruto, A. Sequeira, A. Sequeira, V. Volpert, Patient-specific Blood Flow Simulations: Setting Dirichlet Boundary Conditions for Minimal Error with Respect to Measured Data, 2014, 9, 0973-5348, 98, 10.1051/mmnp/20149608 | |
25. | H.G. Morales, O. Bonnefous, 2017, 9780128110188, 253, 10.1016/B978-0-12-811018-8.00010-2 | |
26. | D Liepsch, S Sindeev, S Frolov, An impact of non-Newtonian blood viscosity on hemodynamics in a patient-specific model of a cerebral aneurysm, 2018, 1084, 1742-6588, 012001, 10.1088/1742-6596/1084/1/012001 | |
27. | S. Ramalho, A. Moura, A.M. Gambaruto, A. Sequeira, Sensitivity to outflow boundary conditions and level of geometry description for a cerebral aneurysm, 2012, 28, 20407939, 697, 10.1002/cnm.2461 | |
28. | Isaac Perez-Raya, Mojtaba F. Fathi, Ahmadreza Baghaie, Raphael Sacho, Roshan M. D’Souza, Modeling and Reducing the Effect of Geometric Uncertainties in Intracranial Aneurysms with Polynomial Chaos Expansion, Data Decomposition, and 4D-Flow MRI, 2021, 1869-408X, 10.1007/s13239-020-00511-w | |
29. | A.J. Geers, I. Larrabide, H.G. Morales, A.F. Frangi, Approximating hemodynamics of cerebral aneurysms with steady flow simulations, 2014, 47, 00219290, 178, 10.1016/j.jbiomech.2013.09.033 | |
30. | Alexandru Morega, Mihaela Morega, Alin Dobre, 2021, 9780128178973, 1, 10.1016/B978-0-12-817897-3.00001-4 | |
31. | Susana Ramalho, Alexandra B. Moura, Alberto M. Gambaruto, Adélia Sequeira, 2013, Chapter 6, 978-1-4614-4177-9, 149, 10.1007/978-1-4614-4178-6_6 | |
32. | Shear-thinning effects of hemodynamics in patient-specific cerebral aneurysms, 2013, 10, 1551-0018, 649, 10.3934/mbe.2013.10.649 | |
33. | Oualid Kafi, Nader El Khatib, Jorge Tiago, Adélia Sequeira, Numerical simulations of a 3D fluid-structure interaction model for blood flow in an atherosclerotic artery, 2017, 14, 1551-0018, 179, 10.3934/mbe.2017012 | |
34. | L. John, P. Pustějovská, O. Steinbach, On the influence of the wall shear stress vector form on hemodynamic indicators, 2017, 18, 1432-9360, 113, 10.1007/s00791-017-0277-7 | |
35. | Ali Sarrami-Foroushani, Toni Lassila, Alejandro F. Frangi, Virtual endovascular treatment of intracranial aneurysms: models and uncertainty, 2017, 9, 19395094, e1385, 10.1002/wsbm.1385 | |
36. | J.M.C. Pereira, J.P. Serra e Moura, A.R. Ervilha, J.C.F. Pereira, On the uncertainty quantification of blood flow viscosity models, 2013, 101, 00092509, 253, 10.1016/j.ces.2013.05.033 | |
37. | T. Bodnár, M. Pires, J. Janela, A. Sequeira, V. Volpert, Blood Flow Simulation Using Traceless Variant of Johnson-Segalman Viscoelastic Model, 2014, 9, 0973-5348, 117, 10.1051/mmnp/20149609 | |
38. | Khalid M Saqr, Computational fluid dynamics simulations of cerebral aneurysm using Newtonian, power-law and quasi-mechanistic blood viscosity models, 2020, 234, 0954-4119, 711, 10.1177/0954411920917531 | |
39. | S. Boujena, N. El Khatib, O. Kafi, Generalized Navier–Stokes equations with non-standard conditions for blood flow in atherosclerotic artery, 2016, 95, 0003-6811, 1645, 10.1080/00036811.2015.1068297 | |
40. | Vahid Goodarzi Ardakani, Xin Tu, Alberto M. Gambaruto, Iolanda Velho, Jorge Tiago, Adélia Sequeira, Ricardo Pereira, Near-Wall Flow in Cerebral Aneurysms, 2019, 4, 2311-5521, 89, 10.3390/fluids4020089 | |
41. | A. Sequeira, T. Bodnár, A. Sequeira, V. Volpert, Blood Coagulation Simulations using a Viscoelastic Model, 2014, 9, 0973-5348, 34, 10.1051/mmnp/20149604 | |
42. | Masoud Ahmadi, Reza Ansari, Computational simulation of an artery narrowed by plaque using 3D FSI method: influence of the plaque angle, non-Newtonian properties of the blood flow and the hyperelastic artery models, 2019, 5, 2057-1976, 045037, 10.1088/2057-1976/ab323f | |
43. | Zineb Mimouni, The Rheological Behavior of Human Blood—Comparison of Two Models, 2016, 06, 2164-5388, 29, 10.4236/ojbiphy.2016.62004 | |
44. | Yang Zhang, Junjie Fan, Yunxia Xiu, Luyao Zhang, Guangxin Chen, Jinyu Fan, Xiao Lin, Chen Ding, Mingming Feng, Ruliang Wang, Yang Liu, Numerical simulation flow dynamics of an intracranial aneurysm, 2022, 33, 09592989, 123, 10.3233/BME-211270 | |
45. | Richard Schussnig, Douglas R.Q. Pacheco, Thomas-Peter Fries, Robust stabilised finite element solvers for generalised Newtonian fluid flows, 2021, 442, 00219991, 110436, 10.1016/j.jcp.2021.110436 | |
46. | Yuya Uchiyama, Soichiro Fujimura, Hiroyuki Takao, Takashi Suzuki, Motoharu Hayakawa, Toshihiro Ishibashi, Kostadin Karagiozov, Koji Fukudome, Yuichi Murayama, Makoto Yamamoto, Hemodynamic Investigation of the Effectiveness of a Two Overlapping Flow Diverter Configuration for Cerebral Aneurysm Treatment, 2021, 8, 2306-5354, 143, 10.3390/bioengineering8100143 | |
47. | Yuya Uchiyama, Soichiro Fujimura, Hiroyuki Takao, Takashi Suzuki, Toshihiro Ishibashi, Katharina Otani, Kostadin Karagiozov, Koji Fukudome, Hideki Yamamoto, Makoto Yamamoto, Yuichi Murayama, Role of patient-specific blood properties in computational fluid dynamics simulation of flow diverter deployed cerebral aneurysms, 2022, 30, 09287329, 839, 10.3233/THC-213216 | |
48. | Yunfei Ling, Torsten Schenkel, Jiguo Tang, Hongtao Liu, Computational fluid dynamics investigation on aortic hemodynamics in double aortic arch before and after ligation surgery, 2022, 141, 00219290, 111231, 10.1016/j.jbiomech.2022.111231 | |
49. | Augusto Fava Sanches, Suprosanna Shit, Yigit Özpeynirci, Thomas Liebig, CFD to Quantify Idealized Intra-Aneurysmal Blood Flow in Response to Regular and Flow Diverter Stent Treatment, 2022, 7, 2311-5521, 254, 10.3390/fluids7080254 | |
50. | Vahid Goodarzi Ardakani, Alberto M. Gambaruto, Goncalo Silva, Ricardo Pereira, A porosity model for medical image segmentation of vessels, 2022, 38, 2040-7939, 10.1002/cnm.3580 | |
51. | Kevin Richter, Tristan Probst, Anna Hundertmark, Pepe Eulzer, Kai Lawonn, Longitudinal wall shear stress evaluation using centerline projection approach in the numerical simulations of the patient-based carotid artery, 2023, 1025-5842, 1, 10.1080/10255842.2023.2185478 | |
52. | O. Kafi, A numerical 3D fluid-structure interaction model for blood flow in an atherosclerotic carotid artery, 2023, 10, 23129794, 825, 10.23939/mmc2023.03.825 | |
53. | Nader El Khatib, Oualid Kafi, Diana Oliveira, Adélia Sequeira, Jorge Tiago, A numerical 3D fluid-structure interaction model for blood flow in a MRI-based atherosclerotic artery, 2023, 18, 0973-5348, 26, 10.1051/mmnp/2023014 | |
54. | Pablo Jeken-Rico, Aurèle Goetz, Philippe Meliga, Aurélien Larcher, Yigit Özpeynirci, Elie Hachem, Evaluating the Impact of Domain Boundaries on Hemodynamics in Intracranial Aneurysms within the Circle of Willis, 2023, 9, 2311-5521, 1, 10.3390/fluids9010001 | |
55. | Iolanda Velho, Jorge Tiago, Ricardo Pereira, Adélia Sequeira, 2024, Chapter 16, 978-3-031-53739-4, 301, 10.1007/978-3-031-53740-0_16 | |
56. | Abdulgaphur Athani, Nik Nazri Nik Ghazali, Irfan Anjum Badruddin, Abdullah Y. Usmani, Mohammad Amir, Digamber Singh, Sanan H. Khan, Image-Based Hemodynamic and Rheological Study of Patient’s Diseased Arterial Vasculatures Using Computational Fluid Dynamics (CFD) and Fluid–Structure Interactions (FSI) Analysis: A review, 2024, 1134-3060, 10.1007/s11831-024-10193-5 | |
57. | H. PAHLAVANI, I. B. OZDEMIR, INTERACTIONS BETWEEN NON-NEWTONIAN BLOOD FLOW AND DEFORMABLE WALLS OF A PATIENT-SPECIFIC ANEURYSM, 2025, 0219-5194, 10.1142/S0219519425500125 |